
A Highly Available Software Defined Fabric

Aditya Akella Arvind Krishnamurthy
UW-Madison University of Washington

akella@cs.wisc.edu arvind@cs.washington.edu

ABSTRACT
Existing SDNs rely on a collection of intricate, mutually-
dependent mechanisms to implement a logically centralized
control plane. These cyclical dependencies and lack of clean
separation of concerns can impact the availability of SDNs,
such that a handful of link failures could render entire por-
tions of an SDN non-functional. This paper shows why and
when this could happen, and makes the case for taking a
fresh look at architecting SDNs for robustness to faults from
the ground up. Our approach carefully synthesizes various
key distributed systems ideas – in particular, reliable flood-
ing, global snapshots, and replicated controllers. We argue
informally that it can offer high availability in the face of a
variety of network failures, but much work needs to be done
to make our approach scalable and general. Thus, our pa-
per represents a starting point for a broader discussion on
approaches for building highly available SDNs.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Distributed net-
works

Keywords
software defined networks; distributed control

1. INTRODUCTION
By enabling logically-central, software-based control of

a network, Software Defined Networking (SDN) improves
the agility of network management, lowers costs, and helps
operators roll out novel network control services. To date, a
number of research and development efforts have shed light
on how best to leverage SDN to fully realize these benefits
in operational settings big and small [6, 7, 8, 2]. The early

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotNets-XIII, October 27–28, 2014, Los Angeles, CA, USA.
Copyright 2014 ACM 978-1-4503-3256-9/14/10 ...$15.00
http://dx.doi.org/10.1145/2670518.2673884.

promise shown by these efforts has spurred rapid adoption
of SDN in many production settings [6, 7, 11].

However, a critical examination of the SDN architecture
in its entirety has not been conducted to date. In particu-
lar, important availability-centric questions such as “can to-
day’s SDNs always guarantee that routes can be established
between every pair of connected nodes in a network?”, and
more generally, “how can an SDN cope with link and node
failures?” are not as well understood as SDN’s flexibility
and performance benefits.

A clear understanding of the availability issues induced
by SDN is paramount as it helps put SDN’s other benefits in
context: for instance, if the management flexibility afforded
by SDN comes at a steep, and fundamental, availability cost,
then perhaps it does not make sense to adopt the SDN archi-
tecture in the first place.

In this paper, we examine the different components of ex-
isting SDN systems, and their reliance on a variety of net-
working and distributed systems protocols. We argue that
SDNs today cannot offer high network availability, as in
guarantee that routes can be established between a pair of
nodes as long as there is a physical path connecting the
nodes. Luckily, we find that it is possible to re-architect to-
day’s SDNs in a more principled fashion to be fault-tolerant
from the ground up.

SDN Availability Issues. We start by noting that existing
SDNs do not have a sufficiently clean separation of concerns
among their internal modules. In particular, three key mod-
ules of SDNs – distributed consensus protocols, mechanisms
for supporting switch-controller or controller to controller
communication, and transport protocols for reliable message
exchange – can have cyclical dependencies on each other.

These inter-dependencies imply that the failure of a hand-
ful of network links may temporarily disconnect switches
from controllers or controller instances from one another.
We advocate using reliable flooding to eliminate some of
these dependencies.

However, existing SDNs’ availability issues are rather in-
trinsic in nature, such that even with reliable flooding, it may
not be possible to achieve high availability. For example,
two switches in a connected minority component of a net-

1

work may not be able to communicate with each other even
though they have a physical path connecting them.

Why do these issues arise? Fundamentally, by extricating
the control plane out of network devices and implementing
it using a distributed system, SDNs inherit the weaknesses
associated with reliable distributed services. Furthermore,
because the distributed services are used to control the un-
derlying network, the weaknesses become magnified.

For instance, requiring controllers to assemble a majority
quorum to process network events could be impossible un-
der partitions [3], a consequence of which is that switches
in a minority partition can no longer be controlled (see Fig-
ure 1 – covered in detail in §2). Such partitions are likely
to happen in practice [10]. One could potentially fix this
by reconfiguring the controller set and associating with each
partition its own controller set. However, this falls short in
other situations, e.g., where asynchronous delivery of net-
work events leads to inconsistent topology views at different
controllers, leading some controllers to incorrectly initiate
reconfiguration and attempt to exercise independent control
over a subset of switches (see Figure 2 – discussed in §3).

