
Using Mini-Flash Crowds to Infer Resource Constraints in
Remote Web Servers

Pratap Ramamurthy?, Vyas Sekar†, Aditya Akella?, Balachander Krishnamurthy??, Anees Shaikh††

?University of Wisconsin-Madison , †Carnegie Mellon University
??AT & T Labs–Research , ††IBM Research

ABSTRACT

Unexpected surges in request traffic (e.g., flash crowds) can ex-
ercise server-side resources such as access bandwidth, CPU, and
disks in unanticipated ways. Administrators today do not have the
requisite tools to fully understand the effect that flash crowds can
have on server-side resources. As a result, most Web-servers today
rely on significant over-provisioning, strict admission control, or
alternatively use potentially expensive solutions like CDNs to pro-
vide high availability under load. A more fine-grained understand-
ing of the performance of servers under emulated but controlled
flash crowd like conditions can guide administrators to make more
efficient provisioning and resource management decisions.

We present the initial design of Mini-Flash Crowds (MFC) – a
light-weight wide-area profiling service that reveals resource bot-
tlenecks in a Web-server infrastructure, including access bandwidth,
processing resources, and back-end data management. The MFC
approach is based on a set of controlled measurements in which
an increasing number of distributed clients make synchronized re-
quests to exercise specific resources of a remote server. Using a
number of wide-area experiments and controlled lab tests, we show
that our approach can faithfully track the impact of request loads
on different server resources. Our approach is non-intrusive and
thus we can use it to actively probe numerous live Web servers.
We present the results from a preliminary measurement study of
resource provisioning on public Web servers.

Categories and Subject Descriptors

C.4 [Performance of Systems]: [Measurement techniques, Mod-
eling techniques, Reliability, Availability, and