ECOS: Leveraging Software-Defined Networks to
Support Mobile Application Offloading

Aaron Gember, Christopher Dragga, Aditya Akella

University of Wisconsin, Madison
{agember,dragga,akella}@cs.wisc.edu

ABSTRACT

Offloading has emerged as a promising idea to allow resource-
constrained mobile devices to access intensive applications,
without performance or energy costs, by leveraging exter-
nal computing resources. This could be particularly use-
ful in enterprise contexts where running line-of-business ap-
plications on mobile devices can enhance enterprise opera-
tions. However, we must address three practical roadblocks
to make offloading amenable to adoption by enterprises: (1)
ensuring privacy and trustworthiness of offload, (ii) decou-
pling offloading systems from their reliance on the avail-
ability of dedicated resources and (#4) accommodating of-
fload at scale. We present the design and implementation of
ECOS, an enterprise-centric offloading framework that lever-
ages Software-Defined Networking to augment prior offload-
ing proposals and address these limitations. ECOS functions
as an application running at an enterprise-wide controller to
allocate resources to mobile applications based on privacy
and performance requirements, to ensure fairness, and to
enforce security constraints. Experiments using a prototype
based on Android and OpenFlow establish the effectiveness
of our approach.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks|: Distributed

Systems— Client/Server

General Terms

Algorithms, Management, Performance, Security

Keywords

Offloading, Mobile devices, Energy savings, Enterprise net-
work

1. INTRODUCTION

Mobile devices such as smartphones and tablets are be-
ing increasingly recognized as critical business tools, and

Permission to make digital or hard copies of all or part of thiork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycoiherwise, to
republish, to post on servers or to redistribute to listquies prior specific
permission and/or a fee.

ANCS 12, October 29-30, 2012, Austin, Texas, USA.

Copyright 2012 ACM 978-1-4503-1685-9/12/10 ...$15.00.

enterprises are targeting both specialized and common mo-
bile applications to these platforms [23]. Unfortunately, the
complexity and overhead of the applications [15, 17], and
the accompanying security issues, are seen as major imped-
iments to full-fledged deployment on mobile devices [4].

Application-independent offloading has long been recog-
nized as an important mechanism for enabling smartphone
users to access resource-intensive applications without incur-
ring energy and performance costs [9, 13, 15, 22, 25]. As mo-
bile devices become the primary platforms for some employ-
ees, we believe mobile application offloading will be essential
for running resource-intensive enterprise applications—e.g.,
modeling and analysis tools, handwriting and speech recog-
nition, etc.—with suitable performance and energy usage.
Moreover, this need will persist for the foreseeable future as
device demands continue to outstrip battery capabilities [8].
However, two key roadblocks currently prevent enterprise
adoption of mobile application offloading.

1. Privacy and trust: Enterprise applications frequently
operate on data with strict privacy requirements, requiring
the use of trusted resources (e.g., servers in a local data cen-
ter) for application execution. The majority of offloading
systems ignore such privacy requirements, selecting com-
pute resources solely based on connectivity characteristics
and processing capabilities [14]. Even systems which are ca-
pable of limiting execution to specific compute resources [9]
are insufficient, as they overly restrict offloading opportuni-
ties and may unnecessarily impose energy and latency costs.

2. Resource sharing and churn: Enterprises may
have thousands of employees using mobile devices, all of
which may desire offloading simultaneously. While exist-
ing systems address what and how to offload from a single
device [15, 22], no attention has been given to the effects
of many devices with different objectives simultaneously of-
floading to the same compute resources. The energy and
latency benefits of offloading assumed by some frameworks
to be fixed [14, 15] will, at enterprise scale, be quite dy-
namic. This dynamism increases even more when consider-
ing the range of potential compute resources available—idle
desktops, local servers, public clouds—and the changes in
capacity and availability that accompany this diversity.

We present an enterprise-centric offloading system (ECOS)
that can be coupled with existing offloading frameworks to
address the above roadblocks. ECOS is based on two obser-
vations: (i) There are plenty of idle resources available in
enterprise networks; our unique measurements of resource
availability in a campus network confirm this (§4). (4¢) Tight
administrative control over compute and network resources

in enterprises provides the means for mobile applications
to access trusted resources, enabling natural mechanisms to
ensure privacy and trust. Thus, the central design guide-
line in ECOS is to allow many mobile application offloads
to opportunistically leverage idle compute resources, while
tightly controlling the locations where specific applications
are offloaded depending on trust, privacy and performance
constraints of different users and applications.

ECOS leverages Software-Defined Networking (SDN) to
meet this guideline. To the best of our knowledge, this is
the first attempt at using SDN to better meet the demands
of mobile applications. ECOS functions as an application
running at an enterprise-wide controller that orchestrates
all mobile application offloads. The controller application:
(i) enforces trust and privacy constraints—specified using
a simple, expressive policy language—Dby tightly controlling
the flow of traffic between mobile devices and selected com-
pute resources and by triggering additional higher-layer se-
curity mechanisms as necessary; and (%) uses fine-grained
resource management algorithms to exercise control over an
enterprise’s network, desktop, cloud, and mobile device re-
sources and guarantee the desired benefit in terms of latency
improvement, energy savings, or both. While our central-
ized framework is an extreme point in the design space, we
claim that simultaneously meeting the privacy, trust, and
resource constraints identified above, while optimally sup-
porting mobile offloading at scale in enterprises, necessitates
this choice.

Key challenges arise in designing ECOS. First, we show
that securing offload adds non-trivial energy and latency
during both connection setup and state transfer. Hence,
careful choices must be made in deciding whether to offload
an application that requires privacy and also in designing
offload schemes to control the overhead. Second, because a
limited number of compute resources are shared by a vari-
ety of mobile applications with differing performance, energy
and security requirements, we must design clever allocation
algorithms that (i) adapt quickly to diverse application de-
mands and changing resource availability, (i) ensure appli-
cations see equitable and substantial benefits, and (i) con-
trol the impact on regular desktop applications. Third, our
approach should minimize the amount of work mobile de-
vices undertake and shift a majority of the decision-making
from the devices to the controller. Finally, the controller,
where the algorithms run, must offer high offload request
throughput and low latency. We describe our solutions in
§3 and §4.

We have prototyped ECOS using OpenFlow [21] and An-
droid [5]. We evaluate our prototype using two mobile ap-
plications that are representative of enterprise workloads.
Using 12 phones and up to 6 desktops, we measure the ben-
efits ECOS can provide in a small enterprise setting where
phones have varying goals and privacy constraints. In all
cases, application latency improves by as much as 94% and
energy savings can be up to 47%. In addition, the amount of
execution state applications need to send can be reduced by
up to 98% for some applications by employing resource affin-
ity and maintaining execution state on compute resources,
further improving benefits.

We summarize our contributions as follows:

e We analyze the overhead of transport-layer encryp-
tion and categorize the risks associated with enterprise
data. Based on these observations, we design (i) a sim-

ple, expressive policy language that captures privacy
constraints of applications/devices and trust levels of
resources, (44) a decision process for applying encryp-
tion, and (74) network-level policy enforcement mech-
anisms.

e Using measurements of resource availability from an
enterprise-like setting, and our policy language, we de-
sign algorithms for allocating resources and managing
offloading state at these resources in a way that pro-
vides equitable and desirable benefits.

e We prototype our system using Android and Open-
Flow/NOX. We conduct several experiments using our
prototype, illustrating that application latency improves
by up to 94% and energy savings can be up to 47%.

