
UNDER SUBMISSION - DO NOT COPY OR DISTRIBUTE 1

Configuration Data Deserves a Database

Adwait Tumbde, Matthew J. Renzelmann and Michael M. Swift
University of Wisconsin-Madison

{adwait,mjr,swift}@cs.wisc.edu

Abstract
Configuration management is one of the largest causes of sys-
tem and application failure. In one study, twenty four percent
of Windows NT downtime was attributed to system configura-
tion and maintenance [13]. Furthermore, system configuration
is a large expense: 60-80% of the total cost of computer own-
ership is system management [3]. The problem is increasing as
systems and applications get larger.

We seek to address a key aspect of this problem,configu-
ration storage: how configuration data is stored and managed
by the OS. Existing mechanisms, such as files in Linux, prop-
erty lists in MacOS X, and the registry in Windows do not ad-
equately support application and administrator needs. Instead,
we propose to store configuration data in a relational database.
A database back-end simplifies many common application and
management tasks, as well as providing key services needed for
dependability, such as logging and transactions.

1 Introduction

Modern operating systems are incredibly flexible, but this
flexibility comes at a large cost: configuration manage-
ment. Configuration management adversely impacts both
system availability and the cost of ownership. The Com-
puting Research Association reports that 60-80% of the
cost of ownership is due to system management [3]. A
study of Windows NT systems indicated that configu-
ration management was responsible for 24% of down-
time [13]. Common configuration problems arise when
an install or uninstall process fails, when an application
or administrator corrupts data, or when an upgrade over-
writes common configuration settings incorrectly [6].

A major contributor to the difficulty of system man-
agement is theorganizationof configuration data. For
example, Windows XP stores settings in a configuration
registry, a hierarchical database of key-value pairs. A
typical machine has approximately 200,000 settings [7].
However, additional information of use to administrators,
such as default values, schema, and comments are not
available in this model. Furthermore, the rigid hierar-
chical structure prevents applications that interact from
associating their joint configuration with both applica-
tions. Conversely, Unix systems traditionally store data
in application-defined text file formats. This provides
flexibility and speed to applications but complicates man-
agement, as each application requires a separate parser.

Furthermore, application developers and administra-
tors construct higher-level services on top of configura-
tion storage, but must do so in an ad-hoc, application-
specific fashion. For example, applications commonly
implement an inheritance model, where users may have
per-user settings that override system-wide defaults. As
another example, many applications implementprofiles,
a grouping of settings that may be selected en masse. Fi-
nally, applications interested in robustness must imple-
ment transactions and rollback when modifying config-
uration settings, to ensure that they can recover after a
failure. Unfortunately, such improvised services raise the
complexity of configuration management. These services
remove the semantics of configuration from the data, be-
cause applications now use their private logic to construct
internal settings from the stored data.

We seek to simplify the job of programmers and ad-
ministrators by offering a better configuration storage
mechanism. This mechanism simplifies many of the ser-
vices currently provided by applications, supports com-
mon administration tasks, and ensures that the configu-
ration state of an application is visible to administrators
and not hidden behind a layer of application semantics.

Our Approach. In this paper we present the design
of the Configuration Data Management System, CDMS,
built on top of a relational database. CDMS is capable
of storing all configuration data, including OS settings,
application settings, and user preferences. It not only
presents a standard hierarchical data model to applica-
tions, but also groups related settings intoconfiguration
objectsthat may be assembled into a collection of set-
tings visible to an application instance. This service sup-
ports operations that applications must currently imple-
ment, such as transactions, inheritance, profiles. Addi-
tionally, CDMS provides a rich query interface and a log
of all persistent changes.

We believe databases are acceptable to use within op-
erating systems for two primary reasons. First, the quan-
tity of data is now so large that simple storage tech-
niques do not scale. A desktop or server system may
have hundreds of thousands of settings exceeding twenty
megabytes. Second, embedded databases are now com-
mon in many systems and are usable early in the boot
process. For example, Microsoft sought to place database
functionality into the file system with WinFS [8].



The next section describes the shortcomings of exist-
ing configuration storage systems. Section 3 details the
architecture of CDMS, and Section 4 compares it against
storing configuration data in the file system. We present
related work in Section 5 and conclude in Section 6.

2 The Problem

We find ample evidence in modern operating systems that
existing methods of storing configuration data are inade-
quate. While we primarily discuss Windows and Linux,
we find problems in MacOS X as well.

