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Abstract
Several recent proposals for sharing congestion information

across concurrent flows between end-systems overlook an impor-
tant problem: two or more flows sharing congestion state may in
fact not share the same bottleneck. In this paper, we categorize the
origins of this false sharing into two distinct cases: (i) networks
with QoS enhancements such as differentiated services, where a
flow classifier segregates flows into different queues, and (ii) net-
works with path diversity where different flows to the same des-
tination address are routed differently. We evaluate the impact of
false sharing on flow performance and investigate how false shar-
ing can be detected by a sender. We discuss how a sender must re-
spond upon detecting false sharing. Our results show that persis-
tent overload can be avoided with window-based congestion con-
trol even for extreme false sharing, but higher bandwidth flows run
at a slower rate. We find that delay and reordering statistics can
be used to develop robust detectors of false sharing and are supe-
rior to those based on loss patterns. We also find that it is markedly
easier to detect and react to false sharing than it is to start by iso-
lating flows and merge their congestion state afterwards.

1. Introduction
The predominant model for congestion control on the In-

ternet has been based on TCP connections implementing
the slow-start and additive-increase/multiplicative-decrease
(AIMD) algorithms [10]. While this model has been quite
successful at preventing congestion collapse, it is not opti-
mal when multiple concurrent flows from a sender to a re-
ceiver share a bottleneck. These flows compete with each
other rather than learn from each other about the proper-
ties of the network path (especially visible in the context of
the Web), and, as an ensemble, display more aggressive be-
havior compared to single TCP connections.

A number of studies of this problem have been con-
ducted over the past few years [3, 4, 15, 17, 23], and sev-
eral interesting proposals have emerged to correct the short-
comings caused by TCP connections implementing conges-
tion control in isolation. These studies all propose shar-
ing congestion information across concurrent flows, where
a group of flows form a macroflow and use common con-
gestion control. These proposals include schemes where the
granularity of sharing is a common destination host (more
precisely, a host network interface) [3, 4, 5, 15, 23], and
those where there is more aggressive sharing of informa-
tion across all destination hosts on the same IP subnet-
work [16, 21, 23]. All the above proposals for shared con-

gestion management assume that the bottleneck links tra-
versed by the flows forming a macroflow are exactly iden-
tical. However, this assumption does not always hold true.
This is due to false sharing: two or more flows sharing con-
gestion state may in fact not share the same bottleneck(s).

There are at least two important classes of situations
where false sharing might occur without the sender’s knowl-
edge. First, in networks with service differentiation, where
quality of service (QoS) enhancements are applied to net-
work hosts, and second, in networks with path diversity,
where multiple flows in the same macroflow are routed
along different paths. With the increasing deployment of
Differentiated Services and increased interest in multi-path
routing techniques, a tacit formation of a macroflow on a
per-destination basis is not likely to be correct.

The first potential problem with false sharing is that there
is a danger of the slower bottleneck being overwhelmed be-
cause the sender infers an incorrect bottleneck rate based on
information from a faster flow in the macroflow. The sec-
ond potential problem is that the faster flow suffers a sig-
nificant performance penalty, sending much slower than the
rate that even a single TCP connection on that path would
otherwise achieve. These problems arise because the sender
observes different bottleneck bandwidths, round-trip times
(RTTs), and packet loss rates for the flows that are shar-
ing congestion control information. As a result, it is possi-
ble that false sharing might cause the techniques for shared
congestion management to, in fact, be detrimental both to
the network and to the applications using them.

This paper analyzes the consequences of false sharing in
an attempt to quantify the effects of sharing congestion in-
formation across an ensemble of flows. In particular, we ad-
dress the following specific questions:

1. Impact. What impact does false sharing have on per-
formance and correctness? Does false sharing compromise
congestion control, by causing a bottleneck link to become
persistently overloaded? Or does it degrade performance by
causing flows to perform significantly worse than if they
were not sharing congestion information?

2. Detection. When can a sender detect false sharing be-
tween two flows? How do delay differences, reordering
rates, and packet loss patterns compare in this regard?

3. Response. How should congestion sharing systems be
modified to deal with false sharing? Should the default be-
havior be to optimistically share information and separate
flows if false sharing is detected, or vice versa?



We answer these questions using extensive simulation
and analysis. We focus on TCP-like congestion avoidance
and control algorithms [2] since they are the dominant set of
techniques in use today. (Different congestion control algo-
rithms (e.g., TCP-friendly algorithms [11]) may yield some-
what different results.) For TCP-style window-based con-
gestion control, we find, from analysis and simulation, that
persistent overload can be avoided even for extreme false
sharing, but that higher bandwidth flows run slower. This
throughput reduction can be a severe performance penalty,
but one that can be avoided by the sender analyzing packet
delay and reordering statistics. We develop and evaluate a
comprehensive set of tests for a variety of false sharing
cases, building on previous work by Rubenstein et al. who
describe methods for detecting if two connections share at
least one common bottleneck link [20]. We find that delay-
based statistics are more robust indicators of false sharing
than loss patterns. In the context of implementing these
tests in practical congestion sharing systems, we find that
it is easier for the sender to detect and react to false shar-
ing than it is to start by isolating flows and enforce sharing
afterwards. This suggests that the default macroflow con-
struction should be to aggregate flows together, and sepa-
rate them later if deemed necessary by our techniques.

