
Securing Distributed Systems with Information Flow Control
Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazières

Stanford University

ABSTRACT

Recent operating systems [12, 21, 26] have shown that
decentralized information flow control (DIFC) can se-
cure applications built from mostly untrusted code. This
paper extends DIFC to the network. We present DStar,
a system that enforces the security requirements of mu-
tually distrustful components through cryptography on
the network and local OS protection mechanisms on each
host. DStar does not require any fully-trusted processes
or machines, and is carefully constructed to avoid covert
channels inherent in its interface. We use DStar to build
a three-tiered web server that mitigates the effects of un-
trustworthy applications and compromised machines.

1 INTRODUCTION

Software systems are plagued by security vulnerabilities
in poorly-written application code. A particularly acute
example is web applications, which are constructed for
a specific web site and cannot benefit from the same
level of peer review as more widely distributed software.
Worse yet, a sizeable faction of web application code ac-
tually comes from third parties, in the form of libraries
and utilities for tasks such as image conversion, data in-
dexing, or manipulating PDF, XML, and other complex
file formats. Indeed, faced with these kinds of tasks, most
people start off searching for existing code. Sites such
as FreshMeat and SourceForge make it easy to find and
download a wide variety of freely available code, which
unfortunately comes with no guarantee of correctness.
Integrating third-party code is often the job of junior en-
gineers, making it easy for useful but buggy third-party
code to slip into production systems. It is no surprise
we constantly hear of catastrophic security breaches that,
for example, permit a rudimentary attacker to download
100,000 PayMaxx users’ tax forms [20].

If we cannot improve the quality of software, an al-
ternative is to design systems that remain secure despite
untrustworthy code. Recent operating systems such as
Asbestos [21], HiStar [26], and Flume [12] have shown
this can be achieved through decentralized information
flow control (DIFC). Consider again the PayMaxx ex-
ample, which runs untrustworthy application code for
each user to generate a tax form. In a DIFC operating
system, we could sandwich each active user’s tax form
generation process between the payroll database and an
HTTPS server, using the DIFC mechanism to prevent the
application from communicating with any other compo-
nent. Figure 1 illustrates this configuration. Suppose the

Web Server

HTTPS
Front-end

Server
Database

Code
Application

Untrustworthy
Web

Browser

Figure 1: High-level structure of a web application. The shaded ap-
plication code is typically the least trustworthy of all components, and
should be treated as untrusted code to the extent possible. Dashed lines
indicate how the web server can be decomposed into three kinds of ma-
chines for scalability—namely, front-end, application, and data servers.

HTTPS server forwards the username and password sup-
plied by the browser to the database for verification, the
database only allows the application to access records
of the verified user, and the HTTPS server only sends
the application’s output to the same web browser that
supplied the password. Then even a malicious applica-
tion cannot inappropriately disclose users’ data. Effec-
tively we consider the application untrusted, mitigating
the consequences if it turns out to be untrustworthy.

While DIFC OSes allow us to tolerate untrustworthy
applications, they can do so only if all processes are run-
ning on the same machine. Production web sites, on the
other hand, must scale to many servers. A site like Pay-
Maxx might use different pools of machines for front-
end HTTPS servers, application servers, and back-end
database servers. To achieve Figure 1’s configuration
when each component runs on a separate machine, we
also need a network protocol that supports DIFC.

This paper presents DStar, a protocol and framework
that leverages OS-level protection on individual ma-
chines to provide DIFC in a distributed system. At a
high level, DStar controls which messages sent to a ma-
chine can affect which messages sent from the machine,
thereby letting us plumb together secure systems out of
untrusted components. DStar was designed to meet the
following goals:

Decentralized trust. While an operating system has
the luxury of an entirely trusted kernel, a distributed sys-
tem might not have any fully-trusted code on any ma-
chine. Web applications rely on fully-trusted certificate
authorities such as Verisign to determine what servers to
trust: for example, Google’s web applications might trust
any server whose certificate from Verisign gives it a name
ending in .google.com. However, we believe that requir-
ing such centralized trust by design needlessly stifles in-
novation and reduces security. Instead, DStar strives to
provide a more general, decentralized mechanism that
lets applications either use authorities such as Verisign

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 293



by convention or manage their trust in other ways. More-
over, the lack of a single trusted authority simplifies in-
tegration of systems in different administrative domains.

Egalitarian mechanisms. One of the features that dif-
ferentiates DIFC work from previous information flow
control operating systems is that DIFC mechanisms are
specifically designed for use by applications. Any code,
no matter how unprivileged, can still use DIFC to pro-
tect its data or further subdivide permissions. This prop-
erty greatly facilitates interaction between mutually dis-
trustful components, one of the keys to preserving secu-
rity in the face of untrustworthy code. By contrast, mili-
tary systems, such as [22], have also long controlled in-
formation flow, but using mechanisms only available to
privileged administrators, not application programmers.
Similarly, administrators can already control information
flow in the network using firewalls and VLANs or VPNs.
DStar’s goal is to offer such control to applications and to
provide much finer granularity, so that, in the PayMaxx
example, every user’s tax information can be individually
tracked and protected as it flows through the network.

No inherent covert channels. Information flow con-
trol systems inevitably allow some communication in vi-
olation of policy through covert channels. However, dif-
ferent applications have different sensitivities to covert
channel bandwidth. PayMaxx could easily tolerate a
1,000-bit/second covert channel: even if a single in-
stance of the untrusted application could read the entire
database, it would need almost a day to leak 100,000 user
records of 100 bytes each. (Exploiting covert channels
often involves monopolizing resources such as the CPU
or network, which over such a long period could easily
be detected.) By contrast, military systems consider even
100 bits/second to be high bandwidth. To ensure that
DStar can adapt to different security requirements, our
goal is to avoid any covert channels inherent in its inter-
face. This allows any covert channels to be mitigated in a
particular deployment without breaking backwards com-
patibility. Avoiding inherent covert channels is particu-
larly tricky with decentralized trust, as even seemingly
innocuous actions such as querying a server for autho-
rization or allocating memory to hold a certificate can
inadvertently leak information.

DStar runs on a number of operating systems, includ-
ing HiStar, Flume, and Linux. DStar leverages the OS’s
DIFC on the the former two, but must trust all software
on Linux. Nonetheless, running DStar on Linux is con-
venient for incremental deployment; for example we can
run the least-trusted application components on HiStar or
Flume, and sandwich them between existing Linux web
server and database machines.

To illustrate how DStar is used, Section 5.1 describes
a secure web server we built on HiStar, and Section 5.3
shows how we distributed it using DStar. On a single

machine, our web server ensures that the SSL certificate
private key is accessible only to a small part of the SSL
library, and can only be used for legitimate SSL negotia-
tion. It also protects authentication tokens, such as pass-
words, so that even the bulk of the authentication code
cannot disclose them. In a distributed setting, DStar al-
lows the web server to ensure that private user data re-
turned from a data server can only be written to an SSL
connection over which the appropriate user has authenti-
cated himself. DStar’s decentralized model also ensures
that even web server machines are minimally trusted: if
any one machine is compromised, it can only subvert the
security of users that use or had recently used it.

2 INFORMATION FLOW CONTROL

DStar enforces DIFC with labels. This section first de-
scribes how these labels—which are similar to those of
DIFC OSes—can help secure a web application like Pay-
Maxx. We then detail DStar’s specific label mechanism.

2.1 Labels
DStar’s job is to control how information flows between
processes on different machines—in other words, to en-
sure that only processes that should communicate can
do so. Communication permissions are specified with
labels. Each process has a label; whether and in which
direction two processes may communicate is a function
of their labels. This function is actually a partial order,
which we write v (pronounced “can flow to”).

Roughly speaking, given processes S and R labeled
LS and LR, respectively, a message can flow from S to
R only if LS v LR. Bidirectional communication is per-
mitted only if, in addition, LR v LS. Labels can also be
incomparable; if LS 6v LR and LR 6v LS, then S and R may
not communicate in either direction. Such label mech-
anisms are often referred to as “no read up, no write
down,” where “up” is the right hand side of v. Given that
labels can be incomparable, however, a more accurate de-
scription might be, “only read down, only write up.”

Because a distributed system cannot simultaneously
observe the labels of processes on different machines,
DStar also labels messages. When S sends a message M
to R, S specifies a label LM for the message. The property
enforced by DStar is that LS v LM v LR. Intuitively, the
message label ensures that untrusted code cannot inap-
propriately read or disclose data. In the PayMaxx exam-
ple, the payroll database should use a different value of
LM to protect the data of each user in the database, so that
only the appropriate instance of the tax form generating
application and HTTPS front ends can receive messages
containing a particular user’s data.

2.2 Downgrading privileges
If data could flow only to higher and higher labels, there
would be no way to get anything out of the system: the

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association294



high label of the HTTPS front end would prevent it from
sending tax forms back to a client web browser over a
network device with a low label. The big difference be-
tween DIFC and more traditional information flow [8] is
that DIFC decentralizes the privilege of bypassing “can
flow to” restrictions. Each process P has a set of privi-
leges OP allowing it to omit particular restrictions when
sending or receiving messages, but no process has blan-
ket permission to do so, In effect, OP lets P downgrade
or lower labels on message data in certain ways.