2. BACKGROUND

In this section, we discuss: (i) prior proposals for offload-
ing and how ECOS augments them, (i) when ECOS can
most help enterprise applications, and (7)) the design re-
quirements to ensure ECOS is practical and useful. We con-
clude the section with an overview of ECOS.

2.1 Prior Offloading Proposals

In offloading, parts of a mobile application are run on a
different compute resource to offer improved performance,
lower energy usage, and/or higher utility to a mobile de-
vice user. Many offloading systems have been developed
in the past decade, with somewhat different goals. AIDE
dynamically partitions memory-demanding mobile Java ap-
plications, minimizing the required communication between
the mobile device and the compute resource [22]. Chroma
uses developer-specified execution strategies (i.e., tactics) to
divide execution of code modules with varying complexity
and accuracy between local and remote resources; a tactic is
selected at runtime based on currently available mobile de-
vice and server resources. [9, 18]. MAUI offloads methods
from .NET applications to a remote runtime environment
based on a history of energy consumption [15]. CloneCloud
uses function inputs and an offline model of runtime costs to
dynamically partition Android applications between a weak
device and the cloud, with the goal of increasing performance
or improving failure resiliency [14, 13].

None of the proposals directly addresses the privacy re-
quirements of offloaded applications. Chroma provides some
notion of resource trust [9], but with limited flexibility. Al-
ternative methods of augmenting a mobile device’s capabil-
ities require the use of specialized APIs [26, 32] or complex
trust establishment schemes [25]. Moreover, existing pro-
posals focus on what and how to offload from a single mobile
device and do not consider the effects of multiple offloads
sharing compute resources. ECOS can be coupled with any
of the offload mechanisms above to overcome these limita-
tions; our implementation (§5) extends a hybrid of Chroma
and CloneCloud. However, the benefits ECOS offers may
be different from prior systems, especially when applied at
scale and when privacy is considered. We explain this next.

2.2 Application Benefits

Four properties allow both current and future mobile ap-
plications to potentially benefit from ECOS.

(P1) Significant computation. Offloading requires pro-
cessing time on mobile devices to capture execution state
and time to transfer it over the network. This overhead must

be small enough to not offset the speedup from offloading.
Thus, applications with significant compute blocks are the
most likely candidates to observe latency benefits.

(P2) Small amounts of state exchange. The amount
of execution state transferred from the mobile device should
be small so the energy cost of wireless state transfer, which
is known to be significantly more expensive than CPU us-
age [10], does not exceed the energy savings from offload.

The precise computation size and state size required for
offloading to be beneficial depends on the quality of the
network link and the processing speed of the compute re-
source, both of which are considered in existing offloading
models [13, 20]. However, in ECOS, the security sensitiv-
ity of applications and the level of multiplexing on compute
resources also influence whether offloading is beneficial.

(P3) Security sensitivity. Security-insensitive applica-
tions can run on any compute resource (idle desktop, local
server, or public cloud) and require no higher-layer security;
hence their performance is driven by P1 and P2. In con-
trast, some applications are limited in the resources they can
leverage—e.g., applications where data should not leave the
enterprise premises due to legal issues can never run on pub-
lic clouds—or applications may require additional security
mechanisms—e.g., applications computing on private user
data should always use encrypted communications. If no
available enterprise resources provide high enough trust for
such applications, then offloading is not possible. Similarly,
if the latency and energy overhead of encryption—a result
of additional CPU cycles and increases in state size—is too
high, then the applications cannot benefit from ECOS.

(P4) Resourcing multiplexing. Because ECOS oppor-
tunistically leverages compute resources, unlike prior sys-
tems, it is possible that offloading saves energy but does not
improve latency. This can happen, e.g., when multiple apps
each satisfying P1 and P2 are offloaded to the same desk-
top. Of course, like prior systems, ECOS can also result in
both latency and energy benefits, or latency benefits alone
(for apps satisfying P1 but not P2, e.g., face recognition).

Speech-to-text is a compelling example enterprise appli-
cation that satisfies these properties. (P1) Analyzing the
audio stream requires significant computation. (P2) The
audio data is limited in size. (P3) Dictations may be con-
fidential, requiring the data and its processing to remain
within the enterprise. (P4) Reasonable amounts of delay
can be tolerated.

2.3 ECOS Design Requirements

In considering the latency, energy, and security constraints
of mobile applications in a large-scale enterprise setting, the
ECOS framework must, ideally: (i) Know for a given ap-
plication if the user is expecting energy or latency savings
from offload; (ii) Identify if applications are security sen-
sitive, pick candidate compute resources accordingly, and
provide encrypted channels for such applications; (4iz) As-
sign resources so the overall energy and latency benefits are
significant, and benefits are equitably distributed across mo-
bile devices and usage scenarios (e.g., privacy-sensitive vs
not); (i) Adapt dynamically to changing compute resources
without impacting offloaded applications; (v) Require mini-
mal decision-making involvement from mobile devices.

2.4 ECOS Overview

ECOS orchestrates all offloads using an SDN application
running atop an enterprise-wide controller.

Mobile applications desiring offload contact the controller
to request resources. ECOS determines what privacy level
the mobile application requires and subsequently decides if
the choice of compute resources needs to be limited and if
data needs to be secured in transit between the mobile de-
vice and a compute resource (§3). The controller considers
the costs of security relative to expected user benefits to en-
sure ECOS provides latency and/or energy savings despite
the overhead of ensuring privacy. The challenge lies in creat-
ing an expressive policy language that allows administrators
to exercise tight control over privacy and trust levels for
applications, devices and resources.

The SDN application carefully selects a compute resource—
among desktops, local servers and public clouds—based on
gathered utilization information (§4). If a mobile user wants
performance improvements, the controller assigns a resource
with plenty of idle CPU time. Knowing exactly which re-
sources to select is complicated by the fact that resource
availability changes over time. ECOS prefers to use the same
resource for subsequent offloads but can flexibly switch re-
sources as necessary. Another challenge is ensuring fairness
in resource allocation and overall efficiency.

While the actual offload takes places, ECOS enforces its
security and resource decisions by installing and manipulat-
ing network forwarding state (§3.3). Programmable switches
give ECOS tight control over communications and allow the
mobile device to move within the network during offload.
Dealing with rogue offloads is an additional challenge, which
ECOS addresses using a network with default-off behavior.

3. SECURITY

Normally, all execution and associated data stays within a
mobile device unless an application explicitly communicates
with a third party. Offloading introduces the possibility for
data to leave the confines of the mobile device without an
application’s explicit actions. Thus, privacy and trust (we
use the term security to refer to both at once), which are
paramount in enterprises, become important concerns.

Two issues arise when accommodating security: (i) when
to invoke security mechanisms, and (i) if an application
needs security, how to determine if it should be offloaded
and then, how to secure it. In addressing these issues, ECOS
uses two insights. First, not all enterprise applications de-
sire strict privacy; in some cases, it is sufficient if application
data is kept within an enterprise boundary. Second, tight ad-
ministrative control over compute and network resources in
enterprises, through SDN, provides a direct way for mobile
device users to access trusted resources for offloading, alle-
viating the need for complex trust establishment schemes.

3.1 Security Risks and Overheads

Mobile applications utilize many different types of data.
For example, an image recognition application may work
with photos taken at an office party, while an optical char-
acter recognition application may operate on patient medi-
cal records. Some of this data needs to remain confidential,
while no risk is posed if other data is viewed by a third party.

