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ABSTRACT
For years, the conventional wisdom [7, 22] has been that the con-
tinued stability of the Internet depends on the widespread deploy-
ment of “socially responsible” congestion control. In this paper,
we seek to answer the following fundamental question: If network
end-points behaved in a selfish manner, would the stability of the
Internet be endangered?

We evaluate the impact of greedy end-point behavior through
a game-theoretic analysis of TCP. In this “TCP Game” each flow
attempts to maximize the throughput it achieves by modifying its
congestion control behavior. We use a combination of analysis and
simulation to determine the Nash Equilibrium of this game. Our
question then reduces to whether the network operates efficiently
at these Nash equilibria.

Our findings are twofold. First, in more traditional environments
– where end-points use TCP Reno-style loss recovery and routers
use drop-tail queues – the Nash Equilibria are reasonably efficient.
However, when endpoints use more recent variations of TCP (e.g.,
SACK) and routers employ either RED or drop-tail queues, the
Nash equilibria are very inefficient. This suggests that the Inter-
net of the past could remain stable in the face of greedy end-user
behavior, but the Internet of today is vulnerable to such behavior.
Second, we find that restoring the efficiency of the Nash equilibria
in these settings does not require heavy-weight packet scheduling
techniques (e.g., Fair Queuing) but instead can be done with a very
simple stateless mechanism based on CHOKe [21].

Categories and Subject Descriptors
C.2 [Computer Systems Organization]: Computer-
Communication Networks; C.2.1 [Computer-Communication Net-
works]: Network Architecture and Design—network communica-
tion
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1. INTRODUCTION
Over a decade ago, the Internet suffered a series of congestion

collapses leading to the development of TCP’s congestion control
algorithms [15, 3]. This “socially responsible” congestion control
behavior, implemented by the bulk of Internet end-points, has been
given credit for the continued stability of the network. This pa-
per is an attempt to understand if these social congestion control
algorithms were aptly credited. We ask whether greedy behavior
by network end-points actually results in unstable network condi-
tions such as congestion collapse. The answer to this question has
important implications to network operation. If the answer is that
greedy behavior results in instability, then the reason that the Inter-
net is functioning correctly is either that end-users are consciously
socially responsible or that it is too difficult to modify end-hosts to
behave greedily. Clearly, network operators cannot rely on either
of these conditions persisting and they should deploy new network
mechanisms to ensure that network end-points do not behave greed-
ily in the future. On the other hand, if selfishness does not result
in poor network behavior, then perhaps there is no need for such
mechanisms.

We evaluate the impact of greedy end-point behavior by perform-
ing a game-theoretic analysis of TCP. We choose to analyze TCP
since the bulk of bytes transferred in the Internet use TCP. In ad-
dition, as long as applications require reliable data transfer, this
preponderance of TCP is likely to continue. We define the TCP
Game in which TCP flows in a network can adjust their Additive-
Increase Multiplicative-Decrease (AIMD) congestion behavior in
order to optimize the goodput they achieve. These flows are al-
lowed to freely change and set their congestion control parameters,�������
	

, where
�

is the additive increase component and
�

is the
multiplicative decrease component. Also, these flows must con-
tinue to use the traditional loss-recovery techniques of timeouts and
fast retransmission to provide reliable data transfer.

One might think that a greedy/selfish flow could always gain by
using more aggressive congestion control. However, more aggres-
sive congestion control leads to higher loss rates. Since TCP loss
recovery is not a perfect process, there is always some “cost” asso-
ciated with the higher loss rate. When the potential benefit and cost
balance, a flow has nothing to gain.1

Our aim is to determine the congestion parameters
�����������	

that
are chosen by the flows at Nash equilibrium (where no flow can
�
This is in contrast to using modern coding techniques that don’t rely on

loss recovery to achieve reliable transfer. With such methods, loss recovery
is essentially perfect, and aggression will always pay. In this paper we
restrict out attention to TCP and its imperfect loss-recovery.



gain throughput by unilaterally adjusting its behavior). In evaluat-
ing the impact of greedy end-points, we are not as interested in the
actual value of

��� � ��� � 	
as much as the behavior and efficiency of

the network under this operating condition. To evaluate efficiency,
we measure the the average goodput of any flow and the average
per-flow loss rate at Nash equilibrium.

Since the Nash equilibrium reflects a balance between the gains
and the cost related to aggressive behavior, any factor affecting this
balance results in a change of the parameter settings and the net-
work efficiency at Nash equilibrium. Two such factors that we vary
in our analysis are the form of loss recovery used by TCP flows
and the queuing discipline implemented by the routers in the net-
work. More modern loss recovery techniques, such as SACK [10],
reduce the overhead of loss recovery, thereby changing the balance
in favor of more aggressive behavior. Queuing disciplines (like
RED [13], CHOKe [21]) affect the loss rate that results from vary-
ing levels of aggression. For example, at the extreme, Fair Queu-
ing techniques [7] prevent any flow from receiving more than its
fair share by assigning all additional losses to the more aggressive
flows, thereby removing any incentive to be aggressive.

Taking the above observations into account, we seek to address
the following questions in this paper:

1. What are the parameter settings of the flows at Nash equilib-
rium?

2. How efficient/inefficient is the operation of the network at
Nash equilibrium?

3. What impact do TCP’s loss recovery mechanisms and the
AQM schemes implemented at routers have on the efficient
operation of the network at Nash equilibrium?

Our analysis of a simplified version of the TCP Game and sim-
ulations in NS-2 [1], show that when flows implement traditional
loss recovery mechanisms (TCP-Reno) and FIFO drop-tail buffers
are employed, the network operates efficiently at the resulting Nash
equilibrium (i.e. there is no danger of congestion collapse). How-
ever, the allocation of bandwidth at this equilibrium is somewhat
unfair [6, 2]. This combination of Reno and FIFO drop-tail is sig-
nificant since it was common in the Internet until quite recently.
Unfortunately, in all other cases, the Nash equilibrium is undesir-
able since either the per-flow goodput is too low or the per-flow loss
rate is too high. We also show that heavy-weight queueing mech-
anisms requiring explicit per-flow state are not necessary to avoid
congestion collapse at the Nash equilibrium. We show that a minor
modification to the CHOKe [21] active queue management policy
ensures efficient operation as well as reasonable fairness at Nash
equilibrium.

The remainder of this paper is organized as follows. In Section 2
we present related work. Section 3 discusses the TCP Game in
detail and also presents our analysis methodology. In Section 4, we
present analytical and simulation results for the Nash equilibrium
of the simplified TCP Game. Section 5 discusses a simple low-
overhead mechanism that encourages a desirable Nash equilibrium.
Finally, Section 6 summarizes the contributions of this paper.

2. RELATED WORK
There is a substantial literature of game-theoretic approaches to

network resource allocation in general and to congestion control in
particular. We do not provide a detailed review of this work here,
but direct interested readers to a small sampling of the literature [9,
14, 9, 8, 11, 22]. The approach we take here differs from these
earlier papers in several key respects.

First, the previous literature typically used models where flows
were represented by Poisson streams and routers by M/M/1 queues,
and congestion control consists of adjusting the Poisson transmis-
sion rate. In this paper, we consider the simulated performance of
TCP’s actual packet-level congestion control algorithms, including
loss-recovery and window adjustment. Second, instead of consid-
ering general congestion control algorithms, we restrict our atten-
tion to the AIMD family of window adjustment algorithms. Third,
while these previous treatments considered a wide class of utility
functions (often concave functions of delay and throughput), we
assume all users are interested in maximizing goodput. Thus, our
work uses a more realistic but more limited model of congestion
control, and we pay careful attention to the impact of loss-recovery
algorithms. Our modeling choices reflects our underlying question:
what would happen if users freely chose their TCP AIMD parame-
ters?

Our work is also closely related to [2]. In this work, the authors
evaluate the four linear congestion control algorithms - AIMD, AIAD,
MIMD and MIAD - in the context of various loss recovery and
queue management algorithms and under a variety of variations
in the available bandwidth. The paper concludes that AIAD pro-
vides comparable (and sometimes better) efficiency to AIMD in
most settings. We use these results as a guide to judge the effi-
ciency/inefficiency of the Nash equilibria we analyze in this paper.

Finally, the simple penalty-based model for the variants of TCP
that we present in Section 3.3 is similar to that presented in [16].

3. THE TCP GAME
In this section, we describe the TCP Game in detail. We first

state the assumptions we make in order to simplify the game. Next,
we discuss the dimensions along which the TCP Game can be ana-
lyzed. Finally, we describe a penalty-based model for TCP that we
use in our analysis of the TCP Game in later sections.

3.1 A Few Simplifying Assumptions
In the TCP Game each TCP end-point attempts to maximize its

own goodput. To achieve this goal, each TCP end-point is given
the freedom to adjust its congestion control behavior. Formally, we
assume that we are given a set of � TCP flows,

� � ������� � ��� , all im-
plementing the Additive Increase Multiplicative Decrease (AIMD)
algorithm for congestion avoidance and control. We allow each
flow

���
to modify its additive increase constant (

� ���
	
) and its

multiplicative decrease constant (
� ��� �� � 	 	

).
In addition, we make the following simplifying assumptions:

(I) All flows in the network implement the same algorithms for
loss recovery (e.g. timeout, fast retransmission, selective ac-
knowledgments, etc.).

(II) All the flows have an infinite amount of data to send.

(III) All the flows encounter a single common bottleneck. We
assume that the capacity of the bottleneck link, defined as
the number of packets that it can transmit in unit time, is
fixed.