We write vOP (“can flow to, given privileges OP”) to
compare labels in light of a set of privileges OP. As we
will show later, vOP is strictly more permissive than v;
in other words, L1 v L2 always implies L1 vOP L2, but
not vice versa. What DStar actually enforces, then, is that
S can send a message M that R receives only if

LS vOS LM vOR LR.

In other words, S with privileges OS can produce a mes-
sage labeled LM and R with privileges OR can receive a
message so labeled. In the PayMaxx example, one might
give the untrusted tax form generator no privileges, while
giving the HTTPS front end the ability to downgrade LM
so as to send data back to the client web browser.

But who assigns such labels and privileges to the dif-
ferent processes in a system? Very often the security pol-
icy we want is a conjunction of concerns by mutually dis-
trustful components. For example, the payroll database
may want to disclose user records only after the the front-
end server has supplied the appropriate password, while
the front-end server may want to prevent the database
from disclosing plaintext passwords sent to it for authen-
tication. If DStar concentrated the ability to set labels in
a group of specially-designated, privileged processes, it
would impede the ability of unprivileged software to ex-
press security requirements. That, in turn, would lead to
more trusted components and increased damage should
any of them in fact be untrustworthy. Fortunately, as de-
scribed in the next subsection, decentralized downgrad-
ing helps make DStar’s labels an egalitarian mechanism
with which any process can express security concerns.

2.3 Categories
A DStar label is a set of categories, each of which im-
poses a restriction on who can send or receive data. There
are two types of category: secrecy and integrity. Secrecy
categories in a message label restrict who can receive the
message. In the PayMaxx example, to avoid improper
disclosure, the database server should have one secrecy
category for each user and include that category in the
label of any messages containing that user’s data. Con-
versely, integrity categories in a message label constrain
who may have sent the message, and thus can help au-
thenticate the sender. We will use s and i subscripts to
indicate secrecy and integrity categories, respectively.

{ys}

{xs, ys}

{xs}

{}

{xs,ys,zi}

{ys, zi} {xs, zi}

{zi}

Figure 2: Lattice formed by labels using two secrecy categories, xs and
ys, and an integrity category, zi. Shading indicates labels that include
the zi category. Arrows show pairs of labels where the “can flow to” v
relation holds, and thus how messages can be sent. Self-arrows are not
shown. Information can also flow transitively over multiple arrows.

For any two labels L1 and L2, we can now formally
define the v relation:

L1 v L2 if and only if L1 contains all the in-
tegrity categories in L2 and L2 contains all the
secrecy categories in L1.

As illustrated in Figure 2, labels form a lattice under the
v relation, and thus transitively enforce a form of manda-
tory access control [8].

A process P’s downgrading privileges, OP, are also
represented as a set of categories. We say P owns a cat-
egory c when c ∈ OP. Ownership confers the ability to
ignore the restrictions imposed by a particular category
at the owner’s discretion. For any two labels L1 and L2
and privileges O, we can now formally define vO:

L1 vO L2 if and only if L1 −O v L2 −O.

In other words, except for the categories in O, L1 contains
all the integrity categories in L2 and L2 contains all the
secrecy categories in L1.

What makes categories egalitarian is that any process
can allocate a category and simultaneously gain owner-
ship of the newly allocated category. A process that owns
a category may also, at its discretion, grant ownership of
that category to another process. Every DStar message M
includes a set of categories GM that its sender S is grant-
ing to the recipient, where DStar ensures that

GM ⊆ OS.

Thus, the payroll database can create one category per
user and grant ownership of the category to the appropri-
ate HTTPS front end, as illustrated in Figure 3. At the
same time, the front end can allocate its own categories
to protect plaintext passwords sent the to the database.

2.4 Clearance
In addition to its label LP and privileges OP, each process
P has a third set of categories, CP, called its clearance.
Clearance represents the right of a process to raise its
own label. A process may set its label to any value Lnew

P

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 295



App Code

User B’s

Browser
User A’s

O = {as}
Front end

Database
O = {as, bs}

O = {bs}
Front end

L = {bs}
App Code B’s data

L = {bs}

A’s data
L = {as}L = {as}

Browser

Figure 3: Example use of labels to prevent the PayMaxx application
code from inappropriately disclosing data, with two users, A and B.
Rounded boxes are processes. Ellipses are messages. Shaded compo-
nents are labeled with a user’s secrecy category, as or bs for A and B
respectively. The front end communicates with the database to authen-
ticate the user and obtain ownership of the user’s secrecy category.

such that LP v Lnew
P v CP. A process that owns a cat-

egory can raise the clearance of other processes in that
category. For instance, when the front-end server sends
a user’s password to the payroll database, the database
responds by granting it ownership of the user’s secrecy
category. Given this ownership, the front end can raise
the clearance of the application, which in turn allows the
application to add that user’s secrecy category to its la-
bel. DStar fully implements clearance, but for simplicity
of exposition we mostly omit it from discussion.

3 DSTAR EXPORTER

To model the fact that all processes with direct access to
a particular network can exchange messages, DStar re-
quires all such processes to have the same label, Lnet,
which we call the network label. (For networks con-
nected to the Internet, Lnet = {}.) However, our main goal
of restricting the communication of potentially untrust-
worthy code requires running different processes with
different labels. In order to allow these processes, which
lack direct network access, to communicate across ma-
chines, DStar introduces the notion of exporter daemons.

Each host runs an exporter daemon, which is the only
process that sends and receives DStar messages directly
over the network. When two processes on different ma-
chines communicate over DStar, they exchange mes-
sages through their local exporters, as shown in Figure 4.
Exporters are responsible for enforcing the information
flow restrictions implied by message labels, which boils
down to three requirements. Each exporter E must:

1. Track the labels assigned to, and the categories
owned by, every process on E’s machine,

2. Ensure that processes on E’s machine cannot send
or receive messages with inappropriate labels, and

3. Send or accept a network message M only when E
can trust the remote exporter to respect the commu-
nication restrictions implied by M’s label.

LM = {xs}
Message M

Machine BMachine A

Process S
LS = {xa

s}
Process R
LR = {xb

s}

TA = {xs}

Exporter A

TB = {xs}

OB = {xb
s}OA = {xa

s}
Exporter B

xa
s → xs xs → xb

s

Figure 4: Message sent by process S on machine A to process R on
machine B. L and O designate local OS labels and OS ownership priv-
ileges. xa

s and xb
s are local OS secrecy categories. Exporters translate

between these OS categories and the globally-meaningful DStar cate-
gory xs. TA is the set of DStar categories whose owners explicitly trust
exporter A, while TB is the analogous set for exporter B.

The next three subsections discuss each of these require-
ments in turn.

3.1 Local OS DIFC
To track the labels and ownership privileges of local pro-
cesses, exporters rely on the DIFC facilities of the local
operating system. Asbestos, HiStar, and Flume all have
mechanisms similar to DStar’s categories and labels. We
will always refer to these as OS categories and OS labels
to differentiate them from DStar’s categories and labels.
Every exporter establishes mappings between OS cate-
gories, which have meaning only on the local machine,
and DStar categories, which are globally meaningful. At
a high level, one can view the exporter’s job as trans-
lating between local OS DIFC protection of data on the
host and cryptographic protection of data on the network.
Because an exporter’s label is always the network label,
the exporter must own all local OS categories required to
access the messages it processes.

Not every OS category has an equivalent DStar cat-
egory. However, every category in a process P’s DStar
label, LP, is represented by a corresponding OS category
in P’s OS label, LP. Each restriction implied by a DStar
category is thus locally enforced by the corresponding
OS category, thereby ensuring processes on the same ma-
chine cannot use local OS facilities to communicate in
violation of their DStar labels. Similarly, every DStar cat-
egory that P owns is reflected in P’s local OS downgrad-
ing privileges, OP. Processes must explicitly invoke the
exporter to create a mapping between a local and a DStar
category. Section 4.2 details this process for HiStar. An
important point is that the exporter creates unforgeable
mappings, but does not store them. Processes must ar-
range to store the mappings they care about and specify
them when sending messages.

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association296



3.2 Local exporter checks
Recall from Section 2.2 that when a process S sends a
message M to a process R on another machine, DStar
must ensure LS vOS LM vOR LR. If M grants ownership
privileges, DStar must also ensure GM ⊆ OS.

The left half of the first requirement, LS vOS LM , and
the second requirement, GM ⊆ OS, are enforced on S’s
machine. Roughly speaking, the local OS ensures that
these relations hold in terms of local categories, and the
exporter translates local categories into DStar categories.
In particular, when S sends M to S’s exporter through the
local OS’s IPC mechanism, it uses the OS’s DIFC both
to label the message LM (requiring LS vOS LM) and to
prove to the exporter that it owns GM (requiring GM ⊆
OS). S’s exporter, in turn, uses mappings it previously
created to translate the OS categories in LM and GM into
DStar categories to produce LM and GM .