Most enterprise data falls into one of three basic cate-
gories. User-private data should only be accessed by spe-
cific users, e.g., a person’s medical information can only

. Connect . Connect

15- Receive 15- Receive

10- . Send

10- . Send

0 10 30 40 10 30 40

20 20
Size (KB) Size (KB)
(a) Unencrypted (b) Encrypted

Figure 1: Execution state transfer latency

be accessed by individuals working with the patient [6].
FEnterprise-private data should not be leaked outside the en-
terprise, e.g., intellectual property such as code and internal
memos. No-private data can be viewed by anyone, e.g. news
releases.

The same privacy restrictions that apply to these cate-
gories of data must also be applied to offloads, since an
application’s execution state likely includes data the appli-
cation has obtained (or generated). This means security
mechanisms must be applied to offloading communications
and executions to avoid compromising privacy. Unfortu-
nately, these mechanisms, e.g., transport-layer encryption,
can have significant costs.

3.1.1 Latency and Energy Overhead of Encryption

To understand the extent to which basic security mech-
anisms can influence the benefits of offloading, we measure
the time and energy overhead of applying TLS encryption to
offloading communications. We compare the overhead both
with and without encryption for varying amounts of execu-
tion state. Our measurements use an Android emulator [5]
and a 2GHz dual-core desktop running an x86 version of
Android in a virtual machine [7]. The emulator and VM
both run our modified Dalvik runtime environment capable
of capturing and loading execution state. (We show in §6.2
that an emulator is reasonable approximation of an actual
Android phone.) Each test consists of a single method call
which includes several arguments and objects in its execu-
tion state but performs no computation.

Latency. The latency overhead of offload with and with-
out encryption is shown in Figure 1. We observe, in both
cases, that connection overhead occupies a noticeable por-
tion of the time spent offloading, though it becomes less sig-
nificant as the size of the offloaded state increases. This can
be alleviated by reusing connections. More importantly, the
costs of sending and receiving execution state are approxi-
mately 40% higher with encryption. Encryption introduces
significantly more latency because of the additional control
mechanisms, the need to spend processing time encrypting
the data, and the higher net volume of encrypted data. For
the chess application used in our evaluation (§6), the send
(receive) time per-offload increases from ~0.2s (~0.1s) with-
out encryption to ~0.35s (~0.3s) with encryption.

Energy. Physical energy measurements are difficult due
to the limited availability of device schematics and the fre-
quent interactions between individual components. Instead,
we take advantage of an existing power model [31] that takes
as input fine-grained measurements of CPU utilization, CPU
frequency, and the number of packets and bytes sent and
received wirelessly. We only include the CPU and Wi-Fi en-
ergy components of the model because the other components
on a device are typically not impacted by offloading.

5000~ o 5000~ o

S4000- I i S 4000~ .WiFi

E.3000- E3000-

[} 4 o} N

g 2000 g 2000

& 1000~ & 1000~

0 1 i i | 0 1 1 1 !
0 10 20 30 40 0 10 20 30 40
Size (KB) Size (KB)

(a) Unencrypted (b) Encrypted
Figure 2: Average power consumed for state transfer

Figure 2 shows the results of our power estimates. Energy
consumption grows steadily with the size of the offload state
for both encrypted and unencrypted connections. CPU en-
ergy usage grows roughly linearly, due to increasing costs for
deconstructing and reassembling the increasing amounts of
state. The overhead from encryption nearly doubles these
costs. The increasing Wi-Fi energy usage results from the
increasing amount of time required to offload larger state
sizes, which grew from a median of 0.1s or less when no
state is sent to a median of 1.5s and 0.7s for encrypted and
unencrypted connections, respectively, when sending 39 KB
of state. During this time, the Wi-Fi interface remains in
its high power state, causing it to consume more energy.
Conversely, with small amounts of state (< 1KB) trans-
fered over unencrypted connections, the power consumption
is very low because the device is able to stay in low power
mode throughout the operation.! For the chess application
used in our evaluation (§6), the energy per-offload used for
state transfer increases from ~950mW without encryption
to ~2470mW with encryption.

Summary. These observations have key implications for
the design of ECOS. First, security mechanisms that use mo-
bile device resources, e.g., TLS encryption, should be used
only when necessary. Second, the connection setups and
data transfers required for offload should be minimized.

3.2 Security Policy

ECOS ensures private data remains secure, while max-
imizing offloading opportunities and benefits, through the
use of a simple, yet expressive, security policy. This policy
allows ECOS to minimize the use of resource-intensive TLS
encryption and maximize the use of SDN—to exercise tight
network control and carefully select compute resources.

The security policy (e.g., Listing 1) conveys (4) the privacy
level of devices and applications and (iz) the trust level of
compute resources. Mobile devices and compute resources
are identified based on their MAC address, IP address, or
primary user. Applications are identified based on a crypto-
graphic hash derived from the executable. ECOS could be
adapted to use pre-distributed certificates or user credentials
for identifying and authenticating devices and applications.

Mobile devices and applications are labeled as utilizing
enterprise-private, user-private, or no-private data. By de-
fault, mobile devices are no-private. Devices can be further
classified based on who they belong to: e.g. the CEO’s de-

vice is user-private or all company-owned devices are enterprise-

private. Users may also request their devices to be registered
as user-private; it is up to administrators to honor such re-

"While the additional power consumption in high power
mode is significant, this will not be visible if the interface is
being actively used by other tasks, causing it to already be
in high power mode.

Listing 1 Sample enterprise security policy

Assign privacy levels to mobile devices
mobile alice = 00:0F:89:B1:C3:D5 enterprise;

mobile bob = 00:0F:71:6A:17:DF user;

Assign privacy levels to applications

app chess = <8232afd556a9fc56c68cc13113c3£2£5> none;
app speech = <beef35481503415c65555ea068c07ac5> user;
Assign trust levels to resources

resource carol = 192.168.1.10 enterprise;

resource dave = 192.168.1.20 enterprise;

resource cloud = 10.0.0.50 none;

quests. Applications are assigned privacy levels based on
the most private data they are expected to access. Only if
an application has zero likelihood of accessing private data
is it classified as no-private, e.g., a map application. Ap-
plications that are likely to access personal information are
labeled as user-private, and all other applications are labeled
as enterprise-private (the default label for applications).
We acknowledge that the granularity of these labels is
quite coarse. Ideally, an application should be labeled based
on the specific data objects it is accessing at a given point in
time. To do this, it may be necessary to track the flow of pri-
vate information on the mobile device [16, 24]. Data with
known privacy requirements—e.g., data coming from spe-
cific servers, email senders, or file locations—can be tracked,
enabling dynamic knowledge of the data contained in an of-
fload. However, approaches to track information flow im-
pose performance penalties (TaintDroid imposes 14% CPU
overhead [16]) and are still evolving. Our coarser-grained
approach, in contrast, takes a conservative view of privacy
and trust. Privacy levels are assigned based on the strictest
level of privacy an application may ever require, irrespective
of its current data usage. The advantage is that it is far
simpler and efficient to implement, and it subsumes privacy
constraints based on individual data items and bytes. As
will become clear after the description of the security mech-
anisms (§3.3), the downside of using coarse labels is that it
may unnecessarily prevent offloading of some applications.
In ECOS, compute resources are assigned trust levels that
mirror the privacy levels: enterprise-trust, user-trust, and
no-trust. Resources internal to the enterprise—personal desk-

tops and laptops and local data centers—are labeled enterprise-

trust. External resources—public clouds—are labeled no-

trust. User-trust resources are special because they are trusted

by a specific user or subset of users. For example, if Alice
and Bob are both friends, they may consider each others’
desktops to provide user-trust. Our paper does not address
how such trust relationships among users are derived and
used to specify user-trust resources for a specific user, but
there are several ways for an admin to do so: e.g., configu-
ration by hand, based on observed communication patterns
among users [27, 29], or based on existing user groups [28].