2. Related Work
False sharing can be a problem with the currently pop-

ular Differentiated Services (DiffServ) architecture [7, 9,
14]. In DiffServ, elements in the network can, based on
a network-internal policy and the result of packet classifi-
cation, allocate different bandwidths, impose different loss
rates, or provide different latencies to packets belonging to
different flows of the same macroflow. In contrast, the In-
tegrated Services architecture involves the active participa-
tion of end-systems [8, 24], which eliminates false sharing.

When flows within a macroflow traverse different routes,
the potential for false sharing arises as the two flows may
not share a bottleneck. Unless all their bottlenecks are
shared, it is incorrect to share congestion state between
them. In practice, there are two important scenarios where
path diversity causes false sharing: (i) dispersity routing,
and (ii) network address translation (NAT).

The original idea of dispersity routing [12, 13], advo-
cates using different paths between a sender and receiver to
improve both performance and reliability. More currently,
this idea has been advocated for load balancing within net-
work clouds [22]. There are several granularities over which
such techniques can be used: per-packet, per-flow, or per
source-destination pairs. If done on a per-packet basis, it
interacts badly with TCP’s current lack of robustness in
the face of persistent re-ordering and is, therefore, discour-
aged today. When done on a per-flow basis, false sharing
is likely, especially if there are bottlenecks among the un-

shared paths. When done on a per source-destination basis,
false sharing can still occur when a sender shares conges-
tion information across multiple destinations.

NATs and firewalls are common in today’s Internet in-
frastructure. When there are multiple possible physical des-
tinations for a single visible destination IP address, false
sharing may arise. Although the flows will usually share
a common path up to the location where the translation is
done, the paths from that point to different eventual desti-
nations may have different performance characteristics.

Our approach to detecting false sharing builds on pre-
vious work by Rubenstein et al., who provide an ana-
lytic framework for a closely related problem [20]. How-
ever, there is one important difference between our focus
and theirs. We are interested in whether all bottlenecks are
shared between two flows on a macroflow, whereas Ruben-
stein’s work is concerned with determining if two flows
share any bottleneck at all.

3. The Impact of False Sharing
This section analyzes the performance impact of false

congestion sharing. First, we present a brief sketch of our
analytical results from a simple model of the observed
throughput for two flows that wrongly share congestion in-
formation (Section 3.1). We then discuss results from our
simulations (Section 3.2).

3.1. Analytical Model
We derive an analytic formula for the observed flow

throughput when macroflow-based congestion management
is done. The key result we show is the following (this result
is easy to generalize):
Consider two paths

���
and

���
with high degrees of statisti-

cal multiplexing, such that the packet loss rate on each path
changes negligibly if one flow is added or removed. Con-
sider two flows � � and � � with propagation RTTs of � � and� � respectively. Suppose that the flows, in isolation, achieve
throughputs of � � and � � , on paths

� �
and

� �
respectively.

Then, when they share congestion information and share
bandwidth equally, the throughput �	��
����� obtained by each
flows � � and � � , in packets/s, is given by:

� ��
�������� � ��������! � ��" � �$# � " � � � �% & �')( " �'+*-,  � � � � ��" � �� � �$#
(1)where ���.�/�10325476  � �98 � � # .

The complete derivation and dicussion of the drawbacks
of our analysis can be found in [1]. The following observa-
tions about the impact on performance can be made from
Equation 1 above:

(1) � ��
������;:=<?>�@  � �98 � � # . The slower connection is never
forced to send at a rate higher than its bottleneck link can
sustain. Therefore, for TCP-style congestion control, false
sharing does not compromise correct congestion control.



������������������������������
������������������������������

������������������������������
������������������������������

Edge Core Edge

100Mbps, 25ms100Mbps, 25ms

1000Mbps, 5ms

1000Mbps, 5ms

1000Mbps, 5ms 1000Mbps, 5ms

1000Mbps, 5ms

1000Mbps, 5ms

1000Mbps, 5ms

1000Mbps, 5ms
TCP Source 1

Test Source

TCP Sink 2 + HTTP Sink 2 + CBR Sink 1 TCP Source 2 + HTTP Source 2 + CBR Source 2

Test Sink

TCP Sink 1

HTTP Sink 1 + CBR Sink 1HTTP Source 1 + CBR Source 1

������������������������������������������������������������

������������������������������	�	�		�	�		�	�		�	�		�	�		�	�	

�
�

�
�

�
�

�
�

�
�

�
�
������������������������������Test Source 1

Test Source 2

TCP Sink 2

TCP Sink 3 + TCP Sink 4

CBR 2 + HTTP 2
CBR 1 + HTTP 1

R(0) R(j−2) R(j−1)

R(j)

R(j+1)

50Mbps, 5ms

TCP Source 4 + CBR 2 + HTTP 2

TCP Source 3 + CBR 1 + HTTP 1

TCP Sink 1

Test Sink 1

Test Sink 2

TCP Source 2

Cross Traff. Src/Sink Cross Traff. Src/Sink Cross Traff. Src/Sink

TCP Source 1

(50/ratio)Mbps, 5ms

1000Mbps, 5ms 1000Mbps, 5ms

(a) Topology for Service Differentiation (b) Unshared bottlenecks

������������������������������������������

������������������������������������������������������������
������������������������������������������������������������Test Source 1