Based on the observations above, we argue that thoroughly
addressing availability requires changes both to the design
of reliable distributed services as well as the SDN support
in the underlying network. To this end, we present a sys-
tematic rearchitecting of SDNs and present the design for a
highly available software defined fabric that addresses the
above weaknesses.

We borrow classical algorithms from the distributed sys-
tems community and presents a co-design of the network
layer protocols and the distributed management services that
provides a high degree of availability without compromis-
ing on safety or controller consistency even under arbitrary
network partitions. To complete this design, we need to ad-
dress issues related to optimizing performance and interac-
tions with network management protocols, and we leave this
to future work.

2. BACKGROUND AND MOTIVATION
SDN is a popular approach because the “clean” separa-

tion it advocates between the control and data planes en-
ables rapid prototyping of network control plane functions.
We observe that it is non-trivial to realize this separation in
practice without sacrificing availability today. We now sub-
stantiate this observation, starting first with an overview of
state-of-the-art SDN designs, followed by a discussion of the
problems that are inherent to them.

A typical SDN architecture comprises of:
• A simple data plane consisting of the forwarding state

at network elements, which perform match-action func-
tions for each incoming packet (i.e., find matching for-
warding state and take the appropriate action).

• A logically central control plane, often implemented by
a distributed collection of physical controller machines

for availability. Based on events reported by data plane
elements (e.g., a link or switch failing), the current view
of network topology, and the current data plane state, the
control plane computes a new forwarding state and up-
dates the data plane accordingly. In many SDN deploy-
ments, the controllers run distributed protocols (e.g., dis-
tributed consensus protocols such as Paxos [14]) to en-
sure they have a consistent view of network topology and
data plane state even in the presence of controller failures
or disconnections.

• A control channel for communication between the data
plane and control plane elements. Implemented as a point-
to-point TCP connection, the control channel is used by
switches to communicate events of interest to the con-
trollers, for controllers to communicate with each other
for coordination purposes, and for controllers to push
forwarding state updates down to the switches. The con-
trol channel could be out-of-band: many SDNs rely on
legacy distributed protocols (e.g., VLANs/MST, BGP)
to install paths for implementing such out-of-band con-
trol channels [6, 7, 11]. The control channel can also be
in-band, i.e., the paths computed by the control plane are
themselves used to support the control channel.

2.1 Impact on Availability
The set of network and distributed systems protocols that

come into play in an SDN system have complex/critical de-
pendencies. Consider in-band control channels, where inter-
twined dependencies between the transport, forwarding, and
distributed control plane modules become immediately ap-
parent: distributed control plane protocols rely on forward-
ing and transport protocols for basic message delivery; in
turn, forwarding depends on transport (for switch-controller
and inter-controller communication) and on the distributed
control plane for route set-up. These dependencies not only
increase system complexity but also introduce complex fail-
ure modes; for example, the system might not be able to
react to a switch failure if the event notification is not reli-
ably delivered to the controllers or if the controllers them-
selves cannot communicate with each other (due to the same
failure or other related failures) in order to achieve consen-
sus regarding distributed control. In the case of out-of-band
control channels, distributed consensus protocols are forced
to depend on a separate suite of legacy protocols, the very
protocols that SDN solutions are supposed to replace and
simplify.

A second aspect of SDNs is that they are susceptible to
availability issues. One can imagine such availability issues
stemming from reliance on legacy protocols and the inter-
dependencies referred to above. For example, failure of one
or a handful of links can make a BGP-based network control
channel dysfunctional as parts of the network may not be
routable from one another for extended periods of time due
to BGP reconvergence [13, 20], even though the physical
network has a live path connecting them.

2

However, the availability issues in SDNs are more deep
rooted than that and arise even in the presence of ideal con-
trol channels that don’t impose any dependencies.

Consider the network depicted in Figure 1. When the
S4 − S6 and S4 − S8 links fail and the network is parti-
tioned, the data plane for the partition on the right cannot be
updated since the switches there can contact only a minority
group of a replicated control plane (i.e., C4 and C5). Cru-
cially, S6 and S8 cannot communicate with each other if the
previously configured path between them is not wholly con-
tained in the new partition. In §3, we argue that simple fixes
to this only address part of the availability issue.