3.3 Security Mechanisms

One way to ensure data remains secure is to always en-
crypt offloading communications and always limit the com-
pute resources used for offload, but this adds unnecessary
overhead and artificially restricts offloading opportunities.
In contrast, ECOS utilizes the nature of the mobile device
and application in determining whether encryption and/or
limiting the choice of compute resources are really necessary.
ECOS bases its decision on the strictest level of privacy re-
quired by a device and application pair. Moreover, ECOS

examines the costs to determine if offloading should even be
performed. In all cases, ECOS enforces its decisions using
tight network control. We describe each mechanism below.
Require Encryption. All data and state belonging to the
offload must be encrypted between the mobile device and the
compute resource when the device or application is wuser-
private. ECOS achieves this using TLS encryption at the
transport layer. Since the added time and energy overhead
(83.1.1) can significantly decrease the number of situations
where offloading is beneficial, we seek to reduce transfer sizes
and reuse connections through resource affinity (§4.2).
Limit Choice of Compute Resources. When the appli-
cation or mobile device is enterprise-private, offload can only
happen to enterprise- or user-trust compute resources, and
in the user-private case only to user-trust resources. This
severely limits the number of resources available for these
offloads, placing them at a potential disadvantage. Our re-
source management algorithm (§4.2) must therefore ensure
that these offloads receive a fair amount of resources.
Control Network Flows. ECOS enforces its encryption
and resource selection decisions using SDN. Enforcement is
crucial because we must ensure that: (i) the offload sys-
tem cannot be abused to inflict attacks on network links
and compute resources or to attack other offloads, and (i)
the system cannot be used to compromise privacy and trust
constraints. We realize these guarantees by relying on the
ECOS SDN application to implement a default-off network,
tightly control the path taken by individual offload flows
from mobile devices to compute resources?, and constantly
monitor network/compute resources and traffic and filter
abusive flows.

In a default-off network, network elements (e.g., switches,
wireless APs, hosts, etc.) have no forwarding state by de-
fault. Forwarding state is installed by an SDN applica-
tion on the basis of traffic engineering directives [19, 30]
and/or reachability policies [11, 21]. Moreover, forwarding
is controlled at fine-granularity, in terms of protocols, ports,
VLANS, and source and destination IP and MAC addresses.

ECOS’s use of SDN to implement a default-off network
and control forwarding of traffic at fine-granularity offers
key advantages. First, we can ensure that data is encrypted
when privacy is desired and compromises of a device can-
not lead to leakage of private information. To do this, the
SDN application establishes forwarding state only for the
appropriate flows: e.g., when a device or application is user-
private, only packets destined for port 8443, corresponding
to offloading with TLS in our implementation, are allowed
to enter the network from the mobile device; all other traf-
fic from the device is dropped at the first hop router. For
enterprise-private devices or applications, the SDN applica-
tion ensures that traffic does not leave the confines of the
enterprise. The SDN application can also perform other
checks, e.g., periodically routing offload traffic through a
middlebox to check for exfiltration of confidential data.

Second, applications can be prevented from making unau-
thorized access to compute resources during offload. When
unauthorized access is detected, e.g., based on unexpected
resource consumption activity on a desktop, the controller
can simply delete the corresponding forwarding entries in the
network, terminating the offload. Rogue applications that
aim to steal resources from legitimate offloaded applications

2The rest of the network could use other forms of routing.

can also be easily thwarted: ECOS limits the potential im-
pact of rogue applications on performance seeking offloads
by providing the latter a minimum share of CPU cycles.
For offloads seeking energy savings, care must be taken to
ensure rogue applications do not over consume network re-
sources and inflate the communication overheads incurred
by legitimate offloads. The controller constantly monitors
for usage spikes on compute resources and network links to
detect rogue applications; the controller installs drop rules
in network elements to "terminate” these applications.

Finally, SDN provides mobility advantages [11]: As mobile
devices move through the enterprise wireless network, paths
are updated to keep devices and resources connected.

4. SELECTING RESOURCES

Existing offloading frameworks address what and how to
offload from a single device [13, 15, 22|, but they do not
consider how multiplexing offloads from several devices on
a single compute resource will impact performance and en-
ergy benefits, nor do they consider the effects of changes
in resource capacity and availability over time. In con-
trast, ECOS is designed to opportunistically leverage multi-
ple available enterprise resources to provide benefits to a net-
work of mobile devices while honoring privacy constraints.
In this section, we show that plenty of idle desktops exist
in enterprise settings to serve application offloads, and we
examine the volatility of these resources to understand the
implications for resource scheduling in ECOS. We then show
how to leverage these resources. The challenge lies in opti-
mally and fairly multiplexing offloaded applications amongst
these resources to meet the energy, latency and privacy needs
of each mobile device. A further complication arises from the
fact that we must assign resources without knowing a priori
when other offloads will need specific types of resources.

4.1 Resource Availability

Enterprise networks contain a large supply of compute re-
sources that can be leveraged for offloading. These resources
tend to be under tight administrative control, making them
relatively secure. Some of these resources can be dedicated
specifically for offloading (e.g. servers), while others should
only be utilized for offloading when they are not serving their
primary purpose (e.g. personal desktops and laptops).

To understand idle desktop availability in enterprise set-
tings, we tracked the resource usage of 325 machines (used
by ~600 users) in the Computer Science department net-
work at a large university; this roughly corresponds to a
deployment in a modest-sized enterprise. We queried the
CPU load of both user desktops and dedicated servers every
5 minutes over a period of 10 days in April 2010.

At any given point in time, over half of the machines have
the majority of their CPU idle. Figure 3 shows the median,
average, and 90th percentile user load (normalized to one
CPU core) per machine throughout the measurement period.
The average user load (i.e. fraction of CPU time used by
user processes) usually ranges from 15% to 30%, with the
median usually ranging from 0% to 5%. Thus, there are
suitable volumes of resources already existing in enterprises
to serve the offloading needs of mobile devices.

We also measure how user load changes over time. For
each 5 minute interval, we calculate the absolute change
in user load (normalized to one CPU core) per machine.
Figure 4 shows a cumulative distribution of the absolute

CDF

0 1 1
0.01 0.1 1

Absolute Change in Load (Per Core)
Figure 4: Change in used fraction of processing capacity
(per core) over all 5 minute intervals and all machines

changes for all five minute intervals and all machines. We
observe that about 42% of the time there is no change in
user load between 5 minute intervals, and, over half of the
time, the change is less than 0.01. Therefore, we conclude
that the change in resource availability is usually small.
Assuming desktop CPUs are 4-5X faster than mobile de-
vice CPUs [2], the above results show that a medium-sized
enterprise may have enough idle resources to support offload
requests for a few hundred mobile applications. Moreover,
resource capacity does not need to be tracked at small time-
scales to make optimal scheduling decisions as the resources
are fairly stable; the mechanism for scheduling offloads must
mainly worry about churn in the mobile device population.

4.2 Allocating Resources

We now describe how ECOS schedules compute resources
to meet application and mobile device security, performance
and energy needs in a fair and efficient manner.