Test Source 2

TCP Sink 2

TCP Sink 3 + TCP Sink 4

CBR 2 + HTTP 2
CBR 1 + HTTP 1

R(0) R(j−1) R(j)

R(j+1)

R(j+2)

1000Mbps, 5ms

TCP Source 4 + CBR 2 + HTTP 2

TCP Source 3 + CBR 1 + HTTP 1

TCP Sink 1

Test Sink 1

Test Sink 2

TCP Source 2

Cross Traff. Src/Sink Cross Traff. Src/Sink Cross Traff. Src/Sink

TCP Source 1

(50/ratio)Mbps, 5ms

100Mbps, 5ms 100Mbps, 5ms

������������������������������������������������������������

������������������������������������������������������������
������������������������������������������������������������Test Source 1

Test Source 2

TCP Sink 2

TCP Sink 3 + TCP Sink 4

CBR 2 + HTTP 2
CBR 1 + HTTP 1

R(0) R(j−1) R(j)

R(j+1)

R(j+2)

1000Mbps, 5ms

TCP Source 4 + CBR 2 + HTTP 2

TCP Source 3 + CBR 1 + HTTP 1

TCP Sink 1

Test Sink 1

Test Sink 2

TCP Source 2

Cross Traff. Src/Sink Cross Traff. Src/Sink Cross Traff. Src/Sink

TCP Source 1

1000Mbps, (5*ratio)ms

100Mbps, 5ms 100Mbps, 5ms

(c) Semi-shared bottlenecks (d) Fully-shared bottlenecks

Figure 1. Simulation Topologies: In (a), we vary the fraction of bandwidth � allocated to the AF flows. In (b) and
(c), we vary the ratio of bottleneck bandwidths. In Figure (d) we vary the relative RTTs of the two test paths.

(2) However, false sharing does have an impact on perfor-
mance. From Equation 1, if � � 0 � � � and � � 0 � � , then� ��
������ 0 � ����� �  � � "���#

. This shows that the flow that
achieved the higher throughput suffers badly under false
sharing; for large

�
, this falls off as  � � �

.
In the next section, we experimentally show the impact

of false sharing on long-lived flows, and validate our exper-
imental results against our analysis. We also show experi-
mental results for the impact on short lived flows.

3.2. Experimental Validation

The first set of our simulation experiments are aimed at
verifying the impact of false sharing in networks with ser-
vice differentiation. For these simulations, we use Nortel’s
public implementation of DiffServ in ns-2 [6]. We model
two traffic classes: an Assured Forwarding (AF) class, and
a Best-Effort (BE) class. AF flows are policed and packets
exceeding an allocated profile are marked at a higher drop-
precedence level by the policer. All downstream routers
honor these marks using RIO [7]. Bandwidth is shared us-
ing a weighted round-robin (WRR) scheduler between the
AF and BE classes, while buffer management uses RED (for
BE) and RIO (for AF). (Due to lack of space, queue config-
uration details are omitted here. See [1] for these details.)
Excess bandwidth is shared in proportion to the bandwidth
allocated to each traffic class. We assume that all buffers are
shared between the two classes and not pre-partitioned.

We use the topology in Figure 1(a). All TCP flows use
TCP Newreno. There are ! � 0 ��"

AF long TCP connec-
tions and !$# 0&% " BE long TCP connections as back-
ground traffic between TCP Source 1 and TCP Sink
1. There are 40 BE long flows and 10 AF long flows in
the reverse direction between TCP Source 2 and TCP

Sink 2. The traffic in either direction also contains a
mix of HTTP traffic and constant rate CBR flows between
the HTTP Sources, CBR sources and their respective
sinks. The maximum number of HTTP connections for each
HTTP source was 5. There were 10 CBR flows in either
direction. Other parameters for the HTTP sources and the
CBR sources were set to the default values in ns-2. We
set up a Test Source with two TCP connections, one
in the AF class (to Test Sink 1) and one in the BE
class (to Test Sink 2), and measure their performance
in two cases: (i) when they are in the same macroflow and
share congestion state, and (ii) when they are in separate
macroflows. The fraction ' of bandwidth allocated to the
AF class is varied from 10% to 90%. At ' � � "

%, the in-
put traffic mix is well-matched to the bandwidth allocation.

Figure 2(a) shows the resulting throughput for the AF
and BE connections, plotted as a function of ' , for the un-
shared and shared congestion state cases. In the shared case,
the curves for the AF and BE flows are identical, since the
total macroflow bandwidth is allocated equally to the two
TCP connections. In the absence of sharing, as ' increases,
the throughput of each AF connection also increases, while
the throughput of each BE connection decreases. In con-
trast, the per-connection throughput in the shared case first
increases and then decreases as ' increases. Formally: Sup-
pose ! � AF and ! # BE TCP connections operate in a net-
work with a fraction ' of the bottleneck allocated to AF
flows, and compete with a two-flow macroflow with one BE
and one AF flow. If � denotes the bottleneck bandwidth, the
per-flow throughput on the macroflow is given by:

� ��
������)(  ' # 0 �
* � " '  �,+ ' # ��  ' � ! �# "  �-+ ' # � ! �� # (2)
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Figure 2. Impact of False Sharing: In (a), we plot the per-connection throughput against the fraction of band-
width allocated to AF traffic. In (b), we plot the per-flow loss rates with and without sharing.

assuming that the RTTs of the two classes of flows are the
same, � , and are independent of ' . This is easy to see from
Equation 1. The predicted throughput in Equation 2 is also
shown in Figure 2(a). The shape of this curve is similar to
the experimental one right above it, and the match is a close
one (but not precise). For our values of ! � and ! # , the the-
oretical maximum of the per-connection throughput occurs
at '10 ������������	��
� *� � � *�� %�� , which is close to the experi-

mental observation.