Ad-hoc representation. In Linux, there is no single
configuration service, leading to hundreds of application-
specific data formats. This variety leads to formatting
errors when changing settings. While Windows supports
a common storage system, the registry, it does not pro-
vide high level features such as naming. applications that
link settings to other applications use their own naming
convention, such as globally unique identifiers (GUIDs)
to indirectly reference other applications. However, the
context for looking up these strings is known only to the
application, which conceals the semantics of these links
from administrators. This usage creates implicit depen-
dencies from one part of the registry to another, thereby
increasing the possibility of a management error.

Encapsulation. Hierarchical configuration storage,
either in the file system or in the registry, paradoxically
prevents applications from encapsulating their data in a
single location. Settings that relate one application to an-
other must belong to either application, or to a third party.
For example, Figure 1 shows the distribution of Microsoft
Office 2003 configuration data compared to the overall
structure of the registry. As the figure shows, Office stores
settings throughout the entire registry. As a result, admin-
istrators have difficulty in identifying the settings related
to a single application.

Reliability. Configuration data corruption due to
aborted or misguided management operations often im-
pacts application and system reliability. For this reason,
Windows XP includes a rollback mechanism in its install
facility, Windows Vista includes transactional registry ac-
cess, and the System Restore feature allows the whole
registry to be checkpointed. However, these features do
not go far enough. Rollback during installation is of little
use when failures occur during other management tasks,
and external configuration changes may prevent rollback
from succeeding. For example, we manually injected er-
rors into the configuration data for Adobe Reader 7.0.8
by deleting settings and found that neither the uninstaller
nor the installer would function. In addition, system-
wide rollback undoesall changes and not just those at
fault. Rather, the ability to undo any change at any time
is needed to fully support reliable management [2].

Scoping. Configuration data commonly applies to
a fixed scope, such as a single user, an application, or
the entire machine. MacOS X [1] and GConf [10], for
example, provide a fixed set of scopes with inheritance
for propagating settings from a global scope to a per-
user scope. However, a fixed set of scopes cannot sup-
port common usage scenarios, such as sharing printer
or network settings between selected applications. Fur-
thermore, these systems store only a single copy of each
scope, so that the users cannot choose at runtime which
settings to use. Applications that support switching be-
tween groups of settings, such as Mozilla with user pro-
files, must implement the feature themselves. As a result,
the semantics of which settings are in effect are hidden in-
side application logic and are not visible to generic man-
agement tools.

In summary, we have identified several features where
existing configuration storage systems fall short resulting
in increased management cost and decreased reliability.

3 Configuration Data Management System

We propose to store configuration data in a database. To
this end, we designed the Configuration Data Manage-
ment System (CDMS) that addresses the problems de-
scribed in the previous section. We discuss the organiza-
tion of CDMS, its data model, and the services it offers.

3.1 CDMS Overview

CDMS is a system-wide service for storing all configura-
tion data, including system settings, applications settings,
and user preferences. This service provides a global view
of the configuration data in a system, which facilitates de-
velopment of shared management tools. The centralized
system also provides services such as transactions and
querying to all applications, avoiding the need for reim-
plementing these on a per-application basis. Finally, a
centralized system provides better control over settings to
administrators, as all settings are visible through a com-
mon interface.

The architecture of CDMS is illustrated in Figure 2.
CDMS implements our novel data model on top of a rela-
tional database and augments the database with an inter-
face for application programmers and a data model spe-
cific to configuration data.

The database storage engine provides several instant
benefits compared to files or special-purpose stores. First,
a database provides transactional updates, which im-
proves reliability. Second, databases log updates to pro-
vide atomic commit, and CDMS retains the log to create a
persistent record of all changes to configuration settings.
This log is exposed to administrators, enabling rollback
of faulty changes as well as time-travel debugging [12].

2



Figure 1:The graph on the left represents the Windows registry as a whole. Nodes represent registry keys and edges denote
a parent-child relationship. The graph on the right includes only registry keys added during Office 2003 installation.

Relational

Table

Query
Library

SQL Queries
File Import/ 

Export 

Relational

Table

New 
Applications

Management
Tools

Legacy
Applications

Figure 2:CDMS Architecture

A unique element of CDMS is its data model, which
provides a two dimensional system for organizing data.
We now describe how settings are named in CDMS and
how they are organized intoconfiguration objects: groups
of related settings.