(IV) All flows have identical round-trip times.

(V) The amount of buffering at the bottleneck router is fixed at
the bandwidth-delay product of the simple topology resulting
from the above assumptions.

When packets are successfully acknowledged, each flow
���

in-
creases its transmission rate as dictated by the increase parameter� �

. Flows react to packet loss by decreasing their transmission rate.



This rate reduction is dictated by two factors: the decrease param-
eter

� �
and the loss recovery algorithm implemented by the flow.

This is described in greater detail in Section 3.3.
Let � � denote the average number of useful (i.e., distinct) pack-

ets of flow
� �

that are successfully delivered in unit time (where we
choose the common RTT as the unit of time). � � is the goodput of
flow

���
. In the TCP Game, the aim of each flow is to choose its pa-

rameters
��� � � � � 	

so that � � is as high as possible. Notice that such
a choice for flow

���
is dependent on the setting chosen by each of

the remaining ��� 	
flows. When for each flow

� �
, the parame-

ters
��� � ��� � 	

are chosen such that, given the parameters
����� ����� 	

for ���	�
 , no other choice of parameters for flow
� �

yields a higher
value of � � , the TCP Game is said to be at a Nash equilibrium.

In our analysis of the TCP Game, we are interested in two key
properties of the Nash equilibrium: the parameter settings of the
flows and the resulting efficiency of the network. We are not con-
cerned with how the Nash equilibrium is attained through itera-
tive adjustment of the flow control parameters. Our paper thus ad-
dresses the following question: If the Internet were such that all
TCP-AIMD flows were at Nash equilibrium, how would their pa-
rameters be set and how efficiently would the Internet be operating?
We use the average per-flow statistics of goodput and loss rate to
measure the efficiency of the network at Nash equilibrium.

3.2 Factors Affecting the TCP Game
The value of � � attained by a flow in this game, and therefore

the Nash equilibrium of the TCP Game, is dependent on many fac-
tors. Important among these are: (i) the congestion control parame-
ters, (ii) the nature of the loss recovery algorithm, and (iii) the way
losses are assigned at the bottleneck router. Factor (iii) depends on
the router queueing and buffer management algorithms, and thus
is under the control of network administrators. Factor (ii) is con-
trolled by the set of algorithms supported by a TCP implementation
and the contents of TCP packet headers (e.g., SACK blocks). As a
result, only Factor (i) is under complete control of a single end-user
(the source), and is the only factor we allow users to adjust to gain
advantage; we consider the other two factors as being important
components of the environment in which the agents are playing the
TCP Game. In this section, we describe each of these factors in
turn.

The congestion control algorithm employed by a TCP flow can
be looked upon as a mechanism that the flow uses to probe for
available bandwidth. There are two axes along which each AIMD
flow could change its parameters:

� Varying
�

. By choosing a higher
�

, a greedy flow could try
to grab the available bandwidth at a much quicker rate and
gain an advantage over competing flows.

� Varying
�

. By choosing a
�

closer to one, a greedy flow can
choose to give up bandwidth more slowly upon congestion.

In general, flows would adjust both
�

and
�

simultaneously.
However, to make both the analysis and the presentation of the
results more accessible, in this paper we focus on two restricted
cases: (i) all flows vary their

�
but hold

�
fixed and (ii) all flows

vary their
�

but hold
�

fixed. We present results from both analysis
and simulations for these two cases in detail in Section 4 of this
paper. In addition, we also summarize the initial results from our
simulations of the more general scenario, where flows are allowed
to adjust

�
and

�
simultaneously, in Section 4 without presenting

the relevant analysis.
The loss recovery schemes in early versions of TCP, like Reno,

are primitive and cause the TCP flow to show a rather drastic re-
action to losses. For example, when a TCP-Reno flow loses more

than a couple of packets within a single congestion window, it is
forced to time-out and restart [10]. Modern versions of TCP, like
SACK, use more tolerant loss recovery mechanisms that can sus-
tain many more losses without the flow having to incur time-outs.
Since by being more aggressive a flow has a greater chance of los-
ing packets and since the reaction to losses is directly dependent on
the loss recovery algorithm, the form of loss recovery implemented
by the flows participating in the TCP Game has an effect on the the
nature of the Nash equilibrium.

Traditional queueing and buffer management schemes like drop-
tail and RED do not actively penalize aggressive flows. How-
ever, drop-tail may unintentionally penalize aggressive flows since
packet bursts, a common characteristic of aggressive behavior, of-
ten incur drops under drop-tail queue management. In addition,
several proposed (but not widely deployed) queueing and buffer
management schemes, such as CHOKe and Fair Queueing, inten-
tionally punish aggressive flows (to varying degrees). Thus, the
queueing and buffer management schemes will have an effect on
the resulting Nash equilibrium.

Symmetry is another important aspect of the Nash equilibrium of
the TCP Game that warrants discussion. In this paper, we only con-
sider situations where the flows are symmetric (i.e., have the same
RTTs) and we only analyze symmetric Nash equilibria (i.e., Nash
equilibria where the congestion control parameters of the flows are
all equal). We leave the analysis of asymmetric Nash equilibria for
future work.

Summarizing, in this paper we analyze the symmetric Nash equi-
libria for the TCP Game under varying combinations of the queue-
ing and buffer management schemes employed at the routers and
the loss recovery mechanisms implemented by the TCP end-points.

3.3 A Penalty-Based Model for TCP
In this section, we present a penalty-based model for TCP similar

to that described in [16]. We use this model in our analysis of the
Nash equilibrium. These results will be compared to what we find
using more realistic simulations. The purpose is to find a simple
model that captures most of the behavior found in the packet-level
simulations but yet remains fairly accessible to analysis.

We divide the duration of transmission of each flow into rounds
each corresponding to one round-trip time (RTT) of the flow. Let���

denote the number of packets that flow
� �

has outstanding in the
network in round � . Let � �� denote the number of packet losses ex-
perienced by flow

���
in round � . � �� depends on the value of � �  ��

and the queue management algorithm employed by the bottleneck
router. Each flow changes the maximum number of packets it is al-
lowed to keep outstanding in the network in the round following �
as follows: if � ����  then

 ��� �� 	 � �� ��
(multiplicative decrease),

and if � �� 	 
then

 ��� �� 	 ����� � �
(additive increase). This mod-

els the congestion avoidance/control behavior of each flow. Here,
we assume that each flow knows about the losses assigned to it in a
given round at the start of the following round.

Suppose a TCP flow incurs � � 
losses at time � . Let


be the

number of packets of the flow outstanding at time � . When the TCP
flow experiences one or more losses, it not only adjusts its window
(as described above) but also must recover from the loss. We model
this loss recovery mechanism by a penalty function that defines ex-
actly how many packets the flow is allowed have outstanding in
the round(s) immediately following a loss. At the very high level,
there are three forms of penalty: Severe, Gentle, Hybrid. In a Se-
vere reaction to losses, the TCP flow does not transmit any data for��� rounds, irrespective of the value of � . This is equivalent to en-
tering slow-start after incurring losses (e.g., TCP Tahoe). At time
� � ��� � 	

(after the time out), the TCP flow restarts by allowing



� 
packets to be in flight. In a Gentle reaction to losses, a TCP

flow incurs a penalty proportional to the number of losses observed
(by transmitting � � fewer packets than usual at time � � 	

, where� is a small positive constant). This penalty reflects the cost of
retransmissions without time-outs.2

In a Hybrid reaction to losses, the TCP flow incurs a purely gen-
tle penalty up to a threshold number of losses ( � 	 	

) and a purely
severe penalty after that. The severe part of a Hybrid reaction dif-
fers from a pure Severe penalty in two key aspects. Firstly, the
former models a time-out followed by a slow-start while the latter
models just a slow-start. Secondly, at the end of the severe penalty
in a Hybrid reaction to losses (when � � 	

), the TCP flow restarts
with

��
packets outstanding, where

��
is a positive constant. The

reason for these differences from Severe penalty will be explained
later in this section.

Severe penalty (Tahoe):

 ��� �� 	 ��� � � �
if � �� 	 

	 
if � ���� � 	

where � � � ��� �	��
 �	 � �� � ��
if � � �� � 	

and � 	 ��� � �	�
Gentle penalty (SACK):

 ��� �� 	 ��� � � �
if � �� 	 

	 � � ��� ��� � �� if � �� � 	

Hybrid Penalty (Reno):

���� �� 	  �� � � �
if � �� 	 

and
 �� � 

	 � � ��� ��� if � �� 	 	
	 

if � ���� � 	
where � � ��� � � � 
 �	 � � ��

if � � �� � 	
and � 	 � � � � �

Here,
��

is a constant.

Table 1: The Penalty Models for TCP-Tahoe, TCP-SACK and
TCP-Reno. � �  is a small constant.

The Severe form of penalty models TCP-Tahoe flows. Tahoe
flows exhibit mostly fixed reaction (fast-retransmit and slow-start)
to losses, irrespective of their number. Also, Tahoe flows reduce
their ssthresh variable by

�
upon incurring losses, before entering

slow-start. Severe penalty in this form does not explicitly model
the time outs in TCP-Tahoe. In fact, this form of penalty is more
representative of versions of TCP that preceded Tahoe.