The right half of DStar’s first requirement, LM vOR LR,
is enforced on R’s machine in an analogous fashion.
Upon receiving M from the network, R’s exporter trans-
lates the DStar categories in LM and GM into OS cate-
gories to obtain a local OS message label LM and set of
OS categories GM that should be granted to R. (It per-
forms this translation using mappings it previously cre-
ated, which must be explicitly referenced in the mes-
sage.) The exporter then sends M through the local OS’s
IPC mechanism to R with a label of LM , and grants
R ownership of categories in GM . The local OS DIFC
mechanism, in turn, ensures that LM vOR LR.

Together, the two exporters guarantee LS vOS LM vOR

LR, but only if they are both trustworthy. The final task
of an exporter is to determine whether or not it can trust
the remote exporter to enforce its half of the equation.

3.3 Decentralized trust
When should an exporter trust another exporter to send
or receive a message M? In order to support decentral-
ized trust, DStar leaves this decision up to the owners of
the categories whose security is at stake—namely those
in which LM differs from Lnet, and those in GM . Each ex-
porter E has a set of categories TE whose owners trust E
to handle the category. We refer to TE as E’s trust set.

When a process P creates a DStar category c, P im-
plicitly adds c to its local exporter’s trust set. Before P
can either grant ownership of c to a remote process Q or
raise Q’s clearance in c, P must explicitly add c to the
trust set of Q’s exporter. This reflects the reality that a
process can only be as trustworthy as its exporter.

Adding category c to an exporter E’s trust set has the
same security implications as granting ownership of c to
a process. The difference is that while an exporter has no
way of verifying the local OS ownership privileges of a
process on another machine, it can verify the trust set of
a remote exporter.

Consider S on machine A sending M to R on machine
B, as in Figure 4. Treating trust as ownership, we can
view this as two message exchanges. From exporter A’s
point of view, M flows from S to exporter B. Therefore,
DStar should ensure that LS vOS LM vTB LB and GM ⊆
OS. From exporter B’s point of view, the message flows
from exporter A to R, which requires LA vTA LM vOR LR
and GM ⊆ TA. Because they directly access the network,
both exporters have the same label, LA = LB = Lnet. It
therefore remains to verify each other’s trust sets.

DStar implements trust sets using certificates. Each
exporter has a public/private key pair. If an exporter is
trusted in a particular category, it can use its private key
to sign a certificate delegating trust in that category to
another exporter, named by its public key. Certificates
include an expiration time to simplify revocation.

To avoid any trusted, central naming authority, DStar
uses self-certifying category names that include the pub-
lic key of the exporter that created the category. An ex-
porter is trusted in every category it creates by definition.
Given a category’s name, other exporters can verify cer-
tificates signed by its creator using the public key in the
name. Further delegation of trust requires the entire chain
of certificates leading to the category’s creator.

In many cases, even contacting another machine over
the network to query it for credentials can inappropri-
ately leak information. Thus, an important property of
DStar certificates is that they allow one exporter to ver-
ify membership of a category in a remote exporter’s trust
set with no external communication.

3.4 Addressing
Delegation certificates determine when an exporter with
a particular public key can receive a message with a
particular message label. However, at a low level, net-
work messages are sent to network addresses, not public
keys. Any communication to map exporter public keys
to network addresses could in itself leak information. We
therefore introduce address certificates, which contain
the exporter’s current IP address signed by the exporter’s
key. Exporters only send messages to other exporters for
which they have address certificates.

Unfortunately, most networks cannot guarantee that
packets sent to an IP address will only reach the in-
tended recipient. On a typical Ethernet, an active attacker
can spoof ARP replies, overflow MAC address tables, or
flood the network to gain information about communica-
tion patterns between other hosts. While DStar encrypts
and MACs its network traffic, the mere presence and des-
tination of encrypted packets may communicate informa-
tion. Malicious code on a HiStar machine could, for in-
stance, exploit this fact to leak information to a colluding
Linux box on the same network. While the present level
of trust in the network suffices for many applications,

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 297



in the future we intend to integrate DStar with network
switches that can better conceal communication [6].

Exporters currently distribute address certificates by
periodically broadcasting them to the local-area network.
Certificate expiration times allow IP address reuse. Af-
ter expiration, other exporters will not connect to the old
address. In a complex network, broadcast would not suf-
fice to distribute address certificates to all exporters; one
might need a partially-trusted directory service.

3.5 Exporter interface
Exporters provide unreliable one-way message delivery
to communication endpoints called slots, which are anal-
ogous to message ports. Communication is unreliable
to avoid potential covert channels through message ac-
knowledgments; for instance, if process S can send mes-
sages to R but not vice-versa, a message delivery status
could allow R to convey information to S by either ac-
cepting or refusing messages. However, in the common
case where labels permit bi-directional communication,
library code outside the exporter provides higher-level
abstractions such as RPC, much the way RPC can be lay-
ered on top of unreliable transports such as UDP and IP.

We will now describe the DStar network protocol and
exporter interface, starting with DStar’s self-certifying
category names:

struct category_name {

pubkey creator;

category_type type;

uint64_t id;

};

Here, type specifies whether this is a secrecy or in-
tegrity category, and id is an opaque identifier used to
distinguish multiple categories created by the same ex-
porter. Exporters can create categories by picking a pre-
viously unused pseudo-random id value, for example by
encrypting a counter with a block cipher.

Next, the format of all DStar messages is as follows:

struct dstar_message {

pubkey recipient_exporter;

slot recipient_slot;

category_set label, ownership, clearance;

cert_set certs;

mapping_set mapset;

opaque payload;

};

The message is addressed to slot recipient slot on
recipient exporter’s machine. The label specifies
information flow restrictions on the contents of the mes-
sage, and consists of a set of category names as de-
fined earlier. The recipient exporter will grant ownership
and clearance of categories specified in ownership and
clearance respectively to the recipient slot when it de-
livers the message.

certs contains delegation certificates proving to the
recipient exporter that the sender is trusted with all of
the categories in ownership and clearance (stated as
GM ⊆ Tsender in Section 3.3), and, assuming Lsender =
Lnet = {}, trusted with all integrity categories in label
(stated as Lsender vTsender LM in Section 3.3). mapset con-
tains mappings for the recipient exporter to map the nec-
essary DStar categories to OS categories; we discuss
these mappings in more detail in Section 4.2.

Each exporter provides to other processes on the same
machine a single function to send DStar messages:

void dstar_send(ip_addr, tcp_port, dstar_message,

cert_set, mapping_set);

Here, the cert set and mapping set have the oppo-
site roles from those in dstar message. They prove
to the sending exporter that it is safe to send the sup-
plied dstar message to the recipient exporter. In partic-
ular, assuming Lrecipient = Lnet = {}, cert set contains
delegation certificates proving the recipient exporter is
trusted in all secrecy categories in the message label
(stated as LM vTrecipient Lrecipient in Section 3.3), while
mapping set provides mappings allowing the sending
exporter translate the necessary OS categories to DStar
categories. cert set must also include an address cer-
tificate proving that the given IP address and TCP port
number reach the recipient exporter.

Finally, delivery of messages by an exporter to local
processes will be discussed in Section 4.3.

3.6 Management services
DStar exporters provide additional functionality for man-
agement and bootstrapping, implemented as RPC servers
on well-known slots. We will later illustrate how they are
used in an application.

The delegation service allows a process that owns a
category in the local operating system to delegate trust
of the corresponding DStar category to another exporter,
named by a public key. A signed delegation certificate
is returned to the caller. This service is fully trusted; a
compromise would allow an attacker to create arbitrary
delegations and gain full control over all data handled by
an exporter.

The mapping service creates mappings between
DStar categories and local operating system security
mechanisms; it will be discussed in more detail in Sec-
tion 4.2. This service is also fully trusted.

The guarded invocation service launches executables
with specified arguments and privileges, as long as a
cryptographic checksum of the executable matches the
checksum provided by the caller. The caller must have
access to memory and CPU resources on the remote ma-
chine in order to run a process. This service is used in
bootstrapping, when only the public key of a trusted ex-
porter is known; the full bootstrapping process will be

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association298



described in more detail later on. This service is not
trusted by the exporter—in other words, its compromise
cannot violate the exporter’s security guarantees. How-
ever, the exporter reserves a special slot name for this
service, so that clients can contact this service on a re-
mote machine during bootstrapping.

Finally, exporters provide a resource allocation ser-
vice, which allows allocating resources, such as space
for data and CPU time for threads, with a specified label
on a remote machine. This service is used by the client-
side RPC library to provide the server with space for han-
dling the request; a timeout can be specified for each allo-
cation, which allows garbage-collecting ephemeral RPC
call state in case of a timeout. In the PayMaxx example,
the front-end server uses this service to allocate memory
and CPU time for running the application code on the ap-
plication server. The system administrator also uses this
service to bootstrap new DStar machines into an existing
pool of servers, as will be described in Section 5.6. Al-
though we describe this service here because it is used
by a number of applications, it is not strictly necessary
for an exporter to provide this service: applications could
invoke the resource allocation service by using guarded
invocation.

4 HISTAR EXPORTER

DStar exporters use the local operating system to provide
security guarantees, and this section describes how ex-
porters use HiStar and its category and label mechanism
for this purpose. DStar also runs on Flume; the main dif-
ference there is that Flume does not explicitly label all
memory resources, which can lead to covert channels or
denial-of-service attacks.