Crucially, legacy distributed protocols such as OSPF do
not suffer from this issue: when partitions happen, OSPF
routers re-converge to new intra-partition routes. In other
words, current SDN designs fail to provide important fault-
tolerance properties, which renders SDNs less available than
traditional networks in some situations!

3. DESIGN
In this section, we outline the design of a fault-tolerant

SDN fabric that can provide a high degree of availability in
the presence of various kinds of network failures. Our de-
sign presents a rethinking of the SDN architecture, from the
control channel up to the control plane, to address dependen-
cies and avoid pitfalls intrinsic to SDNs today. We present
the design as a series of refinements starting from a base-
line design, with each refinement addressing some aspect of
availability or controller consistency.

3.1 Baseline Design
We start with a baseline design that guarantees consis-

tency of controller state and allows for switches/controllers
to communicate reliably but does not necessarily provide
high availability. It incorporates two sets of mechanisms.

Reliable Flooding: To completely free the control channel
from all dependencies, we advocate a control channel based
on reliable flooding. Such a control channel can be estab-
lished without depending on routing or transport protocols.

Replicated Controllers: Controllers are made robust to fail-
ures using state machine replication and reliable flooding.
In particular, controllers use a consensus protocol such as
Paxos [14] to obtain consensus from a quorum (typically a
simple majority of controllers) before responding to changes
in topology and system configuration. For example, when-
ever there is a topology change (e.g., a link down or a link
recovery event), the controllers come to a consensus that the
corresponding event will be the next event that will be han-
dled by the controllers and communicate to the switches the
new set of forwarding rules based on the updated topology.
All communications between controllers in order to reach
consensus and communications from controllers to switches
are handled using reliable flooding.

This baseline design is robust to controller failures (as

S1 S2

S3 S4

S5
C1

C2

C3
C4 C5

S6 S7

S8 S9

Figure 1: Impact of network partitions.

long as a majority are alive) and can also reliably handle
communications between controllers and switches even if
the point-to-point forwarding rules are stale with respect to
the current topology.
Pitfalls: While the baseline design provides resilience to-
wards certain types of failures (e.g., the network is operable
even if some of the controllers fail or if there is a failure in
some of the paths between controllers and switches), it is
not robust to failures that partition the controller set. Con-
sider for example the network depicted in Figure 1. If the
S4 − S6 and S4 − S8 links fail, then the network is par-
titioned. In this case, the routing and network policies for
the partition on the right cannot be updated. This is partic-
ularly debilitating if the existing routes connecting pairs of
switches in the right hand side partition are not fully con-
tained inside the partition. For example, if the route from
S6 to S8 is S6 → S4 → S8 when the network becomes
partitioned, then the route cannot be updated to the working
path S6 → S7 → S9 → S8 since the switches S6 and
S8 can contact only two of the five controllers (i.e., C4 and
C5) and would therefore not be able to put together a ma-
jority quorum to process the topology update. Even if the
switches are configured to use fast-failover in the form of a
pre-configured backup path, connectivity between S6 to S8
is not guaranteed as the backup path might also not be fully
contained inside the partition.

Thus, the baseline design ensures consistent handling of
dynamic changes to network topology, but it does not pro-
vide high availability in the case of network partitions. In
retrospect, it is apparent that the baseline design inherits
the strengths and weaknesses associated with reliable dis-
tributed services; this is just a direct consequence of software
defined networking and its separation of the control plane
into a logically centralized controller service. The ability
to perform network management operations is contingent on
the controller service being able to assemble quorums to pro-
cess network events. The availability limits associated with
distributed services (e.g., the CAP theorem [3]) can be over-
come only with some form of support from the underlying
network, which is the focus of the remainder of this section.

3.2 Partitioned Consensus
A simple modification to the above design is to allow for

3

dynamic reconfiguration of the controller set. When a parti-
tion takes place, we can try to split up the controller set into
two or more groups of controllers and associate with each
partition its own controller set. Topology updates to a given
network partition need only be handled by the controllers
residing inside of the partition and need not require a major-
ity quorum over all of the controllers in the network. This
allows each individual partition to independently tear down
old routes, install new routes, and be reactive to local net-
work changes. We briefly outline below a refinement to the
baseline design that allows for partitioned operation.