Towards the tail of the curve in Figure 2(a), our analyti-
cal prediction does not match the experimental observation.
This is due to the excessive number of time-outs in this
regime, which are not considered in our analysis. Indeed,
from Figure 2(a) (the � � axis), time-outs are excessively
common in this region. Also, close to the tail, the through-
put due to sharing is slightly higher than the throughput
of the lower-bandwidth flow in the unshared case implying
that false-sharing might compromise end-to-end congestion
control. However, this is not true, as we argue next. Fig-
ure 2(b) shows the loss rates for the two connections. No-
tice that the loss rate for the slower connection (AF when
' : " � � and BE when '�� " � �

) does not increase apprecia-
bly when congestion state is shared, despite the other flow
on the macroflow having a lower loss rate (even if the ex-
tent of false sharing is very high). This shows that the slower
of the two flows never overloads its bottleneck link (No-
tice that this observation holds true even towards the tail of
the curve). These results confirm the fact that TCP conges-
tion control is not compromised due to false sharing.

We also ran simulations for various other situations in
which flows within a macroflow traverse distinct bottle-
necks. The topologies for these simulations are shown in
Figures 1(b), (c) and (d). In all cases, there are two test
flows between the Test Sources and the corresponding
Test Sinks amidst cross traffic and reverse-path traffic
composed of long-lived TCP flow, HTTP traffic and con-
stant rate-CBR flows, just as described for the topology in
Figure 1(a). The number of shared bottlenecks can be tuned

in the case of these topologies (Figures 1(b), (c) and (d)).
The base number of topologies are none for Figure 1(b),
and 1 each for Figure 1(c) and (d). Across each shared link
in the path, we also have cross traffic composed of HTTP
and constant rate CBR flows in either direction. We mea-
sure the throughput of the two flows when they are together
in the same macroflow sharing congestion state, and again
when they are not sharing any congestion information for
the base number of shared bottleneck links. In all cases, we
found that the faster connection was slowed down by the
slower sender exactly as predicted by Equation 1. Also, the
loss rate of the slower sender was never higher upon false-
sharing, as in the service differentiation case. The results for
higher numbers of shared links were similar.

3.3. Impact on Short-Lived Flows
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So far, we have examined the impact of false-sharing on
long-lived flows. In this section, we provide insight into the
impact on much shorter, web-like flows. To study the impact
of short-lived flows, we use the topology in Figure 1(b) with
the base number of shared bottleneck links (zero). We pick
a size � for the length of the short-lived flows. At regular in-
tervals of 200ms, from 15 seconds into the start of the simu-



lations, we start pairs of short TCP flows of size � packets,
one each between the two Test Source-Test Sink
pairs in Figure 1(b). The rest of the cross traffic remains un-
altered. We test with various values of � 0 ��" 8 ��� 8 � � � 8 � "
and compare the average loss rate at the two bottleneck links
when the pairs of flows are each forced to shared congestion
state with the respective loss rates when the pairs of flows
are in different macroflows. The results are shown in Fig-
ure 3 which plots the loss rates on the two bottleneck links
for both the shared and unshared cases. For brevity, we only
show results for � 0 � "

. The results for other values of �
are similar. As the figure shows, short-lived flows undergo-
ing false-sharing tend to cause an increase in the ambient
loss-rate. As the extent of false-sharing increases, the im-
pact on the ambient loss rate also become more pronounced.
However, this increase in loss rate is not an outcome of ag-
gressive or undesirable behavior due to false-sharing. One
of the benefits of shared congestion management systems
is that short flows can avoid performing slow start by us-
ing congestion information from other ongoing flows. As
a result, short flows perform significantly better. However,
this increase in the transmission rate of short flows also in-
creases the loss rate of the network although no flow be-
haves in a TCP unfriendly manner. This increase in loss rate
occurs even under genuine sharing.

3.4. The Nature of Shared Bottlenecks
First, we discuss the salient features of the topologies in

Figure 1. In Figures 1(b) and (c), we vary the ratio of bot-
tleneck bandwidths on the two paths taken by the test flows
across experiments. In Figure 1(d), we vary the round trip
times of the two paths while keeping the bottleneck band-
widths fixed. These three topologies reflect the varying ex-
tents to which the test flows could share the common bot-
tlenecks they encounter (if any).

The test flows shown in Figure 1(b) have no bottleneck
in common at all. We refer to this as the unshared bottle-
necks scenario. Packet losses as a function of time on ei-
ther flow for this case are shown in Figure 4(a). The top
and the bottom ‘rows’ show loss events on individual flows
while the middle row shows actual losses on the flows plot-
ted together, with back to back losses (which comprise a
loss event) shown as a ‘pile’. Notice that the losses on any
one of the flows are completely uncorrelated with occurance
of losses on the other flow. In fact, the losses within any
single flow are much more correlated than across the flows.
The delays experienced by the packets within the two flows,
shown in Figure 4(b) are similarly uncorrelated. This sug-
gests that, one way of detecting false sharing in such situ-
ations, is to leverage the uncorrelated losses and delays ex-
perienced by the participating flows.