TCP-Reno loss recovery can be modeled as a Hybrid penalty. A
Reno flow incurs a gentle penalty for up to a single loss within a
window after which it incurs a severe penalty (by timing out and
slow-starting). In fact, a Reno flow undergoes a few successive
multiplicative decreases spread over as many round-trip times be-
fore timing out. In addition, the value of ssthresh is reduced by

�
with each such decrease. By stating that in a Hybrid Reaction, a
TCP flow times out immediately after observing more then a sin-
gle loss and that after a time out, the flow restarts by keeping a
constant number of packets outstanding, we are approximating the
effect of these multiple decreases on a Reno flow. The severe part


For convenience, when a TCP flows shows a Severe reaction to losses,

we say that it incurs or implements a Severe penalty and we refer to it as
a Severe flow. Similarly, the terms Gentle penalty and Gentle flow can be
defined.
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Figure 1: A single-bottleneck topology.

of the Hybrid penalty subsumes both the time out and the subse-
quent slow-start. Thus, the exact value of � � for a Severe penalty
is smaller than that for a Hybrid penalty.

TCP SACK flows can sustain many losses within a single con-
gestion window. In fact, unless a SACK flow sees so many losses
within a window that there are less than 3 duplicate acknowledg-
ments received or unless a retransmitted packet is lost again, it will
not time-out. Since such time-outs for SACK are highly uncom-
mon in reality, we consider TCP SACK flows to implement a Gen-
tle penalty. The definitions of the three penalty models are stated
formally in Table 1.

In the above model, the number of losses � �� seen by a flow is
determined by the queue management algorithms used. This fact is
discussed in greater detail in the next section.

It should be noted, however, that we do not claim that this model
is realistic. We only claim, and show in our later results, that it
reproduces the TCP Game behavior seen in the more realistic sim-
ulations. Thus, it appears to capture the aspects of reality most
relevant to the question we are addressing.

4. ANALYSIS OF THE TCP GAME
In this section, we describe the results from analysis and simula-

tion of the TCP Game. For the analysis, we use the penalty-based
model presented in the previous section. We begin this section by
describing the simulation set-up and the methodology used for ob-
taining the Nash equilibrium experimentally. We then present the
results of these simulations and of our analysis of the penalty-based
model. We do so by considering each combination of loss-recovery
and queue management algorithm in turn, first describing the ana-
lytical results for that setting and then presenting the corresponding
simulation results.

4.1 Simulation Methodology
Since we assume that all flows traverse a single common bottle-

neck, we use the standard dumb-bell topology shown in Figure 1
for our simulations. Flow

� �
, 
 	 	 ��� � � , traverses the path from� �

to � � . In all our simulations, we set the bottleneck capacity�
to 10Mbps and we fix � 	 	 

. We now describe our simulation
methodology for arriving at the Nash equilibrium of the TCP Game
when the flows are allowed to vary their increase parameters alone.

When varying
�

we use the following procedure. We run our
simulations in iterations. In the � ��� iteration, we fix the parame-
ters for flows

� � ����� � ��� � to the single tuple
��� � ���
	

. Let the pa-
rameters for the flow

���
be denoted by the tuple

��� � ���
	
. We run

simulations for values of
� � in the interval �������  ���

�
����� 
� � 
 � � � � , where � is a fixed large positive constant. Hence-

forth, we will use the notation
� �"! # $&% 	 �������  � �

�
�'��� and



Notation Description�
The capacity of the bottleneck link (the bandwidth-delay product)�
The propagation round trip delay of the bottleneck link�
The mean round trip time (

�������
), where

���
is the mean queueing delay on the link�	�
 The number of packets transmitted by flow � 
 in round � 
 The value of

� 
 immediately after an overflow point, in steady-state.� �
 The number of losses experienced by flow � 
 in round �� 
 The mean goodput of flow � 
� 
 The increase parameter for flow � 
� 
 The decrease parameter for flow � 
� �������
�� � � 
��� The number of rounds spent incurring severe penalty��� The common value of � for all flows at Nash equilibrium (when flows are allowed to vary their increase parameters)� � The common value of
�

for all flows at Nash equilibrium (when flows are allowed to vary their decrease parameters)�� The number of rounds between successive buffer overflow points (drop-tail buffers) or
The expected number of rounds between successive multiplicative decreases of a flow (RED buffers)! 
 The number of packets transmitted by flow � 
 between a pair of consecutive overflow points"
The total length of the period between two consecutive overflow points in seconds.

Table 2: Notation used in our analysis.

� �"! � �$# � 	 � � � � . For each value of
� �

we record the value of
� � ��� � 	 and define

� �"! %'&)( �
as the value of

� � that maximized � � .
The next iteration, � � 	

starts with the parameters for all the �
flows set to

��� �"! %'&*( � � �
	
. The simulation stops when at the end of

some iteration + ,
��, ! %-&)( � 	 ��,

; this value, denoted by
� �

, is the
Nash equilibrium value of

�
. We then say that for the given situa-

tion, the parameters at Nash equilibrium are
��� � ��� 	

for all flows.
Notice that the simulation methodology we use assumes that the
Nash equilibrium is symmetric.

When varying
�

, we set
� 	  � .

and all simulations start with� � 	 	
. In every iteration, for each value of

� �
, we run the simula-

tion 20 times (the total simulation time is 100s and we discard the
first 50s of simulation data to allow the flows reach steady state). In
each of the 20 runs, the start times of the � flows are randomized.
We use the average value of the goodput seen by

� �
in these runs

for the value of � � . In obtaining the value of
� �"! %'&)( �

we use the
following criterion: when comparing

� � and
�  (

� � �	 �  ), we say
that � � ��� � 	 � � � ���  	 if and only if the 85% confidence around
the values of � � ��� � 	 and � � ���  	 do not overlap. The value 85%
was chosen based on our experience with these simulations, but is
not supported by any principled argument.

The simulations for
�

variation are similar. In this set of simula-
tions, we set

� 	 	
for all flows. In addition, we set

� �"! # $&% 	  � .
and

� �"! � �$# � 	  � /0/
. We do not test for values of

� �  � .
since

they are clearly sub-optimal. The methodology we use in our sim-
ulations with flows varying

�
and

�
simultaneously is also similar

and is a combination of the above two simulation set-ups.
We consider three forms of loss recovery (and three associated

penalty functions in our analytical model): SACK (Gentle), Tahoe
(Severe penalty), and Reno (Hybrid penalty).3 We also consider
two forms of buffer management: simple drop-tail and RED. We
discuss the six possible combinations in the following subsections,
starting with the analytical results with the penalty model and then
comparing it to the simulation results on the actual TCP algorithm.
We start by presenting the results for drop-tail routers, and then
discuss RED routers.

4.2 FIFO Drop-Tail Gateways
When FIFO drop-tail buffers are used, all flows experience losses

at about the same instant of time, which we call the overflow point.
The overflow point, in fact, spans an entire round. The number
of losses assigned by the FIFO drop-tail buffer to flow

� �
at an

1
In this paper, we do not model/analyze TCP-Newreno. However, our NS-

2 simulations have shown that the Nash equilibria of the TCP Game for
Newreno flows are similar to those for SACK flows.

overflow point is exactly equal to its increase number
� �

. Thus,
� � 	 � �

upon overflow. We justify this loss assignment policy of
FIFO drop-tail buffers below.

Let us consider a round, at the start of which the buffer is exactly
full (i.e., at the overflow point). TCP ensures all transmissions are
ACK-clocked. ACK-clocking, in turn, ensures that no losses oc-
cur, even if the buffer is full, as long as each flow continues to send
at the same rate as at the start of the round. However, assuming
that

� �
is an integer, flow

� �
increases its value of

 �
for the sub-

sequent round by
� �

causing an increase in the sending rate. In
fact, from the way congestion window increase is defined in TCP, �

increases gradually with each incoming ACK. At each instant
when there is an increment of 1 in

 �
,
� �

bursts out two packets
back-to-back because of the increase in the number of packets it is
allowed to keep outstanding. This causes a temporary disturbance
to the ACK-clocked transmission of

� �
. The result is a buffer over-

flow and
���

experiencing a loss each time
��

is increased by 1. It
follows from this that the number of losses seen by flow

� �
at the

overflow point is exactly
� �

.4

We summarize the notation we use in the subsequent sections in
Table 2 for easy reference. We now look at each of the three forms
of loss-recovery – SACK/Gentle, Tahoe/Severe and Reno/Hybrid –
in turn.

4.2.1 TCP-SACK/Gentle Penalty
Analysis of Gentle Penalty Let

�
denote the capacity of the bot-

tleneck link in packets (i.e.,
�

is the bandwidth-delay product).
From Assumption (V) (Section 3.1), the size of the FIFO drop-tail
buffer is

�
. Let �32 denote the number of rounds between con-

secutive overflow points in steady state. For each flow
� �

, we can
write

� � 	 � �
4 (1)

where
� �

is the number of packets transmitted by flow
� �

between
a pair of consecutive overflow points and

4
is the total length of

the period between two consecutive overflow points in seconds, as
defined in Table 2.

Let
 � � + 	 be the value of the

��
after the + th overflow point

and let 5 � be the limiting value of
 � � + 	 as +7698 . From the

:
We have noticed that even with (on-off) cross traffic, the average number

of losses observed by a flow is roughly equal to its increase parameter. It
was also observed by the designers of RED that drop-tail routers penalize
bursty behavior [13].



definition of AIMD, we can write,

5 � 	 ��� 5 � � � � 2 � � ��� � � 	 	
since � � 	 � �

. This gives us

5 � 	 �
	 � � � � 2 � � ��� � � 	�� �

	 � � � 2 � � (2)

Also, from the definition of an overflow point, we have, in steady-
state, ��

��� � � 5 � � � 2 � � 	 	 � � (3)

since both the buffer and the link are full at an overflow point.
The number of packets,

� �
, transmitted by flow

� �
in the period

of � 2 � 	 rounds between the end of an overflow point and the end
of the subsequent overflow point5, in steady-state is given by

� � 	 �  �
� � � 5 � � � � � (4)

These equations apply to both the
�

and
�

variation analyses,
which we present next. In both cases, we assume that all the flows
have reached their steady-state.