To reduce the effect of any compromise, the HiStar ex-
porter has no superuser privileges. The exporter runs as
an ordinary process on HiStar without any special privi-
leges from the kernel. The owner of each local category
can explicitly allow the exporter to translate between that
category on the local machine and encrypted DStar mes-
sages, by granting ownership of the local HiStar category
to the exporter. The exporter uses this ownership to allow
threads labeled with that category, which may not be able
to send or receive network messages directly, to send and
receive appropriately-labeled DStar messages.

To avoid covert channels, the HiStar exporter is largely
stateless, keeping no per-message or per-category state.
Instead, the exporter requires users to explicitly provide
any state needed to process each message.

4.1 HiStar review
The HiStar kernel interface is designed around a small
number of object types, including segments, address
spaces, containers, threads, and gates. Like DStar, Hi-
Star uses the notion of categories (implemented as

opaque 61-bit values in the kernel) to specify information
flow restrictions, and each object has a unique 61-bit ob-
ject ID, and a label used for access control by the kernel,
similar to a DStar label. For simplicity, this paper will
use DStar labels to describe the labels of HiStar objects,
although in reality an equivalent HiStar label is used, in
which secrecy categories map to level 3, integrity cate-
gories map to level 0, ownership of categories maps to
level ?, and the default level is 1.

The simplest object type, a segment, consists of zero or
more memory pages. An address space consists of a set
of VirtualAddress → SegmentID mappings that define
the layout of a virtual address space.

Containers are similar to directories, and all objects
must exist in some container to avoid garbage collection.
The root container is the only object in the system that
does not have a parent container. Containers provide all
resources in HiStar, including storage (both in memory
and on disk) and CPU time.

Threads execute code, and consist of a register set and
an object ID of an address space object that defines the
virtual address space. Threads also have privileges—a set
of categories owned by the thread. Any thread can allo-
cate a fresh category, at which point it becomes the only
one in the system with ownership of the new category.

Gates are used for IPC and privilege transfer. Unlike a
typical IPC message port, gates require the client to do-
nate initial resources—the thread object—for execution
in the server’s address space. Like threads, gates have
privileges, which can be used when the thread switches
to the server’s address space. Each gate has an access la-
bel that controls who can invoke the gate: a thread T can
invoke gate G with access label AG only if LT vOT AG.

4.2 Category mappings
One of the main tasks of the exporter is to translate be-
tween the global space of DStar categories and the corre-
sponding HiStar categories on the local machine. Since
the exporter must be stateless, it is up to the users to sup-
ply these mappings for each message. However, these
mappings are crucial to the security guarantees provided
by the exporter—by corrupting these mappings, an at-
tacker could convince the exporter to label an incoming
secret message with a category owned by the attacker on
the local machine, violating all security guarantees.

In the network protocol, exporters use signed certifi-
cates to get around this problem: users supply certificates
to send each message, but exporters verify the signature
on each certificate. However, on the local machine ex-
porters also need ownership of the local HiStar category
in order to be able to manipulate data labeled with that
category. Since the HiStar kernel only allows category
ownership to be stored in thread or gate objects, the ex-

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 299



Ag = {ei}
Contents = 〈c,d,m,b,g〉

Gate g

Lb = {es, ei}

Binding segment b

container
User-provided

Lm = {es, ei}
Mapping container m

Og = {c}

Figure 5: Objects comprising a mapping between DStar category d and
local HiStar category c. Arrows indicate that an object is in a container.

porter fundamentally requires memory (for a kernel ob-
ject) for each category it handles on the local machine.

Thus, for each mapping between a DStar category and
a HiStar category, the exporter needs two things: a ker-
nel object storing ownership of the local HiStar category,
and a secure binding between the DStar and HiStar cate-
gory names. The secure binding could be represented by
a certificate, but since the exporter already needs a ker-
nel object to store ownership, we store the secure binding
along with that kernel object, and avoid the overhead of
public key cryptography.

HiStar’s exporter represents each mapping using the
objects shown in Figure 5. Container m stores all other
mapping objects, and in turn lives in a user-provided con-
tainer, which allows the exporter itself to remain state-
less. Gate g stores the exporter’s ownership of the local
HiStar category. Finally, binding segment b ensures that
the user cannot tamper with the mapping despite provid-
ing the memory for the kernel objects, as follows.

The exporter owns two HiStar categories, es and ei,
which it uses to ensure the security of all mappings on its
machine. All objects comprising a mapping are labeled
{es, ei}, which ensures that only the exporter can create
or modify them. The binding segment provides a secure
binding between the DStar and HiStar category names,
and contains the mapping tuple, 〈c,d,m,b,g〉. Users pro-
vide this tuple when they want to use a particular cat-
egory mapping; the mapping set, mentioned earlier in
the dstar message and the dstar send() function, is
a set of such tuples. The exporter verifies each tuple’s in-
tegrity by checking that the tuple matches the contents
of the binding segment, and that the binding segment has
label {ei,es}, so that only the exporter could have created
it. Finally, to ensure that only the exporter can gain own-
ership of the HiStar category through the mapping gate,
the gate’s access label is set to Ag = {ei}.

The mapping service, briefly mentioned earlier, allows
applications to create new mappings. This service allows
anyone to allocate either a fresh HiStar category for an
existing DStar category, or a fresh DStar category for
an existing HiStar category. Since the exporter is state-
less, the caller must provide a container to store the new
mapping, and grant the mapping service any privileges
needed to access this container. The exporter does not

grant ownership of the freshly-allocated category to the
caller, making it safe for anyone to create fresh map-
pings. If the calling process does not own the existing
category, it will not own the new category either, and will
not be able to change the security policy set by the owner
of the existing category. If the calling process does own
the existing category, it can separately gain ownership of
the new category, by sending a message that includes the
existing category in the ownership field.

The mapping service also allows creating a mapping
between an existing pair of HiStar and DStar categories,
which requires the caller to prove ownership of both cat-
egories, by granting them to the mapping service.

4.3 Exporter interface
Exporters running on HiStar support two ways of com-
municating with other processes running on the same
machine: segments and gates. Communicating via a seg-
ment resembles shared memory: it involves writing the
message to the segment and using a futex [10] to wake up
processes waiting for a message in that segment. Com-
munication over a gate involves writing the message to a
new segment, and then allocating a new thread, which in
turn invokes the gate, passing the object ID of the mes-
sage segment. Gates incur higher overhead for sending a
message than segments, but allow passing ownership and
clearance privileges when the thread invokes the gate.

As mentioned earlier, messages are delivered to slots,
which in the case of HiStar names either a segment (by
its object ID), or a gate (by its object ID and the object
ID of a container to hold hold the newly-created message
segment and thread). Exporters enforce labels of incom-
ing messages by translating DStar labels into local HiStar
labels, and making sure that the label of the slot matches
the label of the message. Similarly, when a process sends
a message, exporters ensure that the message label is be-
tween the label and clearance of the sending process.

The local exporter saves all address certificates it re-
ceives via broadcast from other exporters to a well-
known file. This makes it easy for other processes to find
address certificates for nearby exporters.

4.4 Implementation
The exporter comprises about 3,700 lines of C++ source
code, and runs on HiStar, Flume, and Linux (though on
Linux, all software must be trusted to obey information
flow restrictions). The client library, trusted by individual
processes to talk to the exporter, is 1,500 lines of C and
C++ code. The exporter uses the libasync event-driven
library [13] for network I/O and cryptography, and libc
and libstdc++, which dwarf it in terms of code size.

5 APPLICATIONS

To illustrate how DStar helps build secure distributed
systems, we focus on two scenarios that expand on our

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association300



RSA private key

Network

netd

launcher

httpd

application
code

SSLd RSAd

authentication
L = {ssls}, O = {rsas}

L = {rsas, rsai}

L = {}, O = {us, ui}

L = {}, O = {us, ui, ssls}

L = {ssls}, O = {}

L = {}, O = {ssls}

L = {}, O = {ns, ni}

L = {ns, ni}

L = {us}, O = {ui}

L = {us, ui} user files

Figure 6: Architecture of the HiStar SSL web server. Rectangles rep-
resent processes. Rounded boxes represent devices and files.

running PayMaxx example. First, we describe the ar-
chitecture of a highly privilege-separated web server
we have built on HiStar, which partitions its privileges
among many separate components to limit the effect of
any single compromise, and discuss the security proper-
ties it achieves on one machine. We then show how this
web server can be distributed over multiple machines like
a typical three-tiered web application, providing perfor-
mance scalability with similar security guarantees as on
a single HiStar machine. Finally, we show how, even in
an existing web service environment, DStar can be used
to improve security by incrementally adding information
flow control for untrusted code.

5.1 Web server on HiStar
Figure 6 shows the overall architecture of our privilege-
separated SSL web server. The web server is built from
a number of mutually-distrustful components to reduce
the effects of the compromise of any single component.
We first describe how requests are handled in this web
server, and the next subsection will describe its security.

The TCP/IP stack in HiStar is implemented by a user-
space process called netd, which has direct access to the
kernel network device. netd provides a traditional sock-
ets interface to other applications on the system, which
is used by our web server to access the network.

