Stealthy malware targeting air-gapped PCs

1ST STAGE LOADER

leaves no trace of infection
Researchers discover "self-protecting” trojan circulating in the wild. st et onoen
by Dan Goodin - Mar 24, 2016 5:00pm CDT A
Researchers have discovered highly stealthy malware that can infect computers not connected to the correct parent?

Internet and leaves no evidence on the computers it compromises. !

SHAS12(1ST CONFIGURATION F

USB Thief gets its name because it spreads on USB thumb and hard drives and steals huge volumes m
of data once it has taken hold. Unlike previously discovered USB-born malware, it uses a series of AVrunning ?

novel techniques to bind itself to its host drive to ensure it can't easily be copied and analyzed. It uses '

SHASIZ(2ZND CONFICURATION ¥

a multi-staged encryption scheme that derives its key from the device ID of the USB drive. A chain of
loader files also contains a list of file names that are unique to every instance of the malware. Some ol PAVLOAD
the file names are based on the precise file content and the time the file was created. As a result, the data-stealing
malware won't execute if the files are moved to a drive other than the one chosen by the original
developers. Gardon wrote:

It was quite challenging to analyze this malware because we had no access to any malicious
USB device. Moreover, we had no dropper, so we could not create a suitably afflicted USB
drive under controlled conditions for further analysis.

Only the submitted files can be analyzed, so the unique device ID had to be brute-forced and
combined with common USB disk properties. Moreover, after successful decryption of the
malware files, we had to find out the right order of the executables and configuration files,
because the file copying process to get the samples to us had changed the file creation
timestamp on the samples.

pagsvv@rds(fé
Network security

>sp4d

adam everspaughComputer security
ace@cs.wisc.edu

today

* Passwords
* Network security intro

/ Ethernet, MAC, ARP, WiFi

DW USe Cases

K
, Create account:
....... username,pw
\/ " Encryot | o PW..
M > AES-GCM y
[server, desktop, or web service]
pw
; How does the server
" Y the pw?
....... >
Encrypt
M » AES-GCM ’CaT

Password-based symmetric encryption

PBKDF(pw, salt):

[password-based key derivation function]

repeat ¢ times

pDokdf

ODW-Pbased encryption

Enc(pw,M,R): Dec(pw,(C):
salt || R’ =R salt || C’=C
K = PBKDF (pw,salt) K = PBKDF (pw,salt)
C = Enc’(K,M,R’) M = Dec’(K,C’)
Return (salt,C) Return M
Enc'/Dec' is some authenticated encryption scheme,
like AES-GCM

PBKDF + symmetric encryption = pw-based encryption

Attacks”?

dictionary attack

K
v
C
Decrypt |......
T coeeen M AES GOM > M or error

DictionaryAttack(D,C,T):

for pw* in D:
M* = Dec(pw*,C,T)
if M* = error:
return pw,M*

* (Glven an authenticated encryption output (G, T),
dictionary D of possible password

* Enumerate D In order of likelihood

* Jest each candidate password

ow distribution

Password Length Distribution
3.81% 1.62%

M Only upper case
B Only lower case

& Only numeric

B Mixed letters and numeric

M Contains special characters

From an Imperva study of released RockMe.com password database (2010)

password storage

* Password storage + PBKDF
* |ncrease number of iterations: He(salt || pw)

* Use a slower computation
/ scrypt, bcrypt
/ Slower than SHA2, use lots of memory, hard to
parallelize

* (Costs? Benefits?

Facebook’s Password Onion

$cur = ‘password’

¢cur = md5($cur)

$salt = randbytes(20)

¢cur = hmac shal($cur, $salt)

¢cur = remote_hmac _sha256($cur, $secret)
$cur = scrypt($cur, $salt)

¢cur = hmac sha256($cur, $salt)

[A. Muffet, https://video.adm.ntnu.no/pres/54b660049af94]

Protecting passwords

User Web Server Pythia Server
s ® =
Py —
user, pw
> uid, blind (pw)

>
<

z = Fx(uid, pw)

Separates password database and key
Permits key rotation without changing passwords

[The Pythia PRF Service, 2015, Everspaugh, et. all

INTERMISSION_

Getting started on network security

Internet protocol stack

Man-in-the-middle

Address resolution protocol and
ARP spoofing

302.11

University of Wisconsin CS 642

Internet

Alice

Local area network

(LAN) Internet
TCP/IP
Ethernet
BGP (border gateway protocol)
802.11

DNS (domain name system)

Internet threat models

(1) Malicious hosts

Internet threat models

(1) Malicious hosts

(2) Subverted routers or links

Internet threat models

(1) Malicious hosts

(2) Subverted routers or links

(3) Malicious ISPs or backbone

Internet protocol stack

Application HTTP, FTP, SMTP, SSH, etc.
Transport TCP, UDP

Network IP, ICMP, IGMP

Link 802x (802.11, Ethernet)
Application >|Application
Transport > Transport
Network Network < > Network
Link Link < > Link

&

Internet protocol stack

user data
Application
Appl
TCP hZF; user data
P
Ethernet TCP A |
PP
hdr hdr user data
TCP | Appl
IP h
dr hdr hdr user data
ENet TCP | Appl ENet
IP hd dat
hdr ' hdr hdr B tir
14 20 20
=

46 to 1500 bytes

TCP segment

IP datagram

Ethernet frame

Ethernet

Carrier Sense, Multiple Access with Collision Detection (CSMA/CD)
Take turns using broadcast channel (the wire)

Detect collisions, jam, and random backoff

Security issues?