Varying
�

Setting
� 	  � .

in Equation 2, we obtain

5 � � �32 � � (5)

Substituting Equation 5 in Equation 4, we get,
� � 	 � � � �  � � � � � 2 �� 	 . The length of each of the rounds between overflow points, in

seconds, is different, due to the queueing at the bottleneck router.
In particular, if we let � denote the base propagation RTT, then
the length of the � ��� round since the last overflow point would be�	� 	 � � � �

�  �
 for
	 
 � 
 � 2 � 	

(Assuming that queueing delay

varies linearly from


to � over the �32 rounds). Thus, the total
length in seconds of the period of between overflow points,

4
, is

given by
4 	 � � � �  � � � ��� 	 � �

�  
 	��  � �  � � � � � 2 � � 	 .
Using the expressions for

� �
and

4
derived above in Equation 1,

we obtain, � � 	 � �� 	�� � �   . From Equations 3 and 5, � 2 	�� �
�� � � 
 . This gives

� � 	
� � �

� ��� � � � 	 (6)

where
� 	 �

��� ���� � � � . From the above expression for gooodput, it
is easy to see that given the values of

� �
for flows

� � ��� ��� � � ��� � ,
the value of � � ��� � 	 is strictly increasing in

� �
. Hence at Nash

equilibrium,
� �

could be arbitrarily large.
Varying

�
For analyzing the Nash equilibrium resulting from al-

lowing the flows to vary
�

, we compare the goodputs of flow
� �

resulting from the following two settings of the parameters of the
� flows:

(i) Flows
� �

, 
 	 	 � ����� � � � 	
all have a decrease parameter

of
� � 	 �

(fixed). The decrease parameter of flow
� �

,
� �

is larger than
�

. Let � � � � � 	 be the goodput of
���

in this
setting.

(ii) All the � flows have the same decrease parameter
�

. Let
� � � �
	 denote the goodput of flow

� �
in this setting.�

Henceforth, we will also refer to these � 2���� rounds as the rounds “be-
tween” overflow points

We will use the superscripts
� 
 	 and

� 
 
 	 to differentiate quantities
in either setting. For example, we will Let 5	� ���� and 5	� � ���� denote
the values of 5 � in settings (i) and (ii) respectively. In either setting,� � 	 	

for 
 	 	 ������� � � .
Now, setting

� � 	 	
in equation 2, we get

5 � ���� � � �
	 � � � � � ���2 (7)

5 � � ���� � �
	 � � � � � ���2 (8)

Assuming that the difference between
� �

and
�

is negligible, the
average length of any round in either setting would be approxi-
mately the same. Let � denote this value. It is not hard to see that� � � � � . We can immediately write the following equations for
the total time in seconds between consecutive overflow points in
either setting:

4 � ��� 	 � � 	 � �
	 � � � ���2 � 	 	
4 � � ��� 	 � � 	 � �
	 � � � � ���2 � 	 	

Now, in Setting (i) flow
���

transmits
� � ���� 	 � � � � � 
�! � � � ��" �� � " � � � ���2 � � 	

packets (using Equation 7 in Equation 4). Hence, from Equation 1,
after simplification, we get the following expression for Setting (i):

� � � � � 	 	
� � ���2 � 	 � � � 	� � � 	 � � � 	 � 	 � � 	 (9)

Similarly, for Setting (ii), we get,

� � � �
	 	
� � � ���2� � � 	 � �
	 (10)

Using Equations 7 and 8 in Equation 3, we get:

� � � 	 	 � � ���2 	
	 � � � � � ���2 	

	 � � � 	 � � (11)

� � � � ���2 	
	 � � 	 � � (12)

From Equation 11, � � ���2 � � � � � " �� . Using this inequality in Equa-
tion 9 and using Equation 12 in Equation 10, we get,

� � � � � 	 � � � 	 � � � 	� �#� � 	 � �
	 �
�
�$� 	 � � � �
	 (13)

In effect, greedy flows always stand to gain by setting their decrease
parameters slightly more aggressively than the competing flows.
This implies that at Nash equilibrium

�� 6 	
.

Simulation of SACK Simulation results for the Nash equilibrium
of the TCP Game when TCP-SACK flows are allowed to change
their only their increase parameters or only their decrease param-
eters are shown in Figures 2(a) and (b), respectively. Each curve
in either figure represents one iteration in the simulation. For each
curve (iteration � ), we identify the common congestion control pa-
rameter (

� �
or
� �

, as the case may be) for flows
� � ����� � ��� � . The

goodput obtained by flow
���

as its congestion control parameter
(
� �

or
� �

, as the case may be) is varied between two extreme val-
ues (

� � �&% �����  ��� � � .  � � � � . ('
and

� � ��%  � . �  � / /('
) is plot-

ted on the ) -axis as a function of the parameter of flow
���

shown
on the � -axis. For each iteration, we also identify the value of the
parameter for flow

���
resulting in the best goodput given the pa-

rameters of flows
� � ��� � � ��� � . We also show the average per-flow

goodput and loss rate at Nash equilibrium in the table below each
figure.

When flows are allowed to vary their increase parameters, we ob-
tain

� � 	�*  (Figure 2(a)), which is very aggressive, as predicted



0

2

4

6

8

10

0 20 40 60 80 100

G
oo

dp
ut

 (
in

 M
bp

s)

Increase Parameter (αn)

α1 = 1 (α1,best = 40)
α2 = 40 (α2,best = 40)

0

2

4

6

8

10

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

G
oo

dp
ut

 (
in

 M
bp

s)

Decrease Parameter (βn)

β1 = 1 (β1,best = 0.98)
β2 = 0.98 (β2,best = 0.98)

� � Goodput Loss Rate
40 0.95Mbps 20.32

� � Goodput Loss Rate
0.98 1.00Mbps 1.80

(a) (b)

Figure 2: Simulation results for Gentle flows with FIFO drop-tail buffers. In (a) we show the results for the Nash equilibrium when
flows vary their increase parameters. The results for the Nash equilibrium when flows vary their decrease parameters are shown in
(b).

by our analysis. At this Nash equilibrium, although the average
goodput is reasonable and the per-flow loss rate is extremely high.
Thus, the Nash equilibrium is undesirable.

From Figure 2(b), as shown by our analysis,
� � 	  � /��

, at Nash
equilibrium when flows are allowed to vary their decrease param-
eters. Though the parameters are set aggressively at Nash equilib-
rium, the average per-flow good-put and loss rates are very reason-
able. Besides, at values of

� �
close to 1, the decrease undergone

by the flows upon incurring losses is equivalent to an additive de-
crease (by one packet). As such, the loss rate would not be any
worse even if

� � �  � /��
. Hence, we do not consider this Nash

equilibrium to be undesirable, in terms of efficiency. However, the
additive decrease makes this Nash equilibrium unfair [6]. This is in
agreement with the conclusions drawn in [2].

We also perform simulations in which TCP-SACK flows are al-
lowed to vary their increase and decrease parameters simultane-
ously. For lack of space, we omit the corresponding graphs from
the presentation and summarize the results in words instead (This
is also true of the simulation results for simultaneous variation of�

and
�

in upcoming sections). From simulations for TCP-SACK
flows,

��� � ��� � 	 	 � 	 . �  � /�� 	
at the symmetric Nash equilibrium.

The average goodput (0.95Mbps) is reasonable, but the loss rate
(26%) is extremely high making this Nash equilibrium undesirable.
Notice that these results are in agreement with those of

�
variation

and
�

variation.
In summary, we make the following observation:

OBSERVATION 1. Given SACK/Gentle flows and FIFO drop-
tail buffers, the Nash equilibrium resulting from

�
variation is highly

undesirable. When flows vary their
�

alone, the network continues
to operate efficiently at the resulting Nash equilibrium in spite of
the aggressive parameter setting. When flows are allowed to si-
multaneously vary both

�
and

�
the resulting Nash equilibrium is,

again, undesirable.

4.2.2 TCP-Tahoe/Severe Penalty
Analysis of Severe Penalty We now analyze the situation in which
all the � flows implement Severe penalty. Suppose that an overflow
occurs in round � � and that all the � flows are in steady-state. Then,
by definition of Severe penalty, the � flows do not transmit any new
packets into the network for the next ��� rounds (The length of each
of these rounds is exactly � , as there is no queueing at the router).
Suppose that it takes an additional � rounds before the next over-
flow point. Then, � 2 	 � � � � .

Let 5 � denote the steady-state value of the number of outstand-

ing packets of flow
� �

after it recovers from a severe penalty fol-
lowing a buffer overflow. Then, we have the following parallel to
Equation 2:

5 � 	 �
	 � � � � � (14)

We also have the following parallels to Equations 3 and 4, respec-
tively: ��

��� � � 5 � � � � � 	 	 � � (15)

� � 	 ��
� � � 5 � � � � � (16)

We now discuss
�

and
�

variation in turn.
Varying

�
Setting

� 	  � .
in Equation 14, we get

5 � 	 � � � (17)

Applying Equation 17 to Equation 16 we get,
� � 	 1 � � � � � � � � .