However, flows on the Internet may share bottlenecks to
varying degrees. The previous case presents a situation in
which flows share no intermediate bottlenecks. At the other

extreme, flows might have all bottlenecks in common, as
shown, in Figure 1(d). We refer to this as the fully-shared
bottlenecks case. There could be other situations in between
between, where flows can have only some bottlenecks in
common and might face other distinct bottlenecks down-
stream, as shown in Figure 1(c) (semi-shared bottlenecks).

In situations like Figure 1(d), false sharing might occur
when the participating flows take paths that have very dif-
ferent round-trip delays. However, this is the trickiest to de-
tect of the three cases since we cannot rely on the variations
in packet loss and delay statistics. To help further appreciate
the difficulty of detecting false sharing in the fully shared
case, the delays of the two test flows undergoing false shar-
ing in the experiment shown in Figure 1(d) is shown in Fig-
ure 4(c). Notice that the delays of the two flows are highly
correlated in contrast to the case presented in Figure 4(b).
Thus, relying naively on the packet loss and delay statis-
tics will likely yield the incorrect conclusion that the flows
should share congestion information. Therefore, we need a
technique different from the ones based on loss and delay
statistics to detect false sharing in such situations.

4. Detecting False Sharing
In this section, we explore the effectiveness of detection

techniques based on loss and delay statistics in various sce-
narios. Our goal is to devise tests that can detect false shar-
ing with reasonably good accuracy and as quickly as pos-
sible. We call the time it takes to detect false sharing the
detection time. For a given set of traffic, topology, and net-
work conditions, the detection time is a function of the sta-
tistical confidence in the reported result.

4.1. Test Description

Rubenstein et al. [20] developed two sets of techniques
to identify whether a pair of flows shared some common
bottleneck. Our objective is to use a similar set of tests as
part of a comprehensive end-to-end congestion sharing sys-
tem. To be used as part of such an architecture, these tests
must be enhanced to handle the following important issues:

1. Two flows undergo false sharing if even one of their bot-
tlenecks is not common to them. In both the service differ-
entiation and diverse routing cases, we observe that flows
can share some bottlenecks but not others.

2. Rubenstein et al.’s tests work especially well when un-
shared flows traverse entirely different bottlenecks that in-
troduce independent delays and losses. In networks where
two flows are served differently at the same bottleneck,
there may be a non-negligible statistical dependence be-
tween the delays experienced by the two flows, which needs
to be handled by the detection scheme.

3. It is often the case that a scheduler at the sender appor-
tions bandwidth in non-uniform ways to the different flows
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Figure 4. Loss and delay correlations: In (a) and (b), we show the losses and delays for the two test flows of
Figure 1(b). Figure (c) shows the delay statistics for the two test flows in Figure 1(d).

on the same macroflow. For example, it might cause one
flow to send two packets for every packet sent by another.

4. Many congestion control algorithms depend upon the
round trip time to a destination. Flows with all bottlenecks
in common, may still have different propagation delays. Ag-
gregating them would therefore cause false sharing to occur.

The rest of this section describes how the basic ideas of
loss- and delay-correlations and packet reordering can be
further developed to handle the above issues.

4.1.1. Loss-correlation Tests When a loss occurs on a
flow, we typically assume that it is because some router has
decided to drop the packet. Since this router is low on buffer
space, either because the instantaneous or time-averaged
buffer occupancy (in RED) is high, it is more likely to drop
more packets in the near future compared to other times.
Therefore, the conditional loss probability for packets ar-
riving at the router soon after a loss is expected to be higher
than the overall loss rate for all packets at the router. In ad-
dition, the more recent the previous packet loss, the higher
this conditional loss probability.

For an endpoint, this observation implies that losses are
likely to come in bursts on a single flow. If two separate
flows from a source share a common bottleneck then the
likelihood of a flow observing a loss should be higher as
well, if the other flow has recently observed a loss. In fact,
if packets from the different flows are transmitted closer to-
gether in time than packets from the same flow, the con-
ditional loss probability should be higher across the flows
than within the same flow. However, if the separate flows
do not share a bottleneck, it is very unlikely that the arrival
of losses should have such a temporal-correlation across
flows. Based on this observation, Rubenstein et al. designed
a test [20] to determine if a pair of flows (Flow A and Flow
B) share a bottleneck. This test, which we call the the asym-
metric loss-correlation test, picks one of the flows (Flow
A) as the comparison flow and computes the following: (1)
Asymmetric loss auto-correlation: Conditional loss prob-

ability for packet on Flow A following a loss on Flow A. (2)
Asymmetric loss cross-correlation: Conditional loss prob-
ability for packet on Flow B following a loss on Flow A.