User connections are initially handled by the
launcher, which accepts incoming connections from
web browsers and starts the necessary processes to han-
dle them. For each request, the launcher spawns SSLd to
handle the SSL connection with the user’s web browser,
and httpd to process the user’s plaintext HTTP request.
The launcher then proxies data between SSLd and the
TCP connection to the user’s browser. SSLd, in turn, uses
the RSAd daemon to establish an SSL session key with

the user’s web browser, by generating an RSA signature
using the SSL certificate private key kept by RSAd.

httpd receives the user’s decrypted HTTP request from
SSLd and extracts the user’s password and request path
from it. It then authenticates the user, by sending the
user’s password to that user’s password checking agent
from the HiStar authentication service [26]. If the au-
thentication succeeds, httpd receives ownership of the
user’s secrecy and integrity categories, us and ui, and ex-
ecutes the application code with the user’s privileges (in
our case, we run GNU ghostscript to generate a PDF doc-
ument). Application output is sent by httpd back to the
user’s web browser, via SSLd for encryption.

5.2 Web server security
The HiStar web server architecture has no hierarchy
of privileges, and no fully trusted components; instead,
most components are mutually distrustful, and the effects
of a compromise are typically limited to one user, usually
the attacker himself. Figure 7 summarizes the security
properties of this web server, including the complexity
of different components and effects of compromise.

The largest components in the web server, SSLd and
the application code, are minimally trusted, and cannot
disclose one user’s private data to another user, even if
they are malicious. The application code is confined by
the user’s secrecy category, us, and it is httpd’s job to en-
sure that the application code is labeled with us when
httpd runs it. Although the application code owns the
user’s integrity category, ui, this only gives it the privi-
lege to write to that user’s files, and not to export them.
Ownership of ui is necessary to allow the application
code to read data not labeled with ui, such as shared li-
braries. If the application code were to be labeled with ui
instead, it would be restricted to reading only data la-
beled ui, which would likely exclude needed binaries,
shared libraries, and configuration files.

SSLd is confined by ssls, a fresh secrecy category al-
located by the launcher for each new connection. Both
the launcher and httpd own ssls, allowing them to freely
handle encrypted and decrypted SSL data, respectively.
However, SSLd can only communicate with httpd and,
via the launcher, with the user’s web browser.

SSLd is also not trusted to handle the SSL certificate
private key. Instead, a separate and much smaller dae-
mon, RSAd, has access to the private key, and only pro-
vides an interface to generate RSA signatures for SSL
session key establishment. Not shown in the diagram is a
category owned by SSLd that allows it and only it to in-
voke RSAd. Although a compromised RSAd can expose
the server’s SSL private key, it cannot directly compro-
mise the privacy of user data, because RSAd runs con-
fined with each user connection’s ssls category.

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 301



Component Lines of Code Label Ownership Effects of Compromise
netd 350,000 {} {ns, ni} Equivalent to an active network attacker; subject to same kernel label checks as any other process

launcher 310 {} {ssls} Obtain plaintext requests, including passwords, and subsequently corrupt user data
SSLd 340,000 {ssls} {} Corrupt request or response, or send unencrypted data to same user’s browser
RSAd 4,600 {ssls} {rsas} Disclose the server’s SSL certificate private key
httpd 300 {} {us, ui, ssls} Full access to data in attacker’s account, but not to other users’ data

authentication 320 {} {us, ui} Full access to data of the user whose agent is compromised, but no password disclosure
application 680,000+ {us} {ui} Send garbage (but only to same user’s browser), corrupt user data (for write requests)

DStar exporter 3,700 Corrupt or disclose any data sent or received via DStar on a machine
DStar client library 1,500 Corrupt, but not necessarily disclose, data sent or received via DStar by an application

Figure 7: Components of the HiStar web server, their complexity measured in lines of C code (not including libraries such as libc), their label
and ownership, and the worst-case results of the component being compromised. The netd TCP/IP stack is a modified Linux kernel; HiStar also
supports the lwIP TCP/IP stack, consisting of 35,000 lines of code, which has lower performance. The DStar exporter and client library illustrate
the additional code that must be trusted in order to distribute this web server over multiple machines.

Side-channel attacks, such as [1], might allow recov-
ery of the private key; OpenSSL uses RSA blinding to
defeat timing attacks such as [5]. To prevent an attacker
from observing intermediate states of CPU caches while
handling the private key, RSAd starts RSA operations
at the beginning of a 10 msec scheduler quantum (each
1024-bit RSA operation takes 1 msec), and flushes CPU
caches when context switching to or from RSAd (with
kernel support), at a minimal cost to overall performance.

The HiStar authentication service used by httpd to au-
thenticate users is described in detail in [26], but briefly,
there is no code executing with every user’s privilege,
and the supplied password cannot be leaked even if the
password checker is malicious.

In our current prototype, httpd always grants owner-
ship of ui to the application code, giving it write access
to user data. It may be better to grant ui only to code that
performs read-write requests, to avoid user data corrup-
tion by buggy read-only request handling code.

Our web server does not use SSL client authentica-
tion in SSLd. Doing so would require either trusting all
of SSLd to authenticate all users, or extracting the client
authentication code into a separate, smaller trusted com-
ponent. In comparison, the password checking agent in
the HiStar authentication service is 320 lines of code.

One caveat of our prototype is its lack of SSL session
caching. Because a separate instance of SSLd is used for
each client request, clients cannot reuse existing session
keys when connecting multiple times, requiring public
key cryptography to establish a new session key. This
limitation can be addressed by adding a trusted SSL ses-
sion cache that runs in a different, persistent process, at
the cost of increasing the amount of trusted code.

5.3 Distributed web server
We have taken the HiStar web server described above,
and used DStar to turn it into a three-tiered web appli-
cation, as shown in Figure 8. HTTPS front-end servers
run components responsible for accepting client con-
nections and handling the HTTP protocol: the launcher,
SSLd, RSAd, and httpd. Application servers run applica-
tion code to execute requests. Finally, user data servers
store private user data and perform user authentication.

HTTPS and application servers are largely stateless,
making it easy to improve overall performance by adding
more physical machines. This is an important consider-
ation for complex web applications, where simple tasks
such as generating a PDF document can easily consume
100 milliseconds of CPU time (using GNU ghostscript).
User data servers can also be partitioned over multi-
ple machines, by keeping a consistent mapping from
each individual user to the particular user data server re-
sponsible for their data. Our prototype has a statically-
configured mapping from users to user data servers,
replicated on each HTTPS front-end server.

Our distributed web server has no central authority,
and all data servers are mutually distrustful. For a web
service that generates tax forms, this allows multiple
companies to each provide their own data server. While
each company may trust the web service to generate one
employee’s tax form, no company trusts anyone other
than themselves with all of their employee data.

Similarly, different parts of a single user’s data can be
handled by different front-end and application servers.
For example, if payment were required for accessing a
tax document, separate front-end and application servers
could be used to process credit card transactions. Even
if those servers were to be compromised, user tax infor-
mation would be handled by different front-end and ap-
plication servers, and could remain secure. Conversely, if
the servers handling tax data were compromised, credit
card data would not necessarily be disclosed.

Interactions between components on a single machine
are unchanged, with the same security properties as be-
fore. Interactions between components on different ma-
chines, on the other hand, maintain the same structure
and security properties as before, but now go through the
exporters on the respective machines, thereby making the
exporters a part of the trusted code base. Communicating
over DStar typically requires three things for each cate-
gory involved: a mapping from the local category to a
DStar category, certificates proving that the remote ex-
porter is trusted by that DStar category, and a mapping
from the DStar category to a local category on the re-
mote machine, as we will describe next.

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association302



RSAd

authenticationauthentication
proxy

user
files server

file
User Data Server

125 4

netd

launcher

httpd

SSLd

Server

Application Server

6

3

HTTPS Front-end

application
code

Client
HTTPS

RSA private key

Figure 8: Structure of our web server running on multiple HiStar ma-
chines. Shaded boxes represent physical machines. Circled numbers
indicate the order in which DStar messages are sent between machines.
Not shown are DStar messages to create mappings on remote machines.
Components have largely the same labels as in Figure 6.

The one exception where the distributed web server
structurally differs from the one that runs on a single ma-
chine is authentication. We have not ported the three-
phase HiStar authentication service to run over DStar
yet; instead, we introduced a trusted authentication proxy
to invoke the HiStar authentication service locally on the
data server. httpd trusts the authentication proxy to keep
the user’s password secure, but guarded invocation en-
sures that the user’s password is only passed to the cor-
rect authentication proxy process.

These changes to the HiStar web server added 740
lines of C++ code: 280 lines to httpd, a 140-line trusted
authentication proxy, a 220-line untrusted RPC server to
launch application code, and a 100-line file server.

To use DStar, applications, such as our distributed web
server, must explicitly manage two important aspects of
the distributed system. First, applications must explicitly
define trust between the different machines in the dis-
tributed system, by creating and distributing the appro-
priate delegation certificates. Second, applications need
to explicitly allocate resources, such as containers and
category mappings, on different machines to be able to
communicate between them and execute code remotely.
The next two subsections describe how the distributed
web server addresses these issues.