The total length of the � 2 rounds in seconds is
4 	 � ��� � � � � �� � � ��� 	 � �

�
� 	

�	� � � � 1 � � � � � 
 . Using these expressions for
� �

and
4

in Equa-

tion 1 we get,

� � 	 � � � � � � � 	 	

� � � � � � � � � � 	 	 	

From Equations 15 and 17, we obtain � 	 �� 
�� � � 
 . It is not hard to
see that � � increases with

� �
for fixed values of

� �
, 
 	 	 ��� � � �	

.6 Thus, when flows implement Severe penalty,
���

could grow
arbitrarily large, at Nash equilibrium.
Varying

�
As before, we compare the throughput resulting from

the settings (i) and (ii) presented in Section * � � � 	 . Let �
�

and �
� �

denote the number of rounds between successive overflow points
excluding the rounds in which flows incur severe penalty, as defined
above for

�
variation. The rest of the variables are as defined in

Section * � � � 	 .
The following equations hold immediately:

4 � ��� 	 � ��� � � � 	 � �
	 � � � ��� � 	 	
4 � � ��� 	 � ��� � � � 	 � �
	 � � � � ��� � 	 	

�
Here we use the fact that if �
	������� and ��	������� are continuous, dif-

ferentiable functions of � and � # is increasing in � , then �# ��� is increasing
in � for any constant ����� .
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Figure 3: Simulation results for Severe flows with FIFO drop-tail buffers.

It is not hard to see (similar to Equations 9 and 10) that

� � � � � 	 	 � � ��� � 	 � � � 	 � � � ��� � 	 	� � � � � 	 � � � 	 � � � � 	 � � � 	 � 	 � � 	 � � � ��� � 	 	

� � � � 	 	 � � � ��� � 	 � � 	 � � � � ��� � 	 	� � ��� � 	 � � 	 � � � � 	 � � 	 � 	 � �
	 � � � � ��� � 	 	

It can be shown that there always exists
� � � �

such that � � � � � 	 �
� � � � 	 as long as � � � (We omit the proof of this fact). Hence, at
Nash equilibrium

� � 6 	
, when flows implement Severe penalty.

Simulation of Tahoe We show the results from our simulations for
10 flows in Figures 3(a) and (b). From Figure 3(a), when flows are
allowed to vary their increase parameters,

��� 	 * / . The average
goodput and loss rate are poor rendering this Nash equilibrium un-
desirable. Also, from Figure 3(b),

� � 	  � /��
. Though the loss rate

at this Nash equilibrium is low, the per-flow goodput is poor. As a
result, this Nash equilibrium is undesirable too. When both

�
and�

are varied simultaneously,
��� � � ���	 	 � 	 �  � /�� 	

at Nash equi-
librium. (TCP Tahoe flows gain much lesser from varying

�
than

they do from varying
�

. This results in a conservative setting of
�

at Nash equilibrium.) Again this Nash equilibrium is undesirable
just as that resulting from

�
variation.

In effect, we could state the following:

OBSERVATION 2. The Nash equilibrium of the TCP Game in
which the TCP flows implement Tahoe/Severe penalty and FIFO
drop-tail routers are employed results in inefficient network opera-
tion.

4.2.3 TCP-Reno/Hybrid Penalty

We use a slightly different method for analyzing Hybrid penalty.
Varying

�
Here, we compare the goodput of flow

���
resulting

from the following two settings of parameters of the � flows:

(i) Flow
���

has an increase parameter of
� � � 	

while all the
remaining flows have increase parameters of 1. Let � � ��� � 	
denote the goodput of flow

���
in this setting.

(ii) All flows have an increase parameter of 1. Let � � � 	 	 denote
the goodput of flow

���
in this setting.

From the definition of Hybrid penalty and from Equation 6, we
obtain � � � 	 	 	 ��  .

Let us now consider Setting (i) where
� � � 	

. Assume that� � � � � . Since � � 	 � �
, from the definition of Hybrid penalty,

flow
� �

would incur a severe penalty for � � rounds at the end of
any overflow point, while all the others would still be in the gentle
regime of the Hybrid penalty. From Equation 5, we have, 5 � � � 2

for 
 	 	 � ��� � � 	
. However, using

 � 	 � � in the definition
Hybrid penalty, for flow

���
, we have 5 � 	 � � . Using these ex-

pressions in Equation 3, we obtain

�32 	 � � � � �� � � � � � �� � � � 	 	 � � (18)

Notice that � 2 � ��� since
� � � ��� . Now, from Equation 16, the

total number of packets transmitted by
���

in between two consec-
utive overflow points is given by

� � 	 � �  � � �� � � � � � � � � � 	 or

� � 	 �
�
� �32 � � � � 	 	 � � �� � �32 � � � 	 � � 2 � � � � 	 	

For the sake of simplicity, we can approximate the total length of
the � 2 rounds to be

4 	 �  � �  � � � � � 2 � � 	 	 1  � �  � � � . Thus,
from Equation 1, we obtain

� � ��� � 	 	 � �
4

	 �
� �

� �
�
� � �� � � 2 � � � 	�� � 	 � � �

�32 � 	 �
A numerical evaluation of the inequality � � ��� � 	 � � � � 	 	 , with
the settings � � 	 �  rounds and � 	  � 	 � yields the following
results:

1. When the number of flows � is small (
� . 

), the inequality
holds for all values of

� �
as long as

� � � � � . Mbps.

2. When the number of flows is large (
� 	  

), the inequality
holds as long as

� � � 	 � . Mbps, for all values of
� �

.

3. In either of the above cases, when
� � exceeds the given val-

ues, the flow requires
� � ��� .

, roughly, to obtain goodput
significantly better than � � � 	 	 .

These observations are intuitive because if
� � was very large, then

the greedy flow would have enough time to catch up with the other
flows after incurring a severe penalty. A greedy flow does not have
this advantage for a low value of

� � . The above result is signifi-
cant because the average per-flow goodput in the Internet is usually
much lower than 2Mbps.

We assumed that
� � � ��� in the above analysis. If however,� � 
 � � , then the ��� 	

flows
� � � ����� � ����� � would cause one or

more overflows during the ��� rounds that flow
� �

spends incurring
a time out. In fact, in this situation, flow

���
would require a much

higher value of
� �

than in the previous situation to observe the
same gain in goodput, if any, over the

� � 	 	
case. For simplicity,

we skip the analysis of this situation.
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Figure 4: Simulation results for Hybrid flows with FIFO drop-tail buffers.

Notice that in the above derivation for � � ��� � 	 , we assume that
the increase parameters if flows

� � � � ��� � ����� � are all one. A mi-
nor variation in the derivation for � � ��� � 	 is enough to show that
the above conclusion ( � � ��� � 	 � � � � 	 	 for all

� �
) holds for a

similar setting of � , � � and
� � no matter what the increase param-

eters of the other flows are. This suggests that the social parameter
setting of

� � 	 	 ��� 
 , is a dominant strategy equilibrium for the
TCP Game: each flow has a fixed strategy (choice of parameters)
that serves it best irrespective of the behavior of its competitors.
Varying

�
Since

� � 	 	
for 
 	 	 ����� � , all flows see exactly

one loss upon overflow. Therefore, all flows incur a gentle penalty
irrespective of their decrease parameters. The analysis is the same
as that for Gentle Penalty. Thus, at Nash equilibrium,

� � 6 	
.

Simulation of Reno The results from our simulations are shown
in Figure 4(a) and (b). When flows vary their increase parameters,� � 	 	

(Figure 4(a) matching the default setting of the increase
parameter. Also, from Figure 4(b),

� � 	  � / /
. At this latter Nash

equilibrium, the per-flow goodput is high and the loss rate is low,
much like SACK flows. Thus, in neither case would there be a
congestion collapse at Nash equilibrium. However, the Nash equi-
librium due to flows varying their decrease parameters is somewhat
unfair (though to a lesser extent than with SACK flows). Again, this
is in conformity with the conclusions in [2].

In addition, when both
�

and
�

are allowed to vary simultane-
ously in simulation,

��� � ��� � 	 	 � 	 �  � /�� 	
at the symmetric Nash

equilibrium. In summary, we have the following observation:

OBSERVATION 3. When TCP flows implement Reno/Hybrid penalty
and FIFO drop-tail routers are employed, the parameter setting at
the Nash equilibrium due to

�
variation coincides with the default

parameter setting (
� 	 	

). When flows vary their
�

, the parameter
setting at Nash equilibrium is aggressive. However, the network
continues to operate efficiently. When flows vary both their param-
eters simultaneously, the Nash equilibrium is efficient.

4.3 RED Gateways
While most routers in the wide-area today are FIFO drop-tail,

RED deployment is increasing rapidly. Thus, we think it important
to analyze the TCP Game in the presence of RED routers. In what
follows, we first describe the loss assignment policy of RED and
then outline the methodology we use to arrive at the Nash equilib-
rium analytically.

At any given instant of time, a RED router marks or drops in-
coming packets with almost the same instantaneous probability, ir-
respective of which flow the packet belongs to. This drop-policy of
RED allows it to impose a fairly uniform long-term packet loss rate
across all the flows traversing a RED router. Based on these facts,

we model RED’s loss assignment as follows: all flows traversing
a RED router experience a common packet loss rate � . Moreover,
� is a function of the congestion control parameters of the flows
traversing the RED router.