Link down: When a link between two network elements X
and Y fails, both X and Y flood the topology update through
the network. When this topology update is received by a
controller, it computes the impact of the topology update
and identifies other controllers that reside in the same net-
work partition as itself. The controller then uses the consen-
sus protocol to have the corresponding controller set process
this link failure as the next update to the network topology.
If the link failure results in a partition, then the controller
sets in the two partitions will process the link failure and
subsequent topology changes independently.

Link recovery: When a link between two network elements
X and Y becomes available, the new link might restore con-
nectivity between two network partitions. In such cases, we
might have to reconcile the state associated with the con-
troller sets of the two partitions. This requires the following
(more elaborate) protocol that can be concisely character-
ized as a two-phase commit protocol layered over consen-
sus. Let CX and CY be the controller sets associated with
the two partitions containing X and Y . We first pass a con-
sensus round in each of X and Y regarding the introduction
of the new link (i.e., we require a separate quorum consen-
sus within CX and CY). If both of these consensus oper-
ations succeed, we view the two partitions to be prepared
for the merger of the two network partitions, and we then
pass an additional consensus round on each of the controller
sets to commit the merged topology. If either of the initial
prepare rounds don’t succeed (say due to a concurrent fail-
ure/network event), then the consensus operations are rolled
back and retried.
Pitfalls: While this refinement allows for dynamic parti-
tioning of controller sets and independent management of
network partitions, there are consistency pitfalls especially
in the presence of concurrent network events. Consider the
network topology depicted in Figure 2 and let the network
link (S2, S6) fail just as the link (S4, S8) comes back on-
line. The corresponding network events will be flooded to
the controller sets, and there might be race conditions in how
they are handled. One possible outcome is that the link fail-
ure event is received first by controllers C4 and C5, who
will then proceed to process this event as the onset of a net-
work partition and elect themselves as the sole controllers
managing switches S6, S7, S8, and S9. At the same time,

S1 S2

S3 S4

S5
C1

C2

C3 C4 C5

S6 S7

S8 S9

Figure 2: Handling of concurrent network events.

let the link recovery event be the first event processed by the
controllers C1, C2, and C3. From their perspective, they
view this link recovery as a normal topology update (i.e.,
one which doesn’t repair network partitions) and can rely on
a simple majority quorum of C1, C2, and C3 to process this
update. We now have two different controller sets who can
independently perform network management operations on
switches S6, S7, S8, and S9, which can result in conflicting
management operations, inconsistent routing, and degraded
availability.

3.3 Whole Quorum Controller Consensus
The incorrect operation of controller nodes in the exam-

ple outlined above illustrates the challenges associated with
splintering the controller set especially when a link failure is
erroneously flagged as a network partition event; the larger
controller set might still be able to manage all of the switches
since they have a sufficient quorum with respect to original
controller set, while the smaller splinter group operates un-
der the assumption that it is managing its own separate net-
work partition.

One possible refinement is to use whole quorum consen-
sus over a controller group as opposed to a simple majority
quorum consensus, i.e., actions performed by the controllers
require consensus involving every member of a controller
set. This would prevent the majority set from achieving
consensus without requiring consent from the members of a
splinter group, and thus we will not have scenarios where du-
eling controller sets are managing the same set of switches.

It is worth noting that whole quorum consensus is typi-
cally not meaningful for distributed systems since the pur-
pose of replicating a service is to allow it to operate in the
presence of failures of service nodes using simple majority
quorums. Our setting deals with controller failures by refin-
ing the controller set to exclude failed nodes and requiring
whole quorum consensus on the remaining controller nodes.
This means that controller failures are explicitly handled,
and this failure processing has to be performed before any
other network management operations are effected by the
controller set. Note that a temporarily unreachable controller
node would be first removed from the controller set and then
explicitly added later when connectivity to it is restored.
Pitfalls: While the use of whole quorum controller con-
sensus can prevent conflicts in how switches are managed

4

by different controller groups, there are complications in
how state reconciliation can be performed across controller
groups. Consider again the scenario depicted in Figure 2
where the link failure event is handled by C4 and C5 (which
would result in the formation of a splinter group), and the
link recovery event is received by C1, C2, and C3 before the
link failure event. In such a setting, {C1, C2, C3} view the
link recovery as an ordinary topology update while {C4, C5}
believe that it is a partition repair operation. Further,
{C1, C2, C3} and {C4, C5} disagree on the existence of
the (S2, S6) link and might also have diverging views on
other link failure/recovery events processed independently
by {C4, C5} if they had happened in the interim.