The test compares the value of these two metrics. If the
cross-correlation is higher than the auto-correlation then the
conclusion is that a shared bottleneck is present. This test
helps detect if the bottlenecks that Flow A encounters are
encountered by Flow B as well. The test will not detect that
Flow B traverses additional bottlenecks not faced by Flow
A which is key to detection of false sharing. Therefore,
we define a new test, the symmetric loss-correlation test,
which uses the following metrics: (1) Symmetric loss auto-
correlation metric: The number of back-to-back losses on
both flows divided by the number of loss events on both
flows. (2)Symmetric loss cross-correlation metric: The
conditional loss probability for packet on the alternate flow
following a loss on either flow.

As in Rubenstein et al.’s tests, if the cross-correlation is
less than or equal to the auto-correlation, then it is likely
that the two flows do not share a bottleneck link. In our test,
the metrics are the same regardless of which flow is A and
which is B and the test is designed to detect if Flows A and
B share an identical set of bottlenecks.

A key assumption made by this loss-correlation test, as
well as the delay-correlation test described in the next sec-
tion, is that the transmission spacing between packets from
different flows is smaller than within the same flow. This
is generally not true because many applications and trans-
port protocols transmit packets in bursts, causing multiple
packets from the same flow to be sent back-to-back. This
will cause the auto-correlation metric to be higher than the
cross-correlation metric (since the samples are taken closer
together in time). Rubenstein et al. suggest sending addi-
tional “Poisson Probes” to generate packet samples in such
a way that the packet inter-arrival time at a shared point of
congestion is higher across flows than within the same flow.
In contrast, we rely on the congestion sharing system to
schedule existing data traffic such that there is a reasonable
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Figure 5. Correlation-based detection: The plots show the mean of the two delay-correlation metrics bound by
their respective 90% confidence intervals.

degree of interleaving of packets from different flows within
a macroflow. Therefore, we do not need to send any addi-
tional traffic to perform our tests. However, with a sched-
uler, when one of the flows has been given a higher share
of the bandwidth, it may send many packets in a row. In
such situations, we only consider conditional loss proba-
bility samples in which the required interleaving of pack-
ets occurs. This same sub-sampling technique, also applied
to the delay-correlation tests, ensures that the comparison
between cross-correlation and auto-correlation can be used
even when bandwidth is apportioned unequally.

4.1.2. Delay-correlation Test The delay experienced by
a packet is composed mainly of the propagation time and
queueing delay. Like the loss behavior of a path, current
queuing delay on a path is variable and strongly related
to recent values of queuing delay. Therefore, we can again
compare the delays of consecutive packets within a flow and
those across flows to detect shared paths.

Delay measurement presents some difficult challenges.
For example, clocks on end hosts cannot easily be synchro-
nized. Therefore, any tests must rely on either the change
of delay over time or the relative delay of packets be-
tween a single source and destination. We use the delay-
correlation test as defined by Rubenstein et al. to compare
these changes over time. We describe the test briefly here.

In the delay-correlation test, each packet transmitted is
marked with a timestamp at the source. At the receiver, the
difference between the source timestamp and current time is
recorded. Assuming that clock drift is minimal, the lack of
clock synchronization may result in all measurements for
a single flow may being off by a fixed constant. The end
hosts compute two metrics using this data: (i) the correla-
tion of a packet’s delay to the previous packet on the same
flow (delay auto-correlation), and (ii) the correlation of a
packet’s delay to the previous packet on the other flow (de-
lay cross-correlation). Since the computation of correlation
eliminates any constant differences between the flows, the
lack of synchronization has no affect on the values of these

metrics. As in the case for loss, if the cross-correlation met-
ric is equal to or less than the auto-correlation metric, then
it is likely that the two flows do not share a bottleneck link.

Figure 5(a) shows how the delay correlation met-
rics and the 90% confidence intervals for these metrics
evolve over the duration of a transfer. The metrics are com-
puted between a DiffServ AF flow and a DiffServ BE
flow from a single source. These flows are treated differ-
ently by the network. The cross-correlation metric quickly
drops below the auto-correlation metric and by 40 sec-
onds the 90% confidence intervals no longer overlap where
we can clearly identify that the flows do not share any bot-
tlenecks. The loss-correlation metrics exhibit similar
behavior. Figure 5(b) shows the delay-correlation met-
rics and their 90% confidence intervals for two DiffServ
BE flows from a single source. Here, the cross correla-
tion metric increases beyond the auto-correlation metric,
albeit slowly, and by 100 seconds the confidence inter-
vals no longer overlap. In general, for both the loss and
delay correlation tests, we use the 90% confidence inter-
vals around the cross and auto-correlation metrics to decide
which one is greater.

4.1.3. Out-of-order Test The delay-correlation test does
nothing to identify that the different flows have fundamen-
tally different magnitudes of delay. The topology in Fig-
ure 1(d) illustrates a situation with this problem. The bottle-
neck link is shared by both the test flows, because of which
both the loss-correlation and the delay-correlation tests will
identify the flows as sharing a bottleneck. However, the two
flows have very different end-to-end delays and many con-
gestion control algorithms, including TCP’s AIMD, would
need to treat them differently. Measuring the magnitude of
this delay is difficult due to the lack of synchronized clocks.
Also, we would like not to rely on round-trip measurements
to avoid noise that the return path may introduce.