In an environment where there are always more suitable
compute resources (trusted desktops, servers, etc.) than mo-
bile applications desiring offloading, we can use a simple ap-
proach: When a mobile application wants to offload it is
assigned a dedicated resource which is not used by other
offloaded applications; after an application’s offloaded exe-
cution completes, a different application can be assigned to
the resource. We call this approach one-to-one scheduling.
Unfortunately, this simple approach is likely to be of lim-
ited use. First, we expect that in the future there will be
orders of magnitude more mobile applications desiring of-
floading. The above approach causes some applications to
be denied resources and forces them to run on the mobile
device. Second, the approach cannot accommodate more
complex offloading policies, e.g., parallel offload of applica-
tion threads [12].

4.2.1 Multiplexing Applicationsin ECOS

A better alternative when there are limited compute re-
sources is to assign multiple mobile applications to the same
resource, an approach we call multiplezed scheduling. ECOS
relies on a simple heuristic for pairing offload requests with
resources in a manner that likely offers the desired benefits.

Input. The input to the heuristic for a given code block
b includes the energy savings without encryption np, the
energy savings with encryption e, the estimated execution
time on the mobile device t;, and the mobile device’s CPU
speed s. §5.2 explains how ECOS obtains these values.

Candidate resources. If an application is seeking en-
ergy benefits and the application is deemed to require en-
cryption, then the controller verifies if the energy savings
with encryption is positive; otherwise, no resource is as-
signed and offload is prevented. For applications that either
(i) do not require encryption, (4i) have energy savings with

b (TEN PRV N P

Per Machine Normalized Load

Average

o bl " .
Sat/17 Sun/18 Mon/19 Tue/20 Wed/21 Thu/22 Fri/l23

Sat/24 Sun/25 Mon/26 Tue/27
Date

Median 90th Percentile

Figure 3: Fraction of CPU used per machine

encryption, or (4ii) do not care about energy use, a decision
must be made whether a resource with sufficient capacity is
available.

The time taken, wy, to execute a code block on a desktop,
with or without encryption, depends on the code and the
current load on the desktop. For applications seeking perfor-
mance improvements, we must assign a resource r such that
wy < tp. We can verify this will hold by ensuring the unas-
signed CPU cycles on r are at least the CPU speed of the
mobile device. The available CPU time a, = s, — Zm Sms
where s, is r’s total idle CPU capacity and Zm Sm 1s the
sum of the mobile CPU speeds for the applications currently
assigned to r. We know w;, < tp will hold if s < s, — Zm Sm.-

If an application does not seek performance improvements,
wp, can be arbitrarily large, meaning that, b can be run any-
where and the application would still see a net energy benefit
from b’s execution. But care must be taken to ensure that
running b does not impact other offloaded applications run-
ning on the same resource which care about latency.

Allocation (at the start of offload). If an application
is not seeking performance benefits, it is assigned to a re-
source with other applications only seeking energy benefits.
For applications seeking performance benefits, we assign the
application to the resource which has the largest a, at the
time the application makes its first offload request. If no
ar < s, no resources are available and the application is un-
able to offload; however, it could ask for resources again the
next time it desires to offload a particular codeblock. We
could assign both performance and energy seeking applica-
tions to the same resource, but we separate the two types to
avoid the need for complex scheduling mechanisms on the
compute resources. If an application seeks both latency and
energy savings, we follow the allocation policy for a per-
formance seeking offload, as this places stricter bounds on
execution time.

As stated in §3.3, the offload destination depends on the
trust level of the application/device: e.g., user-private ap-
plications are only offloaded to user-trust machines, whereas
no-private applications can be offloaded anywhere. By as-
signing performance seeking offloads to the machine with
the largest available CPU time a,, we spread the offloads
amongst all available resources and increase the likelihood
that a sufficiently trusted candidate resource will have avail-
able CPU time to serve the privacy constrained offload. In
the case of energy seeking offloads, we can assign as many of-
floads as necessary to a resource, so there is a low likelihood
that a sufficiently trusted resource will be unavailable.

Resource affinity. A key issue in allocation pertains

to whether the resource used for offload should be changed
during the course of an application’s execution. Changing
means that consecutive codeblocks can be offloaded to dif-
ferent resources. The cost of this is that it requires applica-
tion state to be re-instantiated at the new resource and new
transport connections to be set up. The benefit is that it
allows fine-grained scheduling of resources across portions of
mobile applications to dynamically adapt to demand and re-
source availability over time. However, our results in §3.1.1
show that the costs to the mobile device for sending state are
significant, and are likely to outweigh the benefits of chang-
ing resources. Thus, ECOS avoids this overhead and instead
tries to ensure resource affinity as much as possible: that is,
ECOS seeks to always offload an application to the same
resource every time it requests resources. This allows us to
keep a partially loaded runtime on the resource to quickly
serve future offloads from the same application.

Churn in available resources. Resource affinity relies
upon the assigned resource having a constant amount of ca-
pacity available during the lifetime of the application, which
may not always be true. Conceivably, the user of a desktop
could start some resource-intensive task that requires the re-
sources that have been provided to the phone. Our heuristic
should not impede the user of a desktop, so we cannot allow
the mobile device to continue to offload in such a case. We
have several options for how to proceed:

e Deny future offloads from the device until the desktop
resources free up. This is simple, but it may not adequately
leverage idle resources that may exist in the network and
may prevent the device from offloading for a long period.

e Assign the device a new desktop and require it to resend
its state. As mentioned before, this could be quite costly to
the device, but it may improve the desktop user’s experience
by allowing state space to be immediately reclaimed.

e Assign the device to a new desktop and have the original
desktop migrate the state over the Ethernet the next time
the device offloads. This is ideal from the perspective of the
mobile device, since it only incurs the cost of establishing
a new connection. However, state migration significantly
complicates the protocol and may impact the user of the
desktop.

e Store state in a network-wide cache after an offload com-
pletes. This avoids the need for resource affinity, since any
desktop can retrieve the previous state from the cache with-
out the involvement of the mobile device or the original desk-
top. However, this requires dedicated cache resources.

The best behavior depends on the characteristics of the
network. If machines frequently become busy for long peri-

ods of time, it may be best to have the mobile device reestab-
lish the state or have the desktops handle state migration.
In contrast, if desktops are known to only become busy for
brief periods, it may be best to keep the device associated
with the desktop and deny its requests until the machine
has resources. The controller can track prior usage patterns
of a desktop to determine the right behavior.

5. ECOS IMPLEMENTATION

Our prototype implementation of ECOS consists of the
following components: (i) Compute resource monitors pro-
vide resource availability information for offloading resources;
compute resources also run a virtual machine (VM) in which
offloaded applications are executed; (i) A modified runtime
environment (RE) on the phone passes metadata about can-
didate applications to the controller and performs the actual
offload as directed by the controller; (#i4) An SDN applica-
tion that runs atop an enterprise-wide SDN controller, or-
chestrating all offloads and carefully managing the network
paths connecting mobile devices and compute resources.

5.1 Compute Resources

Desktops, servers, and remote clouds capable of executing
offloaded applications announce their availability and pro-
vide an environment for executing the applications. Com-
pute resources provide updates on available CPU cycles. Re-
source monitors establish a connection to the controller at
startup and, based on measurements in §4.1, send XML mes-
sages every 5 minutes with the available CPU capacity a
measured using mpstat.

All compute resources also run a smartphone VM to pro-
vide an environment for executing offloaded applications.
Specifically, we run a native version of Google Android [5]—
the phone platform used in our system prototype—in a Vir-
tualBox [7] VM. A restore agent in the Android environment
manages the offloaded applications running in the VM. Each
incoming socket connection from a phone is accepted and
passed to a new RE instance which receives the name of
the application and all associated execution state from the
phone. We assume the application executable already exists
on the compute resource; alternatively, applications could be
downloaded from the Internet on first offload. The restore
agent informs the controller when execution completes.