Suppose that we are given � TCP flows traversing a RED router
and that these flows are only allowed to change their increase pa-
rameters. Suppose further that flows

� � � ����� � � ��� � each have the
same increase parameter of

�
. Let ��� 	 � � ! � be the steady state

loss rate common to all flows imposed by RED when the � ��� flow
also chooses the same increase parameter, that is, when

� � 	 �
.

Let � � � 	 � � ! � � be the new common loss rate experienced by the
flows when flow

� �
chooses an increase parameter

� � 	 � � �	 �
.

Let � � ��� � � � � � 	 be the goodput of flow
���

when
� � 	 � � .

Now, in order to arrive at the Nash equilibrium of the resulting
TCP Game, we need to have a notion of how � � � depends on

� �
and

�
. However, as we show below, we could do with deriving a

weaker set of dependences. Indeed, letting � � 	 � � ��� � � � � � 	 , if� � 	 �
at Nash equilibrium, then we must have,

� � �� � �
� � � � � 	 

(19)

since the choice of
� � for flow

� �
coincides with the increase pa-

rameter
�

chosen by flows
� � ��� ��� � ����� � at a symmetric Nash

equilibrium (The converse is not necessarily true). However, �	� �� � � � � � � �
is a function of

�
, � � and ��
 ��

� � � � � � � � only. Hence, it is sufficient to

obtain estimates of � � and ��
 ���
� � � � � � � � as functions of

�
to compute

the common increase parameter at Nash equilibrium,
� �

.
Similarly, when flows are allowed to vary their decrease param-

eter, it is suffices to obtain estimates of � % , ��
 � �
� " � � " � � " as functions

of
�

to compute the Nash equilibrium. Here, � % 	 � " ! " is the loss
rate common to the � TCP flows when

� � 	 �
for 
 	 	 � ����� � �

and � � % 	 � " � ! " is the common loss rate experienced by the � flows
when

� � 	 � � �	 �
and

� � 	 �
, for 
 	 	 � ����� � � � 	 .

Since our aim is only to model the drop policy of AQM schemes
at a very high level, we do not delve into analytically deriving the
above functions. Rather, we employ simulations to obtain measure-
ments that help us estimate the above functions for RED gateways.
In addition, it is important to note that the above functions may be
different for TCP-Tahoe, Reno and SACK.

In Figures 5(a) and (b), we show how ��� and ��
 � �
� � � � � � � � vary

as functions of
�

for the three TCP variants. Figures 5(c) and (d)
show the corresponding results for

�
. We will use these estimates

in the analyses presented in the following sections to obtain the
congestion control parameters at Nash equilibrium. We now deal
with each of Tahoe/Severe, SACK/Gentle and Reno/Hybrid cases
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Figure 5: Graphs showing � � 	 � � ! � � and
� � 	 ��
 �� � � � � � � � as functions of

�
(Figures (a) and (b)) and � % 	 � " ! " � and

� % 	 ��
 �� " � � " � � "as functions of
�

(Figures (c) and (d)). In either case, the results for RED gateways are plotted along the ) -axis on the left. The results
for CHOKe+, discussed in Section 5, are plotted along the ) -axis on the right.

in turn. We summarize our observations for RED gateways towards
the end of this section.

4.3.1 TCP-Tahoe/Severe Penalty
Analysis of Severe Penalty We first derive an expression for the
goodput of a Severe flow with congestion control parameters

����� � 	
experiencing a steady state packet loss rate � . We assume that the
packet losses are distributed uniformly over the entire transmission
interval of the flow and that the flow never experiences more than
one loss, on an average, in a single round (that is, losses do not
occur in bursts).

Let �32 be the expected number of rounds between successive
multiplicative decreases in the congestion window of this flow. Let� 	 � 2 � ��� . In expectation, we can write, 5 	 � � � ��� 	 � "" � �
(using Equation 14). Then, from Equation 16, the expected total
number of packets transmitted by the flow in these rounds between
consecutive window decreases is given by

� 	 ��
� � � 5 � � �

	 5 � � � 	 	 � � � � � � 	 	�� � �  � 	 � �
	� � 	 � �
	

Since we assume that the losses are uniformly distributed and
never occur in bursts, we can write � 	 �� . Eliminating

�
from

these previous two equations we obtain, � ���  � � � " �
 � � � � " � . The ex-

pected length (in seconds) of the � 2 rounds taken to transmit the
�

packets is
4 	 � � � � � � � � 	 	 , where � is the average round trip

delay (including the queueing delay). Hence, the expected goodput
of the flow is, approximately, � 	 �� 	 � � � �  � � � � � . Now, from

the fact � 	 �� , we get,

� � 	

� � ��� � � � �  � � � " �
 � � � � " �
(20)

Varying
�

We fix
� 	  � .

. Then, from Equation 20, we get

� � ��� � � � � � 	 	 	

� � � � � � � � �  
 � �1 � � (21)

If at Nash equilibrium
� � 	 �

, then from Equations 19 and 21 we
obtain,

� � 	 � � ����� � � 	�� �

� ���� �
� �� �

� � � � �� � �
�
� � � �

� � ���
	 � � � � � � � � �� � �
�
� � � �

� 	 

Using the estimates for � � and ��
 � �
� � � � � � � � from Figures 5(a) and

(b) respectively, we plot the
� � as a function of

�
in Figure 6(a).

Notice that when
� � � � ,

� � �  . This implies that
� � � � � .

Varying
�

Here, we fix
� 	 	

. Using this in Equation 20, we get

� � � � � � � � % 	 	 	

� � ��� � � � �  � � � " � �
 � � � " � �
(22)

If
� � 	 �

at Nash equilibrium, then we can write the following
condition analogous to Equation 19:

� � � � � � � � � % 	� � �
� " � � " 	 

(23)
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Figure 6:
� � and

� %
as functions of
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and
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respectively. The results for RED gateways are plotted along the ) -axis on the left and

those for CHOKe+ (discussed in Section 5) are plotted along the ) -axis on the right.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100

G
oo

dp
ut

 (
in

 M
bp

s)

Increase Parameter (αn)

α1 = 1 (α1,best = 34)
α2 = 34 (α2,best = 34)

0

0.5

1

1.5

2

2.5

3

3.5

4

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
G

oo
dp

ut
 (

in
 M

bp
s)

Decrease Parameter (βn)

β1 = 1 (β1,best = 0.87)
β2 = 0.87 (β2,best = 0.87)

� � Goodput Loss Rate
34 0.73Mbps 3.31

� � Goodput Loss Rate
0.98 0.76Mbps 1.11

(a) (b)

Figure 7: Simulation results for Severe flows with RED gateways.

Thus from Equations 22 and 23 we must have

� % 	 � � � � � � % 	�� 	 � �

� % � 	 � � 	 �� � � � %	 � �  � � % � � � � � � � % � 	 � � 	
� 	 � � 	 � %�� 	 

where
� % 	 ��
 � �

� " � � " � � " . As before, we use the estimates in Fig-
ure 5(b) to numerically evaluate

� %
as a function of

�
. The result

is shown in Figure 6(b). Notice that
� % � 

throughout suggesting
that at Nash equilibrium,

� � 6 	
.

Simulation of Tahoe The results for the Nash equilibria from the
simulation of the TCP Game for TCP Tahoe flows with RED gate-
ways are shown in Figure 7. From Figure 7(a), when Tahoe flows
are allowed to vary their increase parameters,

� � 	 � * , closely
matching the analytical results. The Nash equilibrium is unde-
sirable since the per-flow goodput at Nash equilibrium is rather
low. When flows are allowed to vary their decrease parameters,� � 	  � /��

at Nash equilibrium, as predicted by analysis. Again,
this Nash equilibrium is undesirable too due to the low per-flow
goodput.

When
�

and
�

are varied simultaneously,
��� � ��� � 	 	 � � � �  � /�� 	

at Nash equilibrium. The average goodput at this Nash equilbrium
is 0.73Mbps and the per-flow loss rate is 2.5% making this an un-
desirable Nash equilibrium.

4.3.2 TCP-SACK/Gentle Penalty
Analysis of Gentle Penalty Setting ��� 	 

in Equation 20 we get,

for a Gentle flow,

� � 	

� � � � 	 � � 	� � � 	 � �
	 (24)

Substituting Equation 24 in Equations 19 and 23, we get the fol-

lowing equations, respectively for the symmetric Nash equilibria of
the TCP Game when allowing flows to vary their

�
and

�
individ-

ually:

� � 	 � � ����� � � 	�� �

� ���
�
� �� �

� � � � �� � �
�
� � � �

� 	 

� % 	 � � � ��� � % 	 � 	 � �

� % � 	 � �
	 �
� � � %	 � �  �

� � � � %� � �
� " � � " � 	 

The estimates for � and ��
 �� � � � � � � � as functions of
�

for Gentle
(TCP-SACK) flows are shown in Figures 5(a) and (b). We use
these estimates to obtain

� � as a function of
�

as shown in Fig-
ure 6(a). Notice that for TCP-SACK,

� � � 
implying that at a

symmetric Nash equilibrium,
� �

could be arbitrarily large for the
combination of TCP-SACK and RED buffers.

From Figure 6(b), similarly,
� % � 

throughout. Again, this
implies that at Nash equilibrium,

� � 6 	
.