3.4 Network-wide Transactional Updates
We present a complete design that pulls together the mech-

anisms presented in the earlier iterations. In particular, we
use a network-wide topology snapshot operation (heavily
based on the consistent snapshot algorithm [4]) along with
the mechanisms of reliable flooding, replicated controllers,
and whole quorum consensus. The resulting design ensures
consistent state management, preserves a high degree of avail-
ability, and facilitates reconciliation of partitions.

The network comprises of switches, end-hosts, and con-
trollers. We will refer to these using the generic term nodes.
Each node maintains the following local information: a snap-
shot sequence number (ssn) (initialized to zero when the
node is first introduced into the network), the set of links to
neighbors, and the most recent ssn value received from each
of its neighbors (nssn). We will assume that at the beginning
of an epoch node ni has initialized its nssn(nj) to null for
each of its neighbors nj . When a node detects a change in
its connectivity state (e.g., failure or recovery of an adjoining
link), it triggers a partition-wide snapshot operation by send-
ing a take snapshot message to itself. The following actions
are performed by a node ni upon receiving the take snapshot
from nj for the first time in this snapshot epoch (i.e., when
nssn(nj) is null for all of the node’s neighbors):

1. If the message is from a neighboring node (as opposed
to a initial snapshot message sent by a node to itself),
set nssn(nj) to the neighbor’s ssn value received with
the message;

2. increment its own local ssn;
3. send a take snapshot message to each of its neighbors

along with the incremented ssn value that replaces the
neighbor’s ssn value received with the original mes-
sage;

4. set a timeout for receiving a take snapshot message
from the other neighbors (except nj);

5. upon timing out or after collecting all nssn values, com-
pose a link state message that contains the following
information: (a) local ssn value, (b) the neighbors from
which it received a take snapshot message, and (c) the
nssn() values received along with them;

6. flood this message to all of the controllers; and

7. reset all nssn() to null.
Controllers collect all of the link state messages from the

nodes and perform the following local consistency check:
• If a controller receives a link state message from ni indi-

cating that ni received a take snapshot message from nj ,
then it should have received a link state message from nj

as well.

• Further, nj should report that it received a take snapshot
from ni.

• Finally, the nssn(nj) reported by ni should be the same
as the ssn value reported by nj .

If these consistency checks fail or if the controller fails
to receive a link state message from a node nj that was in-
cluded in some other node ni’s link state message within a
given timeout, then the controller will initiate a new partition-
wide snapshot operation by sending a take snapshot message
to itself. This operation could be triggered by any of the con-
trollers in the system. On the other hand, if the local con-
sistency check succeeds, each controller has its local report
regarding the topology of its network partition and the con-
trollers contained inside of the partition. A controller then
attempts to achieve whole quorum consensus across all of
the controllers contained in the partition regarding the link
state messages received from the nodes. This whole quorum
consensus succeeds only if all of the controllers had received
matching link state updates from the nodes. If whole quorum
consensus cannot be reached, then any one of the controllers
can initiate a new partition-wide snapshot to obtain more up-
to-date and complete information from all of the nodes.

Finally, when controllers install new rules on switches,
they send along with the update the most recent ssn obtained
from the switch. If the ssn value is stale, the switch would
disregard the update as it is likely based on stale network
topology information. Rule installation happens only after
the controllers have obtained the results of a partition-wide
snapshot and ensured that this collected information is con-
sistent across all controllers in the partition.
Observations: While a formal correctness and liveness anal-
ysis of the design is beyond the scope of this paper, we now
outline a few observations regarding the design. Concurrent
network events can trigger snapshots from different nodes at
about the same time. The snapshot operation can gracefully
handle this case as it is based on the Chandy-Lamport snap-
shot algorithm, which doesn’t require a designated node to
initiate snapshots. Concurrent changes in topology are also
dealt with consistently by different controllers. Consider
again the example depicted in Figure 2. The use of the snap-
shot mechanism ensures that the link failure and the link re-
covery events are either considered as part of the same snap-
shot or as part of two different snapshots that are ordered by
the ssn values associated with the link state messages. If they
are part of the same snapshot or if the link recovery event is
captured in an earlier snapshot, then there is no splintering of
the controller group. Otherwise, the link failure is handled