ECOS gives user applications running on the desktop pri-
ority over offloaded applications by over-provisioning for desk-
top applications: if the collective CPU utilization of desk-
top applications is u, then ECOS ensures CPU usage of of-
floaded applications doesn’t exceed a, = 1 — (u+9), leaving
6 amount of additional compute resources for desktop ap-
plications should they need them. We conservatively set
0 = maz(0.1,0.5u).

5.2 Phone Runtime Environment (RE)

The RE on the phone is responsible for (7) selecting which
parts of an application should be offloaded and (74) transfer-
ring an application’s execution state to a compute resource.

The RE considers estimated CPU usage, security over-
head, and the availability of resources when considering what
to offload. We build on ideas from CloneCloud [13] and
Chroma [9]. Applications that want to take advantage of
ECOS provide a list of computationally intensive methods
with the estimated execution time and runtime state size
for each method, similar to the specification of tactics in

Chroma. The RE uses the measurements from §3.1.1 and the
provided state size estimate to approximate the time/energy
overhead of offloading with and without encryption. Simi-
larly, the phone approximates the time/energy required to
execute the method on the phone, based on the provided
execution time estimate ¢, and an energy model [31].

If the overhead without encryption is less than execut-
ing on the phone, then the phone’s offload agent asks the
controller for resources. The agent connects to the con-
troller when the phone joins the wireless network. An XML
message sent to the controller specifies the device (MAC
address), a hash of the application binary, energy savings
without encryption np, energy savings with encryption e,
estimated execution time t,, and phone CPU speed s. It
also specifies whether the phone desires performance bene-
fits, energy savings, or both, based on user preference, the
current battery level, or other factors.

When a method is selected for offload, the method sig-
nature, argument values, and any referenced objects must
be transferred to the compute resource. Knowing exactly
what state to send and where this state resides is challeng-
ing. We take a conservative approach to transferring objects,
like in MAUI [15]: we transfer objects that are arguments
and objects that are referenced by the arguments. After
method execution on the compute resource completes, the
phone RE must reconcile any changes between the old RE
state and the RE state received from the compute resource.
A reconciling process compares objects and updates them
appropriately, allocating new objects as necessary. Based
on the overhead measurements in §3.1.1 and the state simi-
larity measurements in §6.5, ECOS preserves the RE on the
compute resource, sending only a delta of the state across
different offload points. Computing the delta incurs no more
CPU overhead than sending the full state and requires fewer
packets. While sending deltas requires additional memory
on the phone to store hashes, and preserving state on the
compute resource potentially limits the ability of a phone to
opportunistically take advantage of available resources, we
find that this is a reasonable strategy to use in practice (§6).

5.3 SDN Application

Based on the algorithms described earlier, the ECOS SDN
application running on an SDN controller sends an XML
message with the IP address of the assigned resource. The
phone RE opens a socket (or secure) connection to the re-
source on port 8400 (or 8443). We implement our SDN ap-
plication on top of NOX atop a bed of OpenFlow switches [21].
The forwarding state in network elements expires and is
flushed out after 1s. Thus, phones with active offloaded ap-
plications have to periodically ask the controller for a route
(every 0.5s in ECOS) to keep the path to the offload desti-
nation alive.

6. EVALUATION

In this section, we evaluate the advantages of using ECOS
with a range of experiments to ultimately establish the vi-
ability of using ECOS to support enterprise applications
on mobile devices. We study the following issues: (4) Can
ECOS support enterprise applications with different latency,
energy and security needs? What benefits do different ap-
plication classes observe, and what are the costs? (§6.3)
(i1) To what extent do resource affinity and the ability of
ECOS to multiplex several applications on each secondary

resource help? Are they ever detrimental in enterprise set-
tings? (§6.4) (i4) To what extent do various optimizations
to control ECOS’s offload overhead, such as preserving state
across different code block executions and transferring state
under resource churn, help? (§6.5) We describe our setup in
§6.1 and §6.2.

6.1 Methodology

‘We were unable to obtain real enterprise applications due
to licensing issues and the lack of source code. Instead,
we use two representative applications which can benefit
from ECOS: chess, which we use as an (admittedly artifi-
cial) stand-in for an compute-intensive Al-based enterprise
application that does not seek user privacy (e.g., non-linear

decision-making and customer relationship management apps [1]),

and speech recognition, which is a stand-in for a speech-
to-text enterprise transcriber. The chess game features an
AT engine, configured to use three decision iterations. We
modified the game to play against itself for 50 moves, with
a 10 second delay every other move to simulate the de-
lay of a human. Speech recognition is a computationally
and memory intensive application. Unfortunately, Android
lacks some crucial audio libraries to run speech recognition,
such as CMU Sphinx [3], directly on the phone. Therefore,
we model the state size, CPU usage, and memory usage of
speech recognition with a mock application to still show the
benefits ECOS could provide if phones added the necessary
audio support in the future. The application is configured
to perform 20 recognitions, with a 10 second delay between
tasks. We consider speech recognition to be user-private.
We measure ECOS for a small enterprise setting using a
set of Android emulators and desktops. Phone emulators
are used in our experiments because we only had access to
a single Android developer phone. We show experiments in
§6.2 to confirm that the emulators we use are a reasonable
substitute for actual phones. Each phone emulator’s CPU
frequency is scaled to match the behavior of an Android
phone in typical under-clocked use. The desktops we use
for computational resources are 2.4GHz Intel quad core ma-
chines with 4GB of RAM, representative of a typical mod-
ern workstation. Our controller runs on a separate machine
whose specs are the same as the desktops. The emulated
phones and desktops communicate over wired Ethernet. In a
real setting, phones would communicate using wireless links
of lower speeds; thus, our latency measurements are likely
to be an underestimate, but we do not expect the difference
to be significant as the amount of state transferred during
offload in the above applications is quite small. To estimate
power consumption, we measure the number of packets and
bytes sent, CPU usage and wireless NIC usage and plug
them into energy models [31], similar to our study in §3.1.1.

6.2 Emulator/Phone Comparison

We first perform a set of small-scale experiments to affirm
that Android emulators are a reasonable substitute for an
actual Android phone. Our setup consists of a single desktop
and a single emulator or phone. We run both example ap-
plications with and without offloading, measuring the total
energy usage and total runtime.

The execution time of the chess and speech recognition ap-
plications without offloading are shown in Figure 5 for both
the Android emulator and an Android developer phone. The
applications run about 20% faster on the emulator, but the

2500
2000
1500
2 1000
é— 500
07

-

O Emulator
B Phone

Chess (25)
h{10)
peech (20)
h {30)

Chess (75)

Chess (50)

Speec

[75] [55]
Figure 5: Comparison of application execution times with-
out offloading using a phone versus an emulator

Phone Application Goal Trusted Resources
P1,P2,P3 | Chess Latency | All

P4,P5,P6 | Chess Energy All

P7 Speech Recognition | Latency | D1, D2, D6

P8 Speech Recognition | Latency | D2, D3, D6

P9 Speech Recognition | Latency | D1, D3, D6

P10 Speech Recognition | Energy D1, D2, D6

P11 Speech Recognition | Energy D2, D3, (D6)

P12 Speech Recognition | Energy D1, D3, (D6)

Table 1: Configuration for applications used

scaling is consistent for both applications with varying num-
bers of moves/recognitions. We polled the CPU and memory
utilization during application execution in all cases at fre-
quent intervals. The CPU ran at 100% utilization whenever
the application was busy executing in the case of both the
phone and the emulator. Memory usage was also identical.
We found the CPU frequency to be similar, although the
emulator was running at a slightly higher speed.