5.4 Trust management
The key trust relation in our distributed web server con-
cerns the individual users’ secrecy and integrity cate-
gories, or in other words, which machines are authorized
to act on behalf of which users. All user categories in our
design are initially created by, and therefore trust, the ex-
porter on that user’s data server. When the authentication
proxy receives the correct user password (Step 1 in Fig-
ure 8), it asks the local exporter to create a short-lived
delegation certificate, valid only for a few minutes, for

the user’s secrecy and integrity categories to the exporter
on httpd’s front-end machine. Short-lived certificates en-
sure that, even if some machines are compromised, they
can only subvert the security of users that are currently
using, or have recently used those machines. The authen-
tication proxy sends these certificates to httpd in Step 2,
and grants it ownership of the user’s categories using the
ownership field of the message.

Although httpd receives ownership of the user’s cate-
gories, it does not use it directly. Instead, httpd passes
ownership of the user’s categories to the application
server (Step 3), where application code uses it to commu-
nicate with the user data server (Step 4). httpd asks the
exporter on its front-end machine to delegate its trust of
these categories to the application server. To be consid-
ered valid, the delegation certificates created by the front
end’s exporter must be presented together with a chain
of certificates up to the category’s creator—the user data
server—proving that the front-end machine was autho-
rized to delegate trust in the first place. Since this chain
includes the initial, short-lived certificate from the au-
thentication proxy, malicious exporters cannot extend the
amount of time they can act on the user’s behalf, as long
as the clock on the user data server does not go back.

5.5 Resource management
The distributed web server must also explicitly provide
memory and CPU resources for all messages and pro-
cesses. Since the launcher drives the execution of user
requests, it requires such resources on all other machines.
We use a special integrity category, ri, to manage ac-
cess to these resources, and each application and data
server has an initial container labeled {ri}, known to
the launcher. The launcher owns ri, giving it access to
the initial container on those machines. We will describe
later how this system is bootstrapped.

When the launcher starts httpd, it grants it ownership
of ri, and gives it the names of these initial containers
on all other servers. When httpd talks to the authentica-
tion proxy in Step 1, for example, it uses the initial con-
tainer on the corresponding user data server, along with
its ownership of ri, to send the request message.

Because HiStar labels all containers, the web server
must take care to set the appropriate labels. Consider
Step 4, when the application code wants to communicate
with the file server. Although httpd could grant the appli-
cation code ownership of ri, the application code would
not be able to use the initial container labeled {ri} on
the data server, because the application code is labeled
{us} and cannot write to that container. Thus, httpd pre-
allocates a sub-container with a label of {us, ui} on the
user data server, using that machine’s resource allocation
service, and passes this container’s name to the applica-
tion code in Step 3. The application code can then use

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 303



this container to communicate with the file server, with-
out being able to leak private user data through memory
exhaustion.

Although in our prototype the application communi-
cates with only one data server per user, a more complex
application can make use of multiple data servers to han-
dle a single request. Doing so would require the appli-
cation code to have delegation certificates and access to
containers on all of the data servers that it wants to con-
tact. To do this, httpd could either pre-allocate all such
delegations and containers ahead of time, or provide a
callback interface to allocate containers and delegations
on demand. In the latter case, httpd could rate-limit or
batch requests to reduce covert channels.

5.6 Bootstrapping
When adding a new machine to our distributed web
server, a bootstrapping mechanism is needed to gain ac-
cess to the new machine’s memory and CPU resources.
For analogy, consider the process of adding a new ma-
chine to an existing Linux cluster. An administrator
would install Linux, then from the console set a root
password, configure an ssh server, and (if diligent about
security) record the ssh host key to enter on other ma-
chines. From this point on, the administrator can access
the new machine remotely, and copy over configuration
files and application binaries. The ability to safely copy
private data to the new machine stems from knowing its
ssh host key, while the authority to access the machine in
the first place stems from knowing its root password.

To add a new physical machine to a DStar cluster re-
quires similar guarantees. Instead of an ssh host key, the
administrator records the exporter’s public key, but the
function is the same, namely, for other machines to know
they are talking to the new machine and not an impostor.
However, DStar has no equivalent of the root password,
and instead uses categories.

In fact, the root password serves two distinct purposes
in Linux: it authorizes clients to allocate resources such
as processes and memory on the new machine—i.e., to
run programs—and it authorizes the programs that are
run to access and modify data on the machine. DStar
splits these privileges amongst different categories.

When first setting up the DStar cluster, the adminis-
trator creates an integrity category r1

i on the first HiStar
machine (superscript indicates the machine), and a corre-
sponding DStar category ri that we mentioned earlier. ri
represents the ability to allocate and deallocate all mem-
ory and processes used by the distributed web server on
any machine. It can be thought of as the “resource alloca-
tion root” for this particular application. However, there
is no equivalent “data access root.” Instead, different cat-
egories protect different pieces of data.

In configuring a new machine, the administrator’s goal
is to gain access to the machine’s resources over the net-
work, using ownership of ri. The new machine’s exporter
initially creates a local category rn

i and a container la-
beled {rn

i } that will provide memory and CPU resources.
To access this container, the administrator needs to estab-
lish a mapping between ri and rn

i on the new machine.
To do this, the administrator enters the name of ri

when starting the exporter on the new machine, which
then creates a mapping between ri and rn

i . The exporter
periodically broadcasts a signed message containing this
mapping and the root container’s ID, so the administrator
need not manually transfer them.

With this mapping, processes that own ri can now copy
files to the new machine and execute code there, much as
the ssh client can on Linux if it knows the new machine’s
root password. However, a process that also owns other
categories can use them to create files that cannot be read
or written by owners of ri alone.

The current bootstrap procedure is tedious, requiring
the manual transfer of category names and public keys.
In the future, we envisage a setup utility that uses a pass-
word protocol like SRP [24] to achieve mutual authenti-
cation with an installation daemon, to automate the pro-
cess. Alternatively, hardware attestation, such as TCPA,
could be used to vouch that a given machine is running
HiStar and a DStar exporter with a particular public key.

5.7 Replication
Having added a new machine to the DStar cluster, the
administrator needs to securely replicate the web server
onto it, and in particular, transfer the SSL private key to
start a new RSAd process. We use a special replication
daemon to do this, which ensures that the private key is
only revealed to an RSAd binary on the remote machine.

To replicate RSAd, the administrator provides this dae-
mon with a public key of the new machine, and access to
a container on it (such as by granting it ownership of ri).
The replication daemon uses the mapping service to cre-
ate a new category rsan

s on the new machine, which will
protect the private key there. To ensure that the private
key is not passed to the wrong process, the replication
daemon uses guarded invocation to invoke an authentic
RSAd process on the new machine with ownership of
rsan

s , and passes it the private key protected with rsan
s .

Note that the administrator, who granted the replication
daemon access to a container on the new machine, can-
not read the private key that is now stored there, because
he does not own rsan

s .
Both the replication daemon and the guarded invoca-

tion service, consisting of 120 and 200 lines of C++ code
respectively, must be trusted to keep the private key se-
cure, in addition to RSAd. A similar mechanism is used
to start the launcher. HiStar’s system-wide persistence

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association304



eliminates the need for a trusted process to start RSAd
and launcher when the machine reboots.

5.8 Heterogeneous systems
To illustrate how DStar facilitates incremental deploy-
ment, we show how Linux can use HiStar or Flume to ex-
ecute untrusted perl code with strong security guarantees.
We implemented a DStar RPC server on HiStar and on
Flume that takes the source code of a perl script and input
data, executes the script on that input, and returns perl’s
exit code and output. DStar translates information flow
restrictions specified by the caller into HiStar or Flume
labels, which are then enforced by the operating system.

This service can be used by an existing Linux web
server to safely execute untrusted perl code. The Linux
machine can specify how different instances of perl can
share data, by specifying the policy using secrecy and in-
tegrity categories in the request’s label. To ensure each
request is processed in complete isolation, fresh secrecy
and integrity categories can be used for each request. If
different scripts running on behalf of the same user need
to share data, such as by storing it in the file system on a
HiStar machine, the same categories should be used for
each request made on behalf of a given user.

DStar also allows building distributed applications us-
ing a mix of operating systems, such as both Flume and
HiStar. This may be useful when no single operating sys-
tem is a perfect fit in terms of security or functionality for
every part of the application. However, this paper does
not evaluate any such applications.

6 EVALUATION

To quantify the overheads imposed by DStar, we present
a detailed breakdown of DStar’s data structure sizes and
measure the cost of generating and verifying certificate
signatures. To put these costs in perspective, we evaluate
the performance of our web server and perl service un-
der various conditions. The overheads introduced by both
HiStar and DStar in the web server are acceptable for
compute-intensive web applications such as PDF gener-
ation, and the performance is close to that of a Linux
system. On the other hand, our web server delivers static
content much more slowly than Linux.