5

independently by {C1, C2, C3} and {C4, C5} and then the
controller groups are merged when the link recovery event
is identified as part of the subsequent snapshot. Additional
node failures might prevent controllers from receiving the
flooded link state updates or from achieving partition-wide
consensus. In such cases, liveness but not safety is compro-
mised. That is, a subsequent snapshot operation will result
in more up-to-date information that is reliably delivered to
the controllers. The liveness guarantee that is provided by
the design is that controllers will be able to control switches
in their partitions as long as there is a quiescent period in
which no further node failures occur, and this is similar to
the liveness guarantees associated with distributed protocols
such as Paxos or BFT. Note however that controllers are able
to eventually perform network management operations even
when partitions occur (as in Figure 1), and this is possible
only because the distributed management protocols are co-
designed with the network layer.

4. RELATED WORK
Prior works have examined specific facets of the avail-

ability issues imposed by SDN. In particular, recent studies
have considered how to leverage redundancy to improve the
reliability of controller-switch communication [19]. Along
the same lines, [9] focuses on availability issues due to flaky
switch-side functionality, for example switches stalling on
state updates, or crashing suddenly, and advocates dealing
with such issues at the SDN application layer (e.g., by pro-
visioning multiple node-disjoint paths). Others have con-
sidered ensuring availability of network state data [12, 21],
with one popular idea being to use reliable distributed stor-
age. However, none of these attempt to address the intrinsic
availability issues afflicting SDN designs that we focus on.

In [17], the authors consider the inter-play between net-
work policies and the ability of SDNs to offer partition toler-
ance. They show that arbitrary policies, e.g., isolation poli-
cies, cannot be implemented correctly on arbitrary topolo-
gies when the network is partitioned. In contrast, we show
that even simple policies – i.e., reachability among network
nodes – cannot be realized within current SDN designs; we
offer foundational prescriptions on how to overcome this.

As indicated earlier, we draw inspiration from decades of
rich distributed systems research. A key idea we employ
- distributed snapshots - has been used in many distributed
systems. Many of the follow-on works on making snapshots
efficient [16] and scalable [5] are relevant to our work. Fi-
nally, our reliable flooding approach is inspired by OSPF’s
link-state flooding [1].

5. DISCUSSION AND OPEN ISSUES
We advocated using reliable flooding as one of the mech-

anisms to ensure controllers can always communicate with
switches and amongst each other as long as a path is avail-
able. Reliable flooding can be expensive, and developing
techniques to improve its efficiency and mitigate its impact

on the network is a subject of future research. In practice, it
makes most sense to employ reliable flooding in conjunction
with traditional unicast, as a fall back when unicast cannot
offer the desired reachability.

Our description of the protocol and arguments for the prop-
erties it offers have largely been informal. Formally proving
correctness of our protocol is left for future work. A related
issue is that the mechanisms we proposed appear to be suffi-
cient to ensure availability in the face of partitions. However,
we are as yet unsure if they are all necessary. This is an im-
portant issue because the mechanisms have a direct bearing
on the complexity of switch-side implementation. It may be
possible to just rely on a subset of mechanisms, e.g, just dis-
tributed snapshots and not whole quorum consensus, but we
are yet to establish this formally.

Our protocol assumed that the network is implementing
simple end-to-end routing. In practice, the network may
wish to implement a different function, e.g., monitoring, iso-
lation, traffic steering (i.e., middlebox traversal), or traffic
engineering. Each function places a different requirement
on the nature of consensus that the controllers must arrive at.
For example, routing requires consensus over actual topol-
ogy, but filtering implemented at network end-points requires
controllers simply to agree on which partition an end-host
belongs to. Thus the function in question may affect the
mechanisms needed to ensure high availability; these could
be simpler or more complex than what we proposed.

We must also consider how our protocol interacts with
various consistent update schemes [18, 15]. Consider the
protocol described in §3.3, where we stated that switches ac-
cept a state update from a controller only if the sequence
number included therein matches the current local sequence
number. It is quite possible that among multiple switches
on a path, some may accept an update corresponding to the
path, whereas others reject it (as they initiated new snap-
shots that are as yet unaccounted for at the controllers). The
simplest way to accommodate this is to enhance the update
mechanism to prevent the new path from taking effect until
all switches have accepted an update and to use state version
numbers (similar to [18]). However, this could inflate the la-
tency for a path update to execute fully. Thus, an interesting
avenue for research here is the design of faster staged update
schemes satisfying global properties such as congestion- or
drop-freedom [15].