We then examined how offload would function. We com-
pared the packet stream to and from the remote desktop
when using the phone versus the emulator, and found them
to be identical in terms of the number of bytes and packets.
Also, in the case of the phone, we did not observe a signifi-
cant change in the bitrate during the course of any offload.
The only difference was a longer offload state transmission
time on the phone due to the slower link speed and higher
loss rates of a wireless link: for 50 chess moves the total time
spent transmitting state over wireless is 10s versus 2.9s over
wired, and for 20 speech recognitions the total transmit time
is 12s versus 2.3s. We omit the detailed results for brevity.

In effect, these measurements show that the emulator pro-
vides a reasonable approximation of execution and offload
on a physical phone. The data we collect on the emulator
to help estimate phone power drain also provides a quali-
tatively similar estimate to real power drain on the phone
(modulo the accuracy of the model in [31]).

6.3 Full System Analysis

We present an analysis of ECOS for a small enterprise
setting consisting of 12 phones (P1-P12) and 4-6 desktops
(D1-D6). A mix of both chess and speech recognition run on
the phones, with varying goals and privacy levels. Table 1
shows the application specification for each phone. The con-
straint of only having 4 desktops to serve 12 phones stresses
ECOS, but we find it still benefits most applications. With
lesser contention when 6 desktops are available, the benefits
from ECOS become more significant and equitable.

In these experiments, we assume the desktops are not
running any other applications during the entire test du-

400
350 I
300 +
250
200+
150
100

50+

0_

Time (sec)

1 2 3 4 5 6 7 8 9 10 11 12
Phones

[J No Offloading [@ 4 Desktops W 6 Desktops

Figure 6: Comparison of application execution times

300000

250000

T rooooo] w11 W1

B oooco NI UL U O e e L

S oo I I IO OB T
OO O OO UL O 11

0-
P1 P2 P3 P4 P5 F6 P7T P& P9 P10P11 P12
Phones

[J No Offload [4 Desktops W 6 Desktops

Figure 7: Comparison of application energy usage

ration. Furthermore, the controller multiplexes assignments
and enforces resource affinity. Later in this section, we con-
sider other approaches to assigning resources—one-to-one
scheduling and no-resource-affinity—in §6.4.

Latency. The execution time (excluding delay between
moves or recognitions) for each phone is shown in Figure 6.
Without offloading, all applications take approximately 350s
to execute. Multiplexing the applications amongst four com-
putational resources significantly reduces the execution time
to between 22s and 87s for all phones except P10. The
speech recognition application on P10 receives no perfor-
mance benefit because there is no desktop it trusts that is
available to serve applications seeking energy savings. Fur-
thermore, phones P4-6 see nearly 50-60% higher latency
than P1-3 although they are running the same chess ap-
plication. This is because P4-6 requested energy savings,
while P1-3 requested latency improvement.

Using 6 desktops provides enough resources leading to all
phones seeing better latency than without offloading and
10-20% better net latency compared to using 4 desktops.
Furthermore, P10 is able to offload to a user-trusted re-
source, and, with lower resource contention per desktop,
P10’s speech recognition application is able to run in as little
as 20s.

Energy. Our experiments show that ECOS also offers en-
ergy benefits. Figure 7 shows the total energy used by the
applications for the same scenario. The energy savings for
both performance seeking and energy seeking applications
ranges from 24% to 44% with 4 desktops and 23% to 47%
with 6 desktops. Again, with 4 desktops, resources are con-
strained and ECOS is unable to provide energy benefits to
P10. Increasing the number of available compute resources
allows P10 to attain energy savings equivalent to its peers.

Although not present in these scenarios, in some cases
ECOS imposes energy cost for applications that have explic-

Time (sec)

6 P7T P8 PO P10 P11 P2

O No Offloading @ Muttiplexing + B Multiplexing No B Cne-to-One +
Adfinity Alffinity Affinity
Figure 8: Total execution time using alternative resource
allocation approaches

itly requested low latency. Likewise, some applications de-
siring energy savings may see a degradation in latency com-
pared to no-offload when there is high resource contention.
Since our system is opportunistic, the presence of this cost
is highly dependent on the application workload.

6.4 Resource Allocation Efficiency

Multiplexing applications on compute resources is one ap-
proach to assigning compute resources. However, §4.2 also
discussed one-to-one scheduling—assigning a single appli-
cation to a compute resource at a time—as an alternative

method for assigning resources. We compare these two schedul-

ing approaches, both with and without resource affinity. We
use the same experimental setup of phones and desktops
that was described in §6.3. We measure the total time and
energy saved by applications for one-to-one-scheduling with
affinity, multiplexed scheduling with affinity, and multiplex
scheduling without affinity.

Figure 8 shows the execution time for each phone with the
three approaches. First, we observe that one-to-one schedul-
ing results in less offloading opportunities and higher execu-
tion latency for two-thirds of the phones. In some cases,
e.g. P2, execution takes more than twice as long. This
behavior results from the inability to serve more than 4 ap-
plications (as many desktops as we have) at any given time.
At the same time, applications typically take less time to
execute a given offload instance since compute resources are
not shared with other offloaded applications. P10, for exam-
ple, executes the fastest with one-to-one scheduling because
it gets full use of the CPU when it is assigned to a desktop.

Second, we observe that for most phones, the resource
allocation approaches that use affinity result in lower total
latency. This decrease in latency stems directly from the
decrease in execution state that must be transferred as a
result of preserving execution state at the same desktop.
However, avoiding affinity can help provide a fair sharer of
benefits when the number of compute resources are limited:
e.g., P10 receives significant benefit when using multiplexing
with no-affinity as there is more churn in assignments and a
greater opportunity for being allocated resources.

6.5 Preserving State Across Offloads

As discussed in section §5.1, ECOS preserves state on com-
pute resources between offloads, decreasing the amount of
state that must be transferred during subsequent offloads.
This can be especially beneficial when security requirements
force data to be encrypted.

We analyze the feasibility of preserving state by measur-
ing how much the state changes between subsequent offloads
of the chess application. Figure 9 shows the fraction of state

0.8
0.6
0.4
0.2

CDF
T T

1 1 1 1 1 1

0 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
Fraction of Bytes Changed

Figure 9: CDF of fraction of state changed between subse-

quent offloads of chess Al

[Phone [Phone
[Compute Resource [Compute Resource

Time (sec)

Full State Over Phone State Over Phone + Delta Full State Over Phone State Over Phone + Delta

(a) Unencrypted connection (b) Encrypted connection
Figure 10: Time to transmit state

that changes between subsequent offloads for the first 100
offloaded moves. At most 3.5% of the approximately 37 KB
of state changes between offloads. The majority of offloads
have only a 0.5% to 2% difference between the current and
previous state. The amount of state variation is highly de-
pendent on the specific application, but these results show
that preserving state for some applications can significantly
reduce the state that must be sent.