Simulation of SACK Simulation results for the Nash equilibrium
of the TCP Game with TCP-SACK flows and RED buffers are
shown in Figure 8. When flows are allowed to vary their increase
parameters,

��� 	 * / . At the Nash equilibrium, the per-flow good-
put (0.96Mbps) is reasonable but the loss rate (4.95%) is somewhat
high. Moreover, the parameter setting at the Nash equilibrium, as
predicted by analysis, is highly aggressive. As such, we conclude
that the Nash equilibrium of the TCP Game with SACK flows vary-
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Figure 8: Simulation results for Gentle flows with RED buffers.
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Figure 9: Simulation results for Hybrid flows with RED buffers.

ing their increase parameters and buffers employing RED is unde-
sirable.

From Figure 8(b), when flows are allowed to vary their decrease
parameter,

�� 	  � /��
. At this equilibrium both the per-flow good-

put and loss rate are reasonable and as such this Nash equilibrium
in not undesirable (The Nash equilibrium is unfair, however).

From our simulations in which we allow TCP-SACK flows to
vary their increase and decrease parameters simultaneously, we ob-
tain

��� � �����	 	 � � � �  � /�� 	 . The average per-flow goodput at this
Nash equilibrium is about 0.97Mbps and the per-flow loss rate is
5.70%. As argued above, this Nash equilibrium is undesirable.

4.3.3 TCP-Reno/Hybrid Penalty
Analysis of Hybrid Penalty Instead of deriving the expression of
the goodput of Hybrid flows, we use the standard equation for the
goodput of TCP Reno [19, 23] flows:

� 	 	

� �  
 � � � " �� � � � " � � � 4�� � � 	 � � � �  	 � 
 � � � "�� � � (25)

Again, using Equation 25 in Equations 19 and 23, we get the fol-
lowing equations for the Nash equilibria with varying

�
and vary-

ing
�

respectively:

� � 	 � � � � �� � � � 

� � �

/ 4��� �
� � 	 � . � � � 	 	 � � 1� 	 � � � �


�� � � 	 � � � � � 	�� 	 

� % 	 � % � � �	 � �  � � % �
� � % �

4���� %
� � 	 � � 	 � 	 � . � � 	 	 � � 1 	 � � 4�� � �  � � � � : 	 �� � 	 � �
	 	 

where
� � 	 � � ����� � � 	 � �


 � ,
� % 	 � � � ��� � % 	 � � � "


 � � � � " � , � � 	
��
 ��
� � � � � � � � and

� % 	 ��
 � �
� " � � " � � " .

We plot
� � and

� %
as functions of

�
and

�
in Figures 6(a) and

(b) respectively, using the estimates from Figure 5 as before. In
either case

� � 
throughout. This implies that at the respective

Nash equilibria,
� �

can be arbitrarily large and
� � 6 	

.
Simulation of Reno Results from the simulation of the TCP Game
with Reno flows and RED gateways are shown in Figure 6. When
flows vary their increase parameter,

��� 	 /
. At this Nash equi-

librium, both the average goodput (0.90Mbps) and the per-flow the
loss rate (1.68%) are reasonable. While this Nash equilibrium is
not as undesirable as the cases of Severe and Gentle penalties, it
is nevertheless worse than the default parameter setting in terms of
the per-flow goodput.

As in the previous situations, when flows vary their decrease pa-
rameter, the resulting Nash equilibrium is not undesirable both in
terms of the per-flow goodput and loss rate. Again, this is in agree-
ment with the observations in [2] (In fact, as shown in [2], fairness
is also reasonable at this equilibrium).

When flows are allowed to vary both their parameters simulta-
neously, at Nash equilibrium

����� �����	 	 � � �  � /�� 	 . At this Nash
equilibrium, the average per-flow loss rate is 2.75% and the per-
flow goodput is about 0.94Mbps. Again, this Nash equilibrium is
somewhat less desirable when compared to the default parameter
setting in terms of per-flow goodput, though it is better than those



resulting from using the other forms of penalty.
Finally, we summarize the results for RED buffers as follows:

OBSERVATION 4. When RED gateways are employed, all the
Nash equilibria resulting from allowing flows to vary their increase
parameters are undesirable (irrespective of the loss recovery scheme
employed) in comparison with the default parameter setting since
they either result in a low per-flow goodput or a high per-flow loss
rate. However, allowing the flows to vary their decrease param-
eters does not result in undesirable Nash equilibria (Except when
flows implement Severe penalty).

4.4 Discussion
Our goal in this paper was to see if selfish behavior of network

end-points would have an undesirable effect on the efficiency of
the network. Intuition suggests that aggressive congestion control
behavior would always increase a flow’s bandwidth share so greed
would always result in overly aggressive flows and inefficient net-
work operation. However, as our analysis in the previous sections
has shown, this intuition is not always right.

Until recently, the most common deployed scenario in the In-
ternet was end-hosts implementing TCP-Reno loss recovery and
FIFO drop-tail buffer management. In this situation, selfish behav-
ior does not result in inefficient network behavior.7 In fact, the ef-
ficiency of the Nash equilibrium in this case is close to the socially
optimal (but the bandwidth allocation can be unfair). However, in
our attempts to improve TCP’s loss recovery schemes, we have in-
creased our vulnerability to aggressive TCP behavior. TCP-SACK
loss recovery, which is being increasingly employed by the end-
hosts of today [12], allows flows to more gracefully recover from
losses. This greatly reduces the penalties for aggressive congestion
control and makes the Nash equilibrium of the TCP Game quite
inefficient. In addition, RED active queue management is seen
as important improvement over drop-tail. However, by removing
drop-tail’s penchant for dropping bursts of packets, RED is more
friendly to aggressive flows. This results in inefficient equilibria of
the TCP Game (regardless of what form of loss recovery the end-
points use).

Since we no longer remain in the world consisting mainly of
drop-tail routers and end-hosts employing TCP-Reno loss recov-
ery, we must confront the problem of the aggressive behavior of
greedy TCP flows. One approach is to use different queueing and
buffer management schemes to prevent greedy users from achiev-
ing more than their share of bandwidth. Approaches such as Fair
Queueing [7] are quite effective in this regard, but require compli-
cated per-flow management. Several recent efforts have resulted
in more scalable and implementable schemes, such as FRED [17],
RED-PD [18] and AFD [20], that preferentially drop packets from
aggressive flows. However, these works focus on fair allocation of
bandwidth for an arbitrary set of sources. In the next section we
explore the issue of how much preferential dropping is required to
ensure that the Nash equilibrium of the TCP Game is desirable.

5. MECHANISMS FOR NASH EQUILIBRIUM
In order to design an preferential dropping mechanism that en-

courages an efficient Nash equilibrium, we need a scheme that as-
signs a greater loss rate to the more aggressive flows. This greater
loss rate, combined with the particular loss-recovery algorithm,
must offset any gain associated with the increased transmission
rates. We know that heavyweight mechanisms such as Fair Queue-
ing can accomplish this goal, but here we are looking for very sim-
�
Though other forms of antisocial behavior, such as using no congestion

control at all, could lead to severe congestion collapse.

ple and easily deployable preferential dropping mechanisms that
give just enough incentive to produce a desirable Nash equilibria
of the TCP Game, but need not achieve perfectly fair bandwidth al-
locations for arbitrary sets of flows (which Fair Queueing and other
such mechanisms have as their goal). We discuss one such scheme
in the next section.

Notice that the technique employed in the previous section, of
using experimentally obtained values of

�
to evaluate RED is ap-

plicable to any combination of the AQM scheme and the penalty
function implemented by the TCP flows as long as we can obtain a
closed form expression for the goodput of the flow as a function of
the penalty implemented and the AQM’s loss assignment policy.8

We will reuse this method to evaluate a modification to the CHOKe
AQM scheme in the next section.

5.1 CHOKe+: A Simple Stateless Mechanism
CHOKe [21] is an example of a simple preferential dropping pol-

icy. In this section, we explore whether CHOKe or CHOKe with
modifications could meet our requirements. CHOKe maintains a
simple FIFO buffer. The average occupancy of the buffer is cal-
culated in manner similar to RED. Like RED, a CHOKe buffer is
also configured with two thresholds

� 
 � ��� and
� ��� ��� . If the av-

erage queue occupancy exceeds
� 
 � ��� , with each arriving packet�

, CHOKe picks + candidate packets,
� � � � ��� � � , , at random from

the buffer. For each 
 	 	 ������� � + , CHOKe then checks to see if
� �

belongs to the same flow as
�

, and drops both upon a match. Upon
a mismatch with some packet

� �
, CHOKe leaves

� �
untouched

and drops
�

with a probability similar to that calculated by a RED
buffer with equivalent average and exact queue sizes. However, in
this form, CHOKe creates a minimum loss rate of

	�� 
, where


is the number of active flows, as soon as the average queue length
exceeds

� 
 � ��� . When there are relatively small number of flows
( � . 

), this starting loss rate is excessively high and results in
the severe under-utilization of the available capacity. In this form,
CHOKe does ensure that the parameter settings at Nash equilib-
rium are very conservative. However, the average flow loss rate is
very high and goodput is very low, making this Nash equilibrium
undesirable.

A few minor changes in the above algorithm are enough to en-
sure that the loss rates of a CHOKe queue are not too high. For
each incoming packet

�
, let � denote the number of packets from

the + chosen candidate packets that belong to the same flow as the
incoming packet. Let

 
 �  � � � 
 	
be positive constants. If� � � � + , we drop

�
along with the � matching candidate pack-

ets. Otherwise, we first calculate the drop probability for
�

in an
equivalent RED queue. Suppose that

�
is to be dropped according

to RED. Now, if �  + 
 � � � � + , we also drop the � matching
packets along with

�
. Otherwise, we just drop

�
. Henceforth, we

will use CHOKe+ to refer to this modified CHOKe algorithm.