The out-of-order test handles this situation by looking
for packet reordering from a source. Each packet is marked
with an increasing sequence number at the source. Since re-
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Figure 6. Detection of False Sharing: Results for the Service Differentiation case plotted as a function of the
fraction of bandwidth apportioned to AF. The correct decision is no share.

cent studies [19, 18] have shown that reordering by more
than three packets is relatively rare on most of today’s In-
ternet, we assume that significant degrees of reordering are
caused by false sharing and check to see if packets belong-
ing to flows in the same macroflow consistently arrive out of
order to detect false sharing (when reordering occurs on 10
different occasions or more). However, for this test to work,
packets must be delivered to the same physical destination.
Therefore, this test (as described) cannot be applied to de-
tect scenarios such as NATs en route. In such situations, we
rely on RTTs as a fall-back strategy. Also, the out-of-order
test, produces either a decision that the flows do not share
a bottleneck or an inconclusive result. However, the previ-
ous tests answer that either a pair of flows share a link, a
pair of flows do not share a link, or remain inconclusive.

4.2. Detection Time and Accuracy

We now evaluate the performance of these detection
schemes in a variety of situations. We consider two met-
rics for each test: (i) the time until the test returns the cor-
rect answer and (ii) how often the run returns a correct. We
evaluate the tests in four different scenarios of Figure 1. The
results shown here are averages over 20 simulation runs.

Figure 6 shows the performance of these tests on the
topology in Figure 1(a) (DiffServ). The source in this topol-
ogy transmits two flows through the network: a BE flow
and an AF flow. We vary the allocation of bottleneck band-
width to the different DiffServ classes. Recall that a 20% al-
location of bandwidth to AF flows corresponds to an equal
per flow bandwidth share in this case. Figure 6(a) shows
the average time before a test returns the decision of “no
share”. Runs in which a test never returns the correct an-
swer are not reported on the graph. Figure 6(b) shows how
often the various tests succeed at detecting the false shar-
ing. From these graphs, we see that the out-of-order tests
provide the best results, the loss-based tests do not produce
accurate or timely results, and the delay-correlation test pro-
duces results quickly, but not accurately. Figure 7(a) shows

the results for detection as a function of extent of false shar-
ing for the unshared bottlenecks scenario (Figure 1(b)). As
in the case with DiffServ, the delay based tests perform best.

The results for fully-shared scneario (Figure 1(d)) are
shown in Figure 7(b) which shows the detection speed of the
various tests. Since all packet drops and queueing delays are
caused by a single router, we expect the loss-correlation and
delay-correlation tests to identify that the two flows share
all bottlenecks. These tests do indeed produce the result of
shared bottleneck or remain inconclusive (accuracy results
are not shown here). However, we need a test that indicates
that false sharing is occurring. Figure 7(b) shows that the
out-of-order test does quickly report that different RTTs are
present. (The out-of-order test also produces the correct de-
cision of no share almost always. Again the accuracy results
for this test are not shown here.) However, various conges-
tion control schemes may treat this situation differently. Al-
gorithms that care about bottleneck sharing but not about
RTT differences can treat this situation as an opportunity
for sharing. If RTT affects the congestion control (e.g. TCP,
TFRC) then false sharing should be detected.
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Figure 8. Semi-shared case: Detection accuracy.

The accuracy of the tests in the partially shared bottle-
necks scenario (Figure 1(c)) is shown in Figure 8. The ba-
sic performance trade-offs of the three test are similar to
those in the other scenarios. Notice that unlike the sym-
metric loss-correlation test, which correctly identifies the
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false sharing, the asymmetric test can only identify the sin-
gle shared bottleneck and frequently produces an incorrect
or inconclusive result. While the performance difference is
especially evident in this scenario, the symmetric test per-
formed significantly better in the other scenarios as well.

4.3. The Effect of Multiple Bottlenecks
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Figure 9. Multiple bottlenecks: Detection time for
the out-of-order test in the fully-shared scenario.

The results for the accuracy and speed of our loss-,
delay- and order-based detection tests presented in the pre-
vious section are for the case when the two test flows share
the bare minimum number of bottlenecks – 0 for the topol-
ogy in Figure 1(b), and 1 for the Figures 1(c) and (d). In
this section, we present results for the effect of increased
number of shared hops between the flows undergoing false
sharing. Conceivably, the detection tests become less effec-
tive in this regime. Intuitively, there are two reasons for
this. Firstly, the cross traffic at each additional causes the
two flows to see increasingly similar loss and delay patterns
at higher number of shared hops. Detection tests now take
longer to observe a significant mismatch in delay or loss
correlations. Secondly, at higher number of shared hops,
the bandwidth performance seen by flows undergoing false-
sharing becomes increasingly similar, reducing the penalty
due to false sharing. Next, we quantify these effects.

Figure 9 plots detection speed using the out-of-order test
for the fully-shared bottleneck topology of Figure 1(b). As
the number of shared hops between the two flows increases
the time taken to detect false-sharing shows a correspond-
ing increase (the curves shift upward) as expected.

Figure 10(a) shows the penalty due to false sharing as a
function of the number of shared hops when the value of
ratio in Figure 1(d) (the ratio of the delays of the last hops
in the two test paths) is fixed at

�
. Figure 10(b) shows the

corresponding results when the ratio is fixed at � . In either
figure, as the number of shared hops increases, the differ-
ence in the bandwidths of the two flows when they are not
in the same macroflow diminishes as a result of a drop in
the “extent” of false-sharing. However, when compared to
Figure 10(b) the corresponding difference in the bandwidth
performance is smaller in Figure 10(a), where the ratio is
lower. Figure 9 shows that the performance of the detec-
tion test is accordingly inferior at lower values of ratio. This
suggests that the detection tests perform reasonably well, as
long as the penalty due to false-sharing is reasonably high,
irrespective of the number of shared hops.