Preserving state between offloads can significantly reduce
offloading overhead, but it also requires assigning applica-
tions to the same compute resource every time. If a com-
pute resource no longer has idle capacity for offloading, the
state must either be (7) sent in full from the phone or (i)
transfered from one compute resource to another. We al-
ready measured the overhead of sending the state from the
phone in §3.1.1. Figure 10 compares the cost of resending
all state from the phone versus transferring state between
compute resources and the phone only sending a state delta
for subsequent offloads for unencrypted and encrypted con-
nections. For both types of connections, the latter method
is more than twice as fast, with the bulk of the overhead
occurring on the phone due to connection set up and state
transfer. Thus, it is best to handle state transfer between
compute resources directly.

In summary, we find that ECOS can support multiple ap-
plications with different performance and security needs, of-
fering significant, equitable benefit at low cost. Our design
choices have proven crucial for good overall performance,
especially when opportunistically leveraging resources, and
under encryption: Resource affinity appears to be essential
to avoid the overhead of state transfer and connection cost,
and ensure good offload performance especially for encryp-
tion. For similar reasons, preserving state across offloads
and transferring state across connected desktops (when mov-
ing offloaded applications) is crucial. Multiplexing several
smartphone applications on each desktop is important to
ensure multiple applications observe equitable benefits.

Our controller offers high throughput for computing re-
source allocations, similar to what was observed in [11]. The
latency between the time an offload request is made until
the time the offload actually begins (which depends on com-
putation of the resource assignment, computing a network

path and establishing forwarding state along the path) is
negligible. We omitted these benchmarks for brevity.

7. CONCLUSION

We presented ECOS, an enterprise-based offloading sys-
tem designed to address the security needs of mobile ap-
plications and opportunistically leverage available compute
resources. ECOS extends the offloading decision process
to take into account security requirements and costs, and
in doing so, ECOS leverages the unique advantages that
Software-Defined Networking (SDN) provides. In ECOS
an enterprise-wide controller assigns (trusted) compute re-
sources to applications based on resource availability, ad-
ministrator specified security policies, and the performance
or energy savings goals of mobile devices; ECOS also strictly
enforces the security constraints through careful control of
the network. We showed that ECOS provides both latency
and energy benefits to both no-private and user-private ap-
plications.

The main contributions of our work are to show: (%) how to
accommodate trust and privacy considerations in offloading
without resorting to complex and error prone trust schemes
and (41) how to scale offloading to many mobile devices and
compute resources, and opportunistically leverage these re-
sources. By addressing these issues using SDN, we believe
that we have paved the way for wider-spread adoption of
offloading to assist current and future mobile applications
in the enterprise context.

8. ACKNOWLEDGEMENTS

We would like to thank our shepherd Ripduman Sohan
and the anonymous reviewers for their insightful feedback.
This research was supported by the National Science Foun-
dation under grants CNS-1050170, CNS-1017545 and CNS-
0746531.

9. REFERENCES

[1] Ai enters the mainstream. http://www.domain-b.com/
infotech/itfeature/20070430_Intelligence.htm/.
[2] Apple’s iPhone 4: Thoroughly reviewed. http://
anandtech.com/show/3794/the-iphone-4-review/12.
[3] Cmu sphinx. http://cmusphinx.sourceforge.net.
[4] Developing enterprise applications for mobile devices
remains way too hard.
http://zdnet.com/blog/gardner.
Google android. http://android.com.
Health information privacy.
http://hhs.gov/ocr/privacy.
[7] Oracle virtualbox. http://virtualbox.org.
[8] Why your smartphone battery sucks.
http://pcworld.com/article/228189.
[9] R. K. Balan, M. Satyanarayanan, S. Y. Park, and
T. Okoshi. Tactics- based remote execution for mobile
computing. In MobiSys, 2003.
[10] N. Balasubramanian, A. Balasubramanian, and
A. Venkataramani. Energy consumption in mobile
phones: implications for network applications. In
IMC; 2009.
[11] M. Casado, M. J. Freedman, J. Pettit, J. Luo,
N. McKeown, and S. Shenker. Ethane: taking control
of the enterprise. In SIGCOMM, 2007.

R

(12]

(13]

(14]

(15]

(17]

(18]

(19]

25]

(26]

27]

B. Chun and P. Maniatis. Augmented smartphone
applications through clone cloud execution. In HotOS,
2009.

B.-G. Chun, S. Thm, P. Maniatis, M. Naik, and

A. Patti. CloneCloud: elastic execution between
mobile device and cloud. In EuroSys, 2011.

B.-G. Chun and P. Maniatis. Dynamically partitioning
applications between weak devices and clouds. In
MCS, 2010.

E. Cuervo, A. Balasubramanian, D. ki Cho,

A. Wolman, S. Saroiu, R. Chandra, and P. Bahl.
MAUI: Making Smartphones Last Longer with Code
Offload. In MobiSys, 2010.

W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: an
information-flow tracking system for realtime privacy
monitoring on smartphones. In OSDI, 2010.

L. Fiering and K. Dulaney. iPads: Not notebook
replacements, but still useful for business. Gartner,
Inc., 2010.

J. Flinn, S. Park, and M. Satyanarayanan. Balancing
performance, energy, and quality in pervasive
computing. In ICDCS, 2002.

A. Greenberg, G. Hjalmtysson, D. Maltz, A. Myers,
J. Rexford, G. Xie, H. Yan, J. Zhan, and H. Zhang. A
clean slate 4D approach to network control and
management. ACM SIGCOMM CCR, 2005.

K. Kumar and Y.-H. Lu. Cloud computing for mobile
users: Can offloading computation save energy?
Computer, 99, 2010.

N. McKeown, T. Anderson, H. Balakrishnan,

G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. OpenFlow: Enabling innovation in campus
networks. ACM SIGCOMM CCR, 2008.

A. Messer, I. Greenberg, P. Bernadat, D. Milojicic,
D. Chen, T. Giuli, and X. Gu. Towards a distributed
platform for resource-constrained devices. In ICDCS,
volume 22, 2002.

S. D. Nelson and D. A. Willis. Separating enterprise
tablet applications from consumer apps. Gartner, Inc.,
2011.

A. Ramachandran, Y. Mundada, M. B. Tariq, and

N. Feamster. Securing enterprise networks using traffic
tainting. Technical Report GT-CS-09-15, GaTech,
October 2009.

M. Satyanarayanan, V. Bahl, R. Caceres, and

N. Davies. The case for vim-based cloudlets in mobile
computing. I[EEFE Pervasive Computing, 2009.

S. Smaldone, B. Gilbert, N. Bila, L. Iftode, E. de Lara,
and M. Satyanarayanan. Leveraging smart phones to
reduce mobility footprints. In MobiSys, 2009.

J. R. Tyler, D. M. Wilkinson, and B. A. Huberman.
Email as spectroscopy: automated discovery of
community structure within organizations.
Communities and technologies, pages 81-96, 2003.

T. Whalen, D. Smetters, and E. F. Churchill. User
experiences with sharing and access control. In CHI,
2006.

A. Wu, J. M. DiMicco, and D. R. Millen. Detecting
professional versus personal closeness using an
enterprise social network site. In CHI, 2010.

(30]

(31]

(32]

H. Yan, D. A. Maltz, T. S. E. Ng, H. Gogineni,

H. Zhang, and Z. Cai. Tesseract: A 4D network
control plane. In NSDI, 2007.

L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. Dick,

Z. Mao, and L. Yang. Accurate online power
estimation and automatic battery behavior based
power model generation for smartphones. In
CODES+ISSS, 2010.

X. Zhang, J. Schiffman, S. Gibbs, A. Kunjithapatham,
and S. Jeong. Securing elastic applications on mobile
devices for cloud computing. In Workshop on Cloud
computing security, 2009.