3.2 Data Model

Existing configuration management services such as the
Windows Registry, GConf, and MacOS X property lists
store data as a hierarchy of key-value pairs. CDMS in-
stead stores flat key-value pairs in relational tables; the
hierarchy is imposed by a naming mechanism. Values de-
fault to text, but may be optionally interpreted as a num-
ber, a file name, a link, or other type, if metadata indicat-
ing the type is stored.

Unlike other configuration services, CDMS provides
another dimension of organization: settings related to a
single user, application, or service are grouped into ob-
jects. This allows related settings that have unrelated
names to be associated. These objects represent a group
of settings in ascopeand are the building blocks of an
inheritancemechanism, where an object may inherit set-
tings from many other objects.

Naming. We adopt the naming convention of Mozilla
Firefox and give each configuration setting a dotted
name, leading with a vendor, application, or service
name and ending with the name of the individual set-
ting. For example, an Apache setting might be named
apache.v2.timeout, indicating that the application

name is “apache” version 2, and the setting name is
“timeout.” While simple, this name format supports
data already stored in the Registry or property lists.
Common operations such as enumeration can be imple-
mented as queries over names. For example, a list of
printers may be specified asprinter.color-floor1,
printer.bw-floor3, and may be enumerated by query-
ing for printer.*. The database query engine enables
this style of access.

Like other configuration systems, this naming mech-
anism allows applications to group related settings. In
addition, it provides a global namespace, which allows
a setting to refer to other settings directly. For example,
one setting may take on the value of another setting by
storing a symbolic link. This enables a new version of an
application, with a different configuration schema, to re-
fer to values from previous versions. In contrast, the Win-
dows Registry does not make use of a global name space,
and instead uses application-specific identifiers, such as
GUIDs, to reference other settings.

Configuration Objects and Inheritance. In addition
to name-based grouping described above, CDMS also al-
lows grouping usingconfiguration objects. A configu-
ration object is a named group of related configuration
settings and is independent of the naming mechanism.
For example, objects may exist for application defaults,
user preferences and system-wide mandatory settings, as
shown in Figure 3. These objects may contain overlap-
ping settings. These overlaps are resolved byinheritance,
in which a configuration object overrides the settings of
its ancestors. Unlike files, where an application must
name the file containing a setting, a database can rapidly
query a large collection of configuration objects to find
the relevant settings.

Each installed application or service has at least one
configuration object. Users who wish to customize an ap-
plication, for example with their own preferences, have
an additional configuration object for the application. To
execute an application with both per-application and per-
user settings, CDMS supportsconfiguration spaces, an
address space of configuration data that maps names onto
values. This mapping is created by assembling a group
of configuration objects into an ordered list. Settings at

3



Browser Configuration Space

accept_cookies = true

foreground = black

accept_cookies =false
foreground = white
max_connections = 25

System-wide 
mandatory

User 
preferences

Application
 defaults

Run-time Configuration

accept_cookies = true
foreground = black
max_connections = 25

Figure 3:Configuration objects, Space and Inheritance

the front of the list override settings further away, allow-
ing users or applications to override system settings on a
case-by-case basis. An example configuration space for
a browser application is shown in Figure 3. The system-
wide mandatory settings, user preferences and applica-
tion defaults form an ordered list with the system-wide
settings object at the head. Windows Vista provides a
similar function to allow untrusted applications to mod-
ify a private copy of global settings, but the feature is not
generally available for use by applications or users.

Configuration spaces enable flexible inheritance sce-
narios, such as applications sharing a configuration ob-
ject with common preferences (e.g. default printer). In
addition, mandatory system-wide settings may be imple-
mented by forcing a system-wide configuration object to
be the head of all configuration spaces. These spaces pro-
vide better encapsulation of settings than files because all
the settings belonging to an application go into a single
configuration space, even those that impact system-wide
features. Consequently, administrators can quickly find
all the settings of an application.

Inheritance is implemented by the database query pro-
cessing. When retrieving a setting by name, the database
consults a view over the data specific to the space that
merges settings from multiple objects. This can be im-
plemented as a query over all configuration objects in the
space, choosing the top element from the results sorted
according to the list. Thus, CDMS provides inheritance
as a system service rather than as an ad-hoc feature im-
plemented by applications.