In essence, our paper does not provide a final answer, but
rather it forms the basis for a rich discussion of various is-
sues surrounding availability in SDN.

Acknowledgments We thank the HotNets reviewers and
our shepherd, Marco Canini, for their feedback. This re-
search was supported by NSF grants CNS-0963754, CNS-
1040757, CNS-1302041, CNS-1314363, and CNS-1318396.

6

6. REFERENCES
[1] OSPF Version 2: The Flooding Procedure. Request for

Comments 1583, Internet Engineering Task Force.
[2] T. Benson, A. Anand, A. Akella, and M. Zhang.

MicroTE: Fine Grained Traffic Engineering for Data
Centers. In CoNEXT, 2011.

[3] E. Brewer. Towards robust distributed systems. Invited
talk at Priniples of Distributed Computing, 2000.

[4] K. M. Chandy and L. Lamport. Distributed snapshots:
Determining global states of distributed systems. ACM
Trans. Comput. Syst., 3(1), Feb. 1985.

[5] R. Garg, V. K. Garg, and Y. Sabharwal. Scalable
algorithms for global snapshots in distributed systems.
In Proceedings of the 20th Annual International
Conference on Supercomputing, ICS ’06, 2006.

[6] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang,
V. Gill, M. Nanduri, and R. Wattenhofer. Achieving
high utilization with software-driven wan. In
SIGCOMM, 2013.

[7] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,
A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu,
J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat. B4:
Experience with a globally-deployed software defined
wan. In SIGCOMM, 2013.

[8] X. Jin, L. Li, L. Vanbever, and J. Rexford. SoftCell:
Scalable and Flexible Cellular Core Network
Architecture. In CoNEXT, 2013.

[9] X. Jin, H. Liu, R. Gandhi, S. Kandula, R. Mahajan,
J. Rexford, R. Wattenhofer, and M. Zhang. Dionysus:
Dynamic scheduling of network updates. In
SIGCOMM, 2014.

[10] K. Kingsbury and P. Bailis. The network is reliable.
http://aphyr.com/posts/288-the-network-is-reliable.

[11] T. Koponen, K. Amidon, P. Balland, M. Casado,
A. Chanda, B. Fulton, I. Ganichev, J. Gross, N. Gude,
P. Ingram, E. Jackson, A. Lambeth, R. Lenglet, S.-H.
Li, A. Padmanabhan, J. Pettit, B. Pfaff,
R. Ramanathan, S. Shenker, A. Shieh, J. Stribling,
P. Thakkar, D. Wendlandt, A. Yip, and R. Zhang.
Network virtualization in multi-tenant datacenters. In
NSDI, 2014.

[12] T. Koponen, M. Casado, N. Gude, J. Stribling,
L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata,
H. Inoue, T. Hama, and S. Shenker. Onix: A
distributed control platform for large-scale production
networks. In OSDI, 2010.

[13] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian.
Delayed internet routing convergence. In SIGCOMM,
2000.

[14] L. Lamport. Paxos made simple. ACM SIGACT News,
32(4):18–25, Dec. 2001.

[15] R. Mahajan and R. Wattenhofer. On consistent updates
in software defined networks. In HotNets, 2013.

[16] F. Mattern. Efficient algorithms for distributed
snapshots and global virtual time approximation. J.
Parallel Distrib. Comput., 18(4), Aug. 1993.

[17] A. Panda, C. Scott, A. Ghodsi, T. Koponen, and
S. Shenker. Cap for networks. In HotSDN, 2013.

[18] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and
D. Walker. Abstractions for network update. In
SIGCOMM, 2012.

[19] F. Ros and P. Ruiz. Five nines of southbound reliability
in software-defined networks. In HotSDN, 2014.

[20] A. Sahoo, K. Kant, and P. Mohapatra. Bgp
convergence delay after multiple simultaneous router
failures: Characterization and solutions. Comput.
Commun., 32(7-10), May 2009.

[21] P. Sun, R. Mahajan, J. Rexford, L. Yuan, M. Zhang,
and A. Arefin. A network-state management service.
In SIGCOMM, 2014.

7