Benchmarks were run on 2.4GHz Intel Xeon ma-
chines with 4MB CPU caches, 1GB of main memory,
and 100Mbps switched Ethernet. For web server com-
parison, we used Apache 2.2.3 on 64-bit Ubuntu 7.04
with kernel version 2.6.20-15-generic. This Linux web
server forked off a separate application process to handle
every client request. The PDF workload used a2ps ver-
sion 4.13b and ghostscript version 8.54. Xen experiments
used Xen version 3.0 and kernel 2.6.19.4-xen for all do-
mains. The netd TCP/IP stack was running a HiStar user-
mode port of Linux kernel 2.6.20.4. Web servers used

Data structure Raw bytes Compressed bytes
Public key 172 183

Category name 184 195
Category mapping 208 219

Unsigned delegation certificate 548 384
Signed delegation certificate 720 556
Unsigned address certificate 200 203

Signed address certificate 376 379
Null message (1) 200 194

Empty message (2) 1348 623

Figure 9: Size of DStar data structures. Delegation certificate delegates
a category to another exporter, and is signed by the category’s creator.
Null message (1) has an empty label and no mappings, delegations,
or payload. Empty message (2) has a label consisting of one category,
and includes one delegation certificate, one mapping, and an empty
payload. The compressed column shows the potential reduction in size
that can be achieved by compressing the data structures using zlib.

Operation Time (msec)
Sign a delegation certificate 1.37

Verify a delegation certificate 0.012
Sign an address certificate 1.35

Verify an address certificate 0.011
Null RPC on same machine 1.84

Figure 10: Microbenchmarks measuring the time to sign and verify
certificates, and the round-trip time to execute a null RPC request on
one machine, with an empty label and no delegations or mappings.

OpenSSL 0.9.8a with 1024-bit certificate keys; DStar ex-
porters used 1280-bit Rabin keys.

6.1 Protocol analysis
Figure 9 shows the detailed sizes of DStar data struc-
tures as implemented in our prototype. The main source
of space overhead in DStar messages is the public keys
used to name categories and exporters. However, pub-
lic keys are often repeated multiple times in the same
message. For example, user secrecy and integrity cate-
gories are often created by the same exporter, and there-
fore share the same public key. Moreover, all of the dele-
gations included in a message typically mention the same
public key of the sending exporter. As a result, com-
pressing messages results in significant space savings, as
shown in the “compressed” column; however, our cur-
rent prototype does not use compression. Storing only a
hash of the public key in a category name can reduce its
size, but would likely not reduce the size of a compressed
message: delegation certificates in the same message are
likely to include the entire public key (in order to ver-
ify certificate signatures), and with compression, there is
little overhead for including a second copy of the same
public key in the category name. Compressing the en-
tire TCP session between two exporters, prior to encryp-
tion, is likely to generate further space savings, since the
public keys of the two exporters are likely to be men-
tioned in each message. However, stream compression
can lead to covert channels: the throughput observed by
one process reveals the similarity between its messages
and those sent by other processes.

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 305



PDF workload cat workload
System throughput latency throughput latency

Linux Apache 7.6 137 110.3 15.7
HS PS+Auth 6.3 161 37.8 30.8

HS PS 6.6 154 49.5 24.6
HS no PS 6.7 150 71.5 19.1

DS on one machine 5.2 194 17.0 63.0
DS on multiple machines varies 511 varies 345

Figure 11: Maximum throughput (requests/sec) and minimum latency
(msec) for the PDF and cat workloads on one machine. “HS PS+Auth”
ran the HiStar web server from Section 5.1. “HS PS” ran the same web
server without HiStar’s user authentication service. “HS no PS” ran the
same web server without privilege separation, with all components in a
single address space. “DS” refers to the distributed web server.

The CPU overhead of public key operations on DStar
certificates is shown in Figure 10. The Rabin cryptosys-
tem used by DStar provides relatively fast signature ver-
ification but more expensive signature generation, which
may be a reasonable trade-off for applications that do not
change trust relations with each message. The overhead
of issuing a local RPC, with an empty label and no map-
pings or delegations, is also shown in Figure 10.

6.2 Application performance
To evaluate the performance of applications running on
our web server, we approximate a realistic service us-
ing a PDF generation workload. For each request, an
HTTPS client connects to the server and supplies its user
name and password. The web server generates a 2-page
PDF document based on an 8KB user text file stored
on the server, and sends it back to the client. Clients
cycle through a small number of users; since the web
server does not cache any authentication state, this does
not skew performance. With multiple front-end servers,
clients use a round-robin selection policy. We measure
the minimum latency observed when a single client is
active, and the maximum throughput achieved with the
optimal number of clients; the optimal number of clients
is generally proportional to the number of servers.

Figures 11 and 12 show the results of this experiment.
A non-privilege-separated web server running on HiStar
provides 12% less throughput than Linux; the difference
is in part due to the overhead of fork and exec on HiStar.
Privilege separation of the web server on HiStar imposes
a 2% penalty, and HiStar’s user authentication service,
which requires eight gate calls, reduces throughput by
another 5%. Running the distributed web server on a sin-
gle machine shows the overhead imposed by DStar, al-
though such a setup would not be used in practice. The
throughput of the PDF workload scales well with the to-
tal number of servers.

6.3 Web server overhead
To better examine the overhead of our web server, we
replaced the CPU-intensive PDF workload with cat,
which just outputs the same 8KB user file; the results
are also shown in Figures 11 and 12. Apache has much

Calling machine Linux HiStar Linux Linux Linux
Execution machine same same Linux HiStar Flume

Communication none none TCP DStar DStar
Throughput, req/sec 505 334 160 67 61

Latency, msec 2.0 3.0 6.3 15.7 20.6

Figure 13: Throughput and latency of executing a “Hello world” perl
script in different configurations.

higher throughput than the HiStar web server both with
and without privilege separation. Though Apache serves
static content better without using cat, we wanted to
measure the overhead of executing application code.
Our web server’s lower performance reflects that its de-
sign is geared towards isolation of complex application
code; running simple applications incurs prohibitively
high overhead. Nonetheless, the distributed web server
still scales with the number of physical machines.

6.4 Privilege separation on Linux
Is it possible to construct a simpler, faster privilege-
separated web server on Linux that offers similar security
properties? We constructed a prototype, running separate
launcher, SSLd, RSAd, and Apache processes, using ch-
root and setuid to isolate different components from each
other. As in the earlier Apache evaluation, a fresh appli-
cation process was forked off to handle each client re-
quest. This configuration performed similar to a mono-
lithic Apache server. However, to isolate different user’s
application code from one another, Apache (a 300,000
line program) needs access to setuid, and needs to run as
root, a step back in security. We can fix this by running
Apache and application code in a Xen VM; this reduces
the throughput of the PDF workload to 4.7 req/sec. Even
this configuration cannot guarantee that malicious appli-
cation code cannot disclose user data; doing so would
require one VM per request, a fairly expensive proposi-
tion. This suggests that the complexity and overhead of
HiStar’s web server may be reasonable for the security it
provides, especially in a distributed setting.

6.5 Heterogeneous systems
Figure 13 shows the latency and throughput of running
a simple “untrusted” perl script that prints “Hello world”
on Linux, on HiStar, on Linux invoked remotely using a
simple TCP server, and on HiStar and Flume invoked re-
motely using DStar from Linux. A fresh secrecy category
is used for each request in the last two cases. This sim-
ple perl script provides a worst-case scenario, incurring
all of the overhead of perl for little computation; more
complex scripts would fare much better. The lower perl
performance on HiStar is due to the overhead of emulat-
ing fork and exec. DStar incurs a number of round-trips
to allocate a secrecy category and create a container for
ephemeral call state, which contributes to a significantly
higher latency. Comparing the throughput on HiStar run-

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association306



0

5

10

15

20

25

30

3 4 5 6 7 8

T
hr

ou
gh

pu
t(

re
qu

es
ts

/s
ec

)

Total number of server machines

Front end
Application

User data

(a) Throughput under the PDF workload

0

10

20

30

40

50

60

70

80

3 4 5 6 7 8

T
hr

ou
gh

pu
t(

re
qu

es
ts

/s
ec

)

Total number of server machines

Front end
Application

User data

(b) Throughput under the cat workload

Figure 12: Maximum throughput achieved by the DStar web server running on multiple machines. The initial point on the left represents three
machines: one front-end server, one application server, and one user data server. Subsequent points reflect the total throughput with an extra front-
end server, application server, or user data server added, as indicated by the point symbol. The process is repeated for the highest-performing
configuration at each step. The best use of an additional server machine is indicated by a solid line, and others by a dashed line.

ning locally and remotely shows that DStar adds an over-
head of 12 msec of CPU time per request, which may be
an acceptable price for executing arbitrary perl code from
a Linux machine with well-defined security properties.

7 RELATED WORK

Flume [12] controls information flow in a fully-trusted
centralized cluster sharing an NFS server and tag reg-
istry. Flume does not allow applications to directly com-
municate between machines, define their own trust re-
lations, or share data across administrative domains. On
the other hand, applications in DStar have complete con-
trol over trust relations for their data, and can communi-
cate between any machines that speak the DStar protocol.
Flume’s centralized design limits scalability to small,
fully-trusted local clusters, and cannot withstand any ma-
chine compromises. DStar could be used to connect mul-
tiple Flume clusters together without any inherent cen-
tralized trust or scalability bottlenecks.

Capability-based operating systems, such as
KeyKOS [4] and EROS [17], can provide strict
program isolation on a single machine. A DStar exporter
could control information flow on a capability-based op-
erating system by ensuring that processes with different
labels had no shared capabilities other than the exporter
itself, and therefore could not communicate without the
exporter’s consent.