Figures 10 compares the loss assignment of RED and CHOKe
�

.
For CHOKe

�
, we fixed the constants as follows: � � 	  � / .

,�  	  � � 
and + 	 .

. In this simulation, there are
	 

flows� � ��� ��� � � � � . Flows
� � ����� � � ��� each have congestion control pa-

rameters of
� 	 �  � . 	

. Figure (a) plots the loss rates of flows
� � ����� � � � �

and that of flow
� � � as the increase parameter of

� � � is varied in
the range

% 	 ��.  '
keeping the decrease parameter fixed at 0.5. Sim-

ilarly, in Figure (b) the decrease parameter of
� � � is varied in the

range
%  � . � 	 	

keeping the increase parameter fixed at 1. Notice
that in either case the loss rates of all the 10 flows increase grad-
ually under RED. However, under CHOKe

�
, the loss rate of flow

�
In fact, the transmission protocol employed by the flows need not be reli-

able.
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Figure 10: Figure comparing the loss assignment of RED and CHOKe
�

. The loss rates for the greedy flow and the competing
non-greedy flows are plotted in each case. For RED buffers, the two curves coincide.
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Figure 11: Simulation results for Gentle flows with CHOKe
�

buffers

� � � increases at a rate much higher than that compared to the in-
crease with RED. The loss rates of flows

� � � � ��� � � � are unaffected
by the behavior of

� � � .
A RED buffer shares the additional losses resulting from the in-

creased rate of a single flow among the entire population of flows.
As a result, the loss penalty that an aggressive flow receives is min-
imal. CHOKe

�
, on the other hand, assigns most losses due to a

flow’s rate increase to the flow itself and keeps the rest of the flows
mostly isolated from the aggressive flow. Note that perfect isola-
tion, as in Fair Queueing and other similar schemes, is not neces-
sary. CHOKe

�
must only ensure that the increase in loss rate is

sufficient to discourage aggressive behavior.
In a manner similar to the analysis of RED (Sections 4.3) we plot

the variations in � � 	 � � ! � and
� � 	 ��
 �� � � � � � � � for Gentle flows

when CHOKE
�

buffers are employed in Figures 5(a) and (b) along
with the corresponding values for RED buffers. When flows get
bursty, CHOKe+ drops packets much more aggressively than RED
buffers as can be seen from Figure 5(a) where the common loss rate
assigned by CHOKe+ is much higher than that assigned by RED
for the same setting of the common increase parameter of the �
flows. In addition, CHOKe+ heavily penalizes flows for being even
slightly more aggressive than the competing flows as is clear from
Figure (b) where

� � is an order of magnitude higher for CHOKe+
buffers compared to the corresponding values for RED buffers. Due
to these properties CHOKe+ significantly diminishes the goodput
advantage of aggressive flows. Similarly, we plot the values of � %
and

� %
as functions of

�
in Figures 5(c) and (d). Again, CHOKe+

does a much better job of penalizing aggressive flows then RED.
We plot the values of

� � and
� %

for Gentle flows as functions of�
and

�
respectively in Figures 6(a) and (b). Notice that from these

plots
� � and

� %
are positive throughout implying that at the respec-

tive Nash equilibria
� �

grows arbitrarily large and
� � 6 	

. How-
ever, since CHOKe+ assigns a much higher loss rate to flows than
RED for the same setting of the increase or the decrease parameters
of the � flows (Figures 5(a) and (c)) and since CHOKe+ induces
many more bursty packet drops than RED (this is intuitively clear
from the CHOKe+ algorithm), TCP SACK flows tend to time-out
occasionally when CHOKe+ buffers are used. In fact aggressive
TCP SACK flows will time-out quite frequently under CHOKe+.
The goodput equation for Gentle flows (Equation 24) does not cap-
ture this time out behavior. Hence, Figures 6(a) and (b) do not cor-
rectly represent the behavior of CHOKe+. Indeed CHOKe+ results
in a much less aggressive parameter setting at Nash equilibrium
than RED, as our simulations for the TCP Game (described below)
show.

Our results for the Nash equilibrium of the TCP Game with
CHOKe+ buffers and TCP-SACK flows are shown in Figure 11(a)
and (b). At Nash equilibrium,

� � 	 � when flows vary their in-
crease parameters and at

� � 	  � � * when flows vary their de-
crease parameter. When both

�
and

�
are allowed to vary,

��� � � 	 	� � �  � /  	 . At this Nash equilibrium, the average per-flow goodput
is 0.98Mbps and the per-flow loss rate is 4%. All the Nash equi-
libria have good per-flow goodput and per-flow loss rate. CHOKe+
is so effective that aggressive flows see only a very marginal im-
provement in goodput.

However, it is worth noticing that CHOKe+ cannot completely
nullify the advantage seen by aggressive flows when decrease pa-
rameters are allowed to be varied. In fact, as we show in the next
section, it is impossible to effectively punish greedy flows varying
their decrease parameters without employing queue management
schemes that maintain explicit per-flow state. In light of this result,
the best we can hope for from a purely stateless mechanism is to



diminish the advantage to such a low value that it is almost imper-
ceptible to the aggressive flow. CHOKe+ is effective in doing so.
As can be seen from Figure 11(b), when CHOKe+ is used there is
hardly any perceptible advantage of setting

�
aggressively. This

also explains why
� �

at Nash equilibrium is significantly less than
1 (assuming that greedy flows do not choose a more aggressive pa-
rameter setting unless it yields a substantially higher goodput with
high confidence). This property of CHOKe+ also has implications
on fairness. Since CHOKe+ discourages an aggressive setting of�

at Nash equilibrium, the window decrease is still multiplicative.
This results in a reasonable fair allocation [6].

5.2 On Multiplicative Decrease
Suppose that both the increase parameter

�
and the decrease pa-

rameter
�

of all the flows are allowed to vary. We argue below that
there can be no mechanism that does not maintain per flow state
(e.g., fair queuing), that ensures a moderate value of

� � 	
as a

Nash equilibrium. This is important since a moderate value of
�

is
needed to achieve fair resource allocation among end-points.

Consider a single link shared by � flows employing AIMD with
parameters

� �
and

� �
of their strategic choice, and a symmetric

Nash equilibrium
����� �
	

. It is quite easy to see that, without the
losses due to the queue management mechanism (buffer overflows,
early drops, etc.) on this link, and assuming that all

� �
’s are the

same at equilibrium, each of the � users would end up with goodput
�
�� 	 � � � " 
 � .
Assume now in the simplified model of this subsection that the

queue management mechanism on this link works by penalizing the
flows, that is, subtracting an amount from their goodput. Suppose
that the penalty imposed on flow 
 depends on the measurement of
�
��

above by the queue management, and is
� � � �� 	 in expectation;

thus we write the final goodput as
� � 	 � �� � � � � �� 	 � � � � 	

Since we are assuming that we are at a Nash equilibrium,
� � 	� � 	

for all 
 , and no flow has an incentive to increase its
�

to
� ���

for some small
� � 

. By Equation 27 this means that
the queue management mechanism is capable of detecting relative
fluctuations smaller than � in �

��
, that is, arbitrarily small fluctua-

tions, and imposing penalties whenever such fluctuations occur. It
can be shown by a reduction from element disjointness [4, 5] that
any randomized algorithm that detects such fluctuations with high
probability must use space proportional to � – that is to say, must
essentially maintain per-flow state.

Our simplified model of queue management by penalties de-
pending on goodput rules out other schemes, such as the one in
which flows are sampled for detailed analysis, and if a flow is found
to have

� � � �
it is subject to penalties outside the realm of queue

management (such as exclusion from the network or legal punish-
ment). However, such schemes are even more far-fetched, and run
contrary to the end-to-end philosophy of the Internet.

6. SUMMARY
In this paper, we explore the impact of greedy TCP end-points

on the efficiency of the network. Our finding can be briefly sum-
marized as follows:

� In certain situations, greedy end-point behavior can result in
efficient network operation. In particular, the Nash equilibria
are reasonably efficient in the historically significant setting
of TCP-Reno loss recovery in a network of drop-tail routers.

� Unfortunately, in settings where either TCP-SACK loss re-
covery has been adopted by end-points or RED has been de-

ployed in routers, the Nash equilibria of the TCP game are
undesirable, having either low network goodput or high drop
rates, or both.

� However, the addition of very simple preferential dropping
algorithms, such as CHOKe+, can help restore the efficiency
of the Nash equilibria.

The conclusions about the Nash equilibria of the TCP Game un-
der various scenarios imply that, while in the past, network oper-
ators could rely on the behavior of end-users to ensure the stable,
efficient operation of the network, the same cannot be said of to-
day’s Internet. They also suggest that there are two possible rea-
sons for the continued stable operation of the present-day Inter-
net: (1) it is too difficult to modify end-hosts to behave greedily
or (2) end-users consciously choose to behave in a socially opti-
mal manner. However, all is not yet lost. It is possible to design
simple, stateless queue management algorithms to ensure that the
advantage gained by aggressive flows is more than offset by a high
packet loss rate. These mechanisms can also ensure reasonable, but
not perfect, fairness at Nash equilibrium. This would help make the
Nash equilibrium more desirable while still allowing the implemen-
tation of modern loss recovery mechanisms (such as TCP-SACK)
and queue management techniques (such as RED) which have oth-
erwise played a stellar role in keeping the Internet of today in good
stead.
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