3.3 Data Storage and Access

CDMS stores key-value pairs and associated metadata,
organized into one table per user along with one or more
tables for system-wide data. Additional tables are main-
tained by CDMS to track global information. Organizing
data as per-user tables corresponds closely with the oper-
ating system’s notion of a security domain.

CDMS provides three interfaces to access data: a li-
brary for applications, a file import/export mechanism for
legacy applications, and a query language interface for
administrators. The library provides a simple interface to
read and update named configuration settings, optionally

within a named configuration object. In addition, it pro-
vides wild card searches to enumerating related settings
and transactions to atomically group reads or updates.

For legacy applications that have not been updated
to use the library interface, CDMS supports file im-
port/export throughwrappers. These wrappers translate
the data from the database format to the format expected
by the application [5], and could leverage XSL transfor-
mations to convert from XML-formatted data.

The increasing volume and complexity of the config-
uration data mandates a powerful query interface. CDMS
supports direct queries using SQL. This exposes the full
relational power of the database, for example allowing
searches for related entries. Furthermore, SQL access
provides a basis for writing management tools, which can
issue SQL queries to read and modify settings.

3.4 CDMS Services

The core features of the CDMS storage and data model
can serve as the foundation for additional functionality.

Profiles. Some applications support multiple groups
of preferences and allow a user to choose a group to use,
for example based on his current project. Profiles are eas-
ily provided by CDMS with configuration objects. Each
profile stores the settings unique to the profile in a single
object, while settings common to all profiles are stored
in a separate object. To use a profile, the user constructs
a configuration space with the per-profile object as the
head followed by the common object. The same feature
can be used for system settings, such as adapting network
settings to different environments.

Time Travel. CDMS can provide time travel either
through its persistent log or by snapshotting configura-
tion objects. With the log, a user or administrator can roll
back the changes to all objects, any single object, or just a
specific change. Time travel can also be implemented by
snapshotting the configuration objects in use and starting
an application in a configuration space using the snap-
shot.

Multiple Versions. Multiple versions of an appli-
cation or service can coexist because their settings are
stored in distinct configuration objects. Installation of a
new version will not overwrite the configuration settings
of older version. A user or administrator can then select
the desired version by constructing a space referring to
that version.

CDMS improves reliability and simplifies manage-
ment by (1) storing data in a database, which supports
transactions and logging, and (2) grouping settings into
configuration objects that may be organized into a con-
figuration space. CDMS moves the semantics of which
settings are in effect out of application logic and into the
inheritance mechanism, which exposes the configuration
of applications to administrators.

4



4 What About Files?

A traditional argument against configuration services is
that they lack the flexibility and easy access of text files.
In this section, we describe how databases can achieve
and add on to the benefits of the text files.

Copying. Copying and renaming of files enables al-
ternate configurations, selective backup, and passing con-
figurations to other users or systems. CDMS can provide
the same functionality, either by exporting data to a file or
by duplicating data into a new configuration object within
the database. These new objects can serve as a backup or
as configuration for other users and applications.

Metadata. Text files, by their flexibility, simplify the
addition of comments and other metadata, including de-
fault values, to configuration files. For example, 683 of
the 940 lines in the distributedhttpd.conf file for the
Apache web server are comments. Many of these com-
ments are optional values, sample settings, and descrip-
tions. CDMS can support these same services equally
well by attaching additional text columns to the table that
contain comments or other data for human consumption.
Optional settings can be supported with an “enabled” bit
on all settings.

Tool support. Configuration management tools can
benefit from the rich body of functionality provided by
SQL. For example, the database query engine can provide
search functionality which exploits data semantics like
naming in contrast to a simplegrepcall. Common script-
ing languages, such as Perl, Python, WSH and Visual Ba-
sic already support APIs for querying databases, directly
supporting management tools in those languages.

5 Related Work

Several prior projects have sought to change how config-
uration data is stored. GConf [10] and Nix [4] both pro-
vide new services, although in restricted domains: GConf
only applies to user preferences and Nix to package man-
agement. GConf may optionally store preferences in
a database, but does not expose database features like
queries to administrators.

The notion of separating configuration into objects
that can be optionally applied is a core feature of Win-
dows group policy objects [9], but these are only used
for system settings and not application or user settings.
In addition, there is no hierarchy, so only a single object
covers a particular setting.