Ethernet

ENet ENet
hdr IP datagram i
6 6 2 4
destination source
address address type aile

Media access control (MAC) addresses 48 bits

Type = what is data payload (0x0800 = IPv4, 0x0806 = ARP, 0x86DD = |IPv6)

32 bit Cyclic Redundancy Check (CRC) checksum

802.2 LLC frame format slightly different, but similar ideas

Ethernet frame

MAC addresses

3 byte 3 byte
2 control bits & OID NIC identifier

* Hardware (ethernet card/WiFi card) initialized with
MAC address

* But: most network cards permit changing MAC address

MAC spoofing

* Many LANs, WiFis use MAC-based access
controls

Changing Your MAC Address/Mac OS X

< Changing Your MAC Address

Under Mac OS X, the MAC address can be altered in a fashion similar to the Linux and FreeBSD methods:
ifconfig en0 lladdr 02:01:02:03:04:05

or

ifconfig en0 ether 02:01:02:03:04:05

This must be done as the superuser and only works for the computer's ethernet card. Instructions on spoofing |

Courtesy of wikibooks
http://en.wikibooks.org/wiki/Changing_Your MAC_Address/Mac_0OS X

Internet protocol stack

user data
Application
Appl
TCP hZF; user data
P
Ethernet TCP A |
PP
hdr hdr user data
TCP | Appl
IP h
dr hdr hdr user data
ENet TCP | Appl ENet
IP hd dat
hdr ' hdr hdr B tir
14 20 20
=

46 to 1500 bytes

TCP segment

IP datagram

Ethernet frame

|IPv4

Ethernet frame

S IP hdr data A containing
hdr tlr
IP datagram
4-bit 4-bit hdr 8-bit 16-bit
version len type of service total length (in bytes)
16-bit 3-bit 13-bit
identification flags fragmentation offset
8-bit 8-bit 16-bit
time to live (TTL) protocol header checksum
32-bit

source |IP address

destination IP address

32-bit

options (optional)

Address resolution protocol

IP routing:

Figure out where to send

an IP packet based on destination
address.

Link layer and IP must cooperate to
route packets

32-bit IP address

ARP enables this cooperation by

ARP mapping IPs to MACs

\
48-bit MAC address

Address resolution protocol

6 6 2 2 2 1 1 2
enet dest e type hw | prot hw prot op
Src type | type | size | size
o ip sender e P ad CRC
sender | P target target P
6 4 6 4 18 4

frame type = 0x0806 (ARP)

enet dest is OXFFFFFFFFFFFF for broadcast

hw type, prot(ocol) type specify what types of addresses we’re looking up

op specifies whether this is an ARP request, ARP reply

ARP caches

* Hosts maintain cache of ARP data
— just a table mapping between IPs and MACs

rist@wifi-212:~/work/teaching/642-fall-2011/slides$ arp -a

7 (172.16.219.1) at 0:50:56:c0:0:1 on vmnetl ifscope permanent [ethernet]
?7 (172.16.219.255) at (incomplete) on vmnetl ifscope [ethernet]

?7 (192.168.1.1) at 98:fc:11:91:73:92 on enl ifscope [ethernet]

~ ¢ (192.168.1.255) at (incomplete) on enl ifscope [ethernet]

€ 7 (192.168.38.255) at (incomplete) on vmnet8 ifscope [ethernet]
rist@wifi-212:~/work/teaching/642-fall-2011/slides$ §

. - - =

ARP has no authentication

* Easy to sniff packets on (non-switched) ethernet

e What else can we do?

Easy Denial of Service (DoS):

Send ARP reply associating
gateway 192.168.1.1 with a
non-used MAC address

ARP has no authentication

* Easy to sniff packets on (non-switched) ethernet

e What else can we do?

Active Man-in-the-Middle:

192.168.1.1
@ MAC1

ARP reply to MAC2
192.168.1.1 -> MAC3

ARP reply to MAC1
192.168.1.2 -> MAC3

192.168.1.2 192.168.1.3
MAC2 MAC3

Now traffic “routed” through malicious box

802.11 (wifi)

ESS

STA = station
BSS = basic service set "‘ STA

BSS —
C . : : Z, &
DS = distribution service AP

| i S
ESS = extended service set ” -
&

SSID (service set identifier) AP

BSS b e
identifies the 802.11 network
STA STA

http://technet.microsoft.com/en-us/library/cc757419(WS.10).aspx

802.11 association

802.11 association AP

&

Probe request

SSID: “linksys”, BSSID: MAC1
<

Auth request MAC1

Auth response
<

Associate request MAC1
>

Associate response
<

802.11 evil twins

Basic idea:
\ AP v - Attacker pretends to be an AP to intercept
traffic or collect data

Two APs for same network

S p Probe request
Evil twin >

SSID: “linksys”, BSSID: MAC1

SSID: “linksys”, BSSID: MAC2
Choose one <

of MAC1, MAC2

Auth request MAC2

802.11 evil twins

Basic idea:
\ AP v - Attacker pretends to be an AP to intercept
traffic or collect data

Basic attack: rogue AP

S p Probe request
Evil twin >

SSID: “linksys”, BSSID: MAC1

SSID: “linksys”, BSSID: MAC2
Choose one <

of MAC1, MAC2

Auth request MAC2

* Password based key derivation protocol (PBKDF)
/ Dictionary attacks
/bcrypt, scrypt

* Network Security
/ Ethernet sniffing
/ ARP cache poisoning, MitM, DoS
/WiFi Evil Twins

* EXIt slips
/1 thing you learned
/1 thing you didn't understand

recap