5. Response to False Sharing
We examine how false sharing tests can be integrated

into shared congestion maangement systems. We answer
two questions: (i) Do congestion sharing systems need a
simple mechanism that turns information sharing on and off
or should they be modified otherwise? (ii) How quickly do
such systems recover after detecting false sharing?

5.1. Design Issues

Key characteristics of the detection tests encourage a de-
fault behavior of sharing information across flows and de-
tecting false sharing instead of separating flows and de-
tecting when they share all bottlenecks. One of the rea-
sons for this is the scheduling issue discussed in Section 4.
These tests work best when packets are transmitted in a
nice interleaved fashion. Such scheduling is only possi-
ble when the flows are placed in the same macroflow and
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Figure 10. Multiple bottlenecks: Penalty due to false sharing for the topology in Figure 1(d) for ratio � �����
.

share congestion information. Secondly, delay and loss-
correlation tests detect false sharing much more quickly
than genuine sharing (see Figures 5(a) and (b)). Essentially,
in order to detect sharing, the tests must measure a higher
cross-correlation than auto-correlation. Since it is likely that
the cross-correlation is only marginally higher than auto-
correlation, it takes quite some time before the tests can con-
fidently state that the flows share a bottleneck. In the case
of false sharing, it is very likely that the cross and auto-
correlations are significantly different. Therefore, the tests
quickly detect false sharing. Thirdly, it does not make sense
to apply the out-of-order test with a default of no-sharing
because it never produces an output of “share” for test flows.
It may also seem that a default of sharing congestion state
can cause in a host that is trying to detect false sharing to
transmit data too quickly and flood the network. However,
as we showed in Section 3, the bandwidth achieved dur-
ing false sharing is limited by the slower of the flows. Also,
the loss rate on the affected links is not increased by the in-
correct congestion control actions. hence, the right behavior
for a congestion control system is to share congestion infor-
mation whenever possible and detect incorrect sharing.
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Figure 11. Detection time vs. level of confidence.

Upon detecting false sharing, the congestion control sys-
tem should stop sharing information across the affected
flows. In the Congestion Manager this is done by associat-
ing the flows with separate macroflows. This process is re-
versible. If at some later time, the end host identifies that a
pair of flows did not have false sharing, it should share con-

gestion information across the flows by re-assigning them
to the same macroflow. The lack of significant penalty as-
sociated with making an incorrect decision encourages the
use of relatively small confidence intervals on the differ-
ent tests. As shown in Figure 11, this significantly reduces
the detection time. Also, once false-sharing has been de-
tected to a particular destination, the default behavior for
immediate future connections, short or long, to the destina-
tion should be to not share congestion state.

5.2. Performance
Next, we show that using the detection tests, the perfor-

mance of flows undergoing false sharing can be restored
within a reasonable amount of time. To this end, we run sim-
ulations as follows: (1) Run a simulation with two test flows
in the same macroflow to completion. (2) Detect false shar-
ing, if any, using the out-of-order test, at time � (���� �
	�� , say.
(3) Re-run the simulation under the exact same conditions
as the previous run using the same random seed for the sim-
ulation with flows sharing congestion state (The receivers
in ns-2 are yet to be changed to automatically detect and re-
spond to false sharing.). Ater time � (���� ��	�� , put the flows into
distinct macroflows and run to completion. We apply this
methodology to the scenario in Figure 1(a).
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Figure 12. End-system response to detection: Ser-
vice differentiation scenario.

Figure 12 shows the fraction of the fair-share bandwidth
attained by the AF flow over time, starting from the detec-
tion of false sharing, for different values of the fraction of



the underlying bandwidth apportioned to AF traffic for the
service differentiation topology in Figure 1(a). The typical
time of detection using reordering tests is between 5-10s
from the start of the connection. It can be seen that in less
than a factor of 3 of the time taken to detect false sharing
the performance is restored to reasonable levels.

6. Summary
False sharing may arise in shared congestion manage-

ment systems, when such systems unknowingly force flows
facing distinct bottlenecks to share congestion state. We
study this problem in detail, investigating sources of false
sharing and analyzing its negative impact. Using simula-
tion and analysis, we show that for shared congestion con-
trol using TCP-style algorithms, the correctness of conges-
tion control is not compromised even when two or more
flows of very different bandwidths end up sharing informa-
tion. In particular, the slower sender does not overload its
bottleneck link, but faster senders are heavily penalized due
to false sharing. We also present tests based on packet loss
patterns, packet delay, and packet reordering statistics to ac-
curately detect false sharing and find that reordering statis-
tics are the most robust and fast detectors (5-10 secs) of false
sharing. Finally, for integrating these tests into a shared con-
gestion management system, our simulation results show
that it is easier to start with the default set to share conges-
tion information than with the default set to “don’t share”.

In conclusion, we believe that our results provide the
first, and definitive insights that address and eliminate a key
problem that has stalled the deployment of shared conges-
tion management systems in the Internet.
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