Shamon [14] is a distributed mandatory access con-
trol system that controls information flow between vir-
tual machines using a shared reference monitor. DStar
avoids any centralized reference monitor for security and
scalability. Shamon tracks information flow at the gran-
ularity of x86 virtual machines, making it impractical to
track each user’s data. DStar running on HiStar can apply
policies to fine-grained objects such as files or threads.

A number of systems, including Taos [23] and
Amoeba [19], enforce discretionary access control in a
distributed system, often using certificates [3]. None of
them can control information flow, as a malicious pro-
gram can always synthesize capabilities or certificates
to contact a colluding server. The Taos speaks-for rela-
tion inspired the much simpler DStar trusts relation, used
to define discretionary privileges for different categories
between exporters.

Multi-level secure networks [2, 9, 15, 18] enforce in-
formation flow control in a trusted network, but provide
very coarse-grained trust partitioning. By comparison,
DStar functions even in an untrusted network such as the
Internet, at the cost of introducing some inherent covert
channels, and allows fine-grained trust to be explicitly
configured between hosts. Using a secure, trusted net-
work would reduce covert channels introduced by DStar.

Unlike multi-level secure networks, DStar does not al-
low labeling a machine without giving it ownership priv-
ileges. Providing a non-empty machine label would re-
quire a trusted component to act as a proxy for the ma-
chine, ensuring that any packets sent or received by the
machine are consistent with its current label. This can
be done either with support from the network, or by ex-
plicitly forwarding messages through a proxy trusted to
maintain the labels of machines it is proxying.

Secure program partitioning [25] partitions a single
program into sub-programs that run on a set of machines
specified at compile time with varying trust, to uphold
an overall information flow policy. DStar is complemen-
tary, providing mechanisms to enforce an overall infor-
mation flow policy without restricting program structure,
language, or partitioning mechanism. DStar could ex-
ecute secure program partitioning’s sub-programs in a
distributed system without trusting the partitioning com-

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 307



piler. Secure program partitioning has a much larger
TCB, and relies on trusted external inputs to avoid a
number of difficult issues addressed by DStar, such as
determining when it is safe to connect to a given host at
runtime, when it is safe to allocate resources like mem-
ory, and bootstrapping.

Jif [16] provides decentralized information flow con-
trol in a Java-like language. Although its label model dif-
fers from DStar’s, a subset of Jif labels can be expressed
by DStar. DStar could provide more fine-grained infor-
mation flow tracking by enforcing it with a programming
language like Jif rather than with an operating system.

Jaeger et al [11] and KDLM [7] associate encryption
keys with SELinux and Jif labels, respectively, and ex-
change local security mechanisms for encryption, much
like DStar. These approaches assume the presence of an
external mechanism to bootstrap the system, establish
trust, and define mappings between keys and labels—
difficult problems that are addressed by DStar. Moreover,
these approaches configure relatively static policies and
trust relations at compile time; DStar allows any appli-
cation to define new policies and trust at runtime. DStar
transfers the entire label in each message, instead of as-
sociating labels with keys, since applications never han-
dle ciphertexts directly. An application that receives a
ciphertext but not the corresponding key may still infer
confidential information from the size of the ciphertext.

8 SUMMARY

DStar is a framework for securing distributed systems
by specifying end-to-end information flow constraints.
DStar leverages the security label mechanisms of DIFC-
based operating systems. Each machine runs an exporter
daemon, which translates between local OS labels and
globally-meaningful DStar labels. Exporters ensure it is
safe to communicate with other machines, but applica-
tions define the trust relations. Self-certifying categories
avoid the need for any fully-trusted machines. Using
DStar, we built a highly privilege-separated, three-tiered
web server in which no components are fully-trusted and
most components cannot compromise private user data
even by acting maliciously. The web server scales well
with the number of physical machines.

ACKNOWLEDGMENTS

We thank Michael Walfish, Siddhartha Annapureddy,
Pavel Brod, Antonio Nicolosi, Junfeng Yang, Alex Yip,
the anonymous reviewers, and our shepherd, Ken Bir-
man, for their feedback. This work was funded by
NSF Cybertrust award CNS-0716806, by joint NSF
Cybertrust and DARPA grant CNS-0430425, by the
DARPA Application Communities (AC) program as part
of the VERNIER project at Stanford and SRI Interna-
tional, and by a gift from Lightspeed Venture Partners.

REFERENCES
[1] O. Acıiçmez, Çetin Kaya Koç, and J.-P. Seifert. On the power of simple

branch prediction analysis. Cryptology ePrint Archive, Report 2006/351,
2006. http://eprint.iacr.org/.

[2] J. P. Anderson. A unification of computer and network security concepts.
In Proc. of the IEEE Symposium on Security and Privacy, pages 77–87,
Oakland, CA, 1985.

[3] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In
Proc. of the IEEE Symposium on Security and Privacy, Oakland, CA, 1996.

[4] A. C. Bomberger, A. P. Frantz, W. S. Frantz, A. C. Hardy, N. Hardy, C. R.
Landau, and J. S. Shapiro. The KeyKOS nanokernel architecture. In Proc.
of the USENIX Workshop on Micro-Kernels and Other Kernel Architec-
tures, April 1992.

[5] D. Brumley and D. Boneh. Remote timing attacks are practical. In Proc. of
the 12th USENIX Security Symposium, August 2003.

[6] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman, D. Boneh, N. McKe-
own, and S. Shenker. SANE: A protection architecture for enterprise net-
works. In Proc. of the 15th USENIX Security Symposium, Vancouver, BC,
2006.

[7] T. Chothia, D. Duggan, and J. Vitek. Type-based distributed access control.
In 16th IEEE Computer Security Foundations Workshop, pages 170–186.
IEEE Computer Society, 2003.

[8] D. E. Denning. A lattice model of secure information flow. Communica-
tions of the ACM, 19(5):236–243, May 1976.

[9] D. Estrin. Non-discretionary controls for inter-organization networks. In
Proc. of the IEEE Symposium on Security and Privacy, pages 56–61, Oak-
land, CA, 1985.

[10] H. Franke, R. Russell, and M. Kirkwood. Fuss, futexes and furwocks: Fast
userlevel locking in Linux. In Proc. of the 2002 Ottawa Linux Symposium,
pages 479–495, June 2002.

[11] T. Jaeger, K. Butler, D. H. King, S. Hallyn, J. Latten, and X. Zhang. Lever-
aging IPsec for mandatory access control across systems. In Proc. of the
2nd International Conference on Security and Privacy in Communication
Networks, August 2006.

[12] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler, and
R. Morris. Information flow control for standard OS abstractions. In Proc.
of the 21st SOSP, Stevenson, WA, October 2007.

[13] D. Mazières. A toolkit for user-level file systems. In Proc. of the 2001
USENIX, pages 261–274, June 2001.

[14] J. M. McCune, T. Jaeger, S. Berger, R. Caceres, and R. Sailer. Shamon: A
system for distributed mandatory access control. In Proc. of the 22nd An-
nual Computer Security Applications Conference, Washington, DC, USA,
2006. IEEE Computer Society.

[15] J. McHugh and A. P. Moore. A security policy and formal top-level spec-
ification for a multi-level secure local area network. In Proc. of the IEEE
Symposium on Security and Privacy, pages 34–39, Oakland, CA, 1986.

[16] A. C. Myers and B. Liskov. Protecting privacy using the decentralized label
model. ACM TOCS, 9(4):410–442, October 2000.

[17] J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: a fast capability system.
In Proc. of the 17th SOSP, December 1999.

[18] D. P. Sidhu and M. Gasser. A multilevel secure local area network. In Proc.
of the IEEE Symposium on Security and Privacy, pages 137–143, Oakland,
CA, 1982.

[19] A. S. Tanenbaum, R. van Renesse, H. van Staveren, G. J. Sharp, S. J. Mul-
lender, J. Jansen, and G. van Rossum. Experiences with the Amoeba dis-
tributed operating system. Communications of the ACM, 33:46–63, Decem-
ber 1990.

[20] Think Computer Corporation. Identity crisis. http:/
/www.thinkcomputer.com/corporate/whitepapers/
identitycrisis.pdf.

[21] S. VanDeBogart, P. Efstathopoulos, E. Kohler, M. Krohn, C. Frey,
D. Ziegler, F. Kaashoek, R. Morris, and D. Mazières. Labels and event
processes in the Asbestos operating system. ACM TOCS, 25(4):11:1–43,
December 2007.

[22] C. Weissman. Security controls in the ADEPT-50 time-sharing system. In
Proc. of the 35th AFIPS Conference, pages 119–133, 1969.

[23] E. P. Wobber, M. Abadi, M. Burrows, and B. Lampson. Authentication in
the Taos operating system. ACM TOCS, 12(1):3–32, 1994.

[24] T. Wu. The secure remote password protocol. In Proc. of the 1998 Internet
Society Network and Distributed System Security Symposium, pages 97–
111, San Diego, CA, March 1998.

[25] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers. Untrusted hosts and
confidentiality: Secure program partitioning. In Proc. of the 18th SOSP,
pages 1–14, October 2001.

[26] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. Making in-
formation flow explicit in HiStar. In Proc. of the 7th OSDI, pages 263–278,
Seattle, WA, November 2006.

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association308