Several aspects of CDMS have been proposed, but not
as a single package. Logging configuration changes is
one aspect of Flight Data Recorder (FDR) [11]. How-
ever, FDR is a full-system tracer, whose overhead may
not be appropriate for many cases. Databases have been
used for storing configuration data [5], however this ap-
proach exported text files and hence could not support

applications that modify their own configuration, such as
common desktop applications.

6 Conclusion
We identify several shortcomings of existing methods of
storing configuration data. Based on these problems, we
propose to store data in a relational database. This pro-
vides several key benefits: transactions and logging, a
rich management interface via a query language, and in-
heritance and profiles via configuration objects. Further-
more, we counter the standard arguments for configura-
tion files by demonstrating that similar or greater func-
tionality can be provided by a database.

References
[1] Apple Inc. Runtime configuration guidelines.http:
//developer.apple.com/documentation/MacOSX/

Conceptual/BPRuntimeConfig/BPRuntimeConfig.

pdf, 2006.
[2] A. Brown. Toward system-wide undo for distributed ser-

vices. Technical Report UCB/CSD-03-1298, EECS De-
partment, University of California, Berkeley, 2003.

[3] Computing Research Association. Final report of the
cra conference on grand research challenges in infor-
mation systems.http://www.cra.org/reports/gc.
systems.pdf, 2003.

[4] E. Dolstra, M. de Jonge, and E. Visser. Nix: A safe
and policy-free system for software deployment. In18th
USENIX LISA, 2004.

[5] J. Finke. An improved approach for generating configura-
tion files from a database. In14th USENIX LISA, 2000.

[6] A. Ganapathi, Y.-M. Wang, N. Lao, and J.-R. Wen. Why
pcs are fragile and what we can do about it: A study of
windows registry problems. In2004 IEEE DSN, 2004.

[7] E. Kiciman and Y.-M. Wang. Discovering correctness
constraints for self-management of system configuration.
In 1st Intl. Conf. on Autonomic Computing (ICAC), 2004.

[8] D. Malkhi and D. Terry. Concise version vectors in
WinFS. In 19th. Intl. Symp. on Distributed Computing,
Sept. 2005.

[9] Microsoft Corp. Windows server 2003 group
policy. http://technet2.microsoft.com/

windowsserver/en/technologies/featured/

gp/default.mspx.
[10] H. Pennington. Gconf: Manageable user preferences. In

2002 Ottawa Linux Symp., June 2002.
[11] C. Verbowski, E. Kiciman, A. Kumar, B. Daniels, S. Lu,

J. Lee, Y.-M. Wang, and R. Roussev. Flight data recorder:
Monitoring persistent-state interactions to improve sys-
tems management. In7th USENIX OSDI, Nov. 2006.

[12] A. Whitaker, R. S. Cox, and S. D. Gribble. Configuration
debugging as search: Finding the needle in the haystack.
In 6th USENIX OSDI, Dec. 2004.

[13] J. Xu, Z. Kalbarczyk, and R. K. Iyer. Networked windows
nt system field failure data analysis. In1999 Pacific Rim
Intl. Symp. on Dependable Computing, Dec. 1999.

5

http://developer.apple.com/documentation/MacOSX/Conceptual/BPRuntimeConfig/BPRuntimeConfig.pdf
http://developer.apple.com/documentation/MacOSX/Conceptual/BPRuntimeConfig/BPRuntimeConfig.pdf
http://developer.apple.com/documentation/MacOSX/Conceptual/BPRuntimeConfig/BPRuntimeConfig.pdf
http://developer.apple.com/documentation/MacOSX/Conceptual/BPRuntimeConfig/BPRuntimeConfig.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2003/5299.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2003/5299.html
http://www.cra.org/reports/gc.systems.pdf
http://www.cra.org/reports/gc.systems.pdf
http://technet2.microsoft.com/windowsserver/en/technologies/featured/gp/default.mspx
http://technet2.microsoft.com/windowsserver/en/technologies/featured/gp/default.mspx
http://technet2.microsoft.com/windowsserver/en/technologies/featured/gp/default.mspx
http://www.usenix.org/events/osdi04/tech/whitaker.html
http://www.usenix.org/events/osdi04/tech/whitaker.html

	Introduction
	The Problem
	Configuration Data Management System
	CDMS Overview
	Data Model
	Data Storage and Access
	CDMS Services

	What About Files?
	Related Work
	Conclusion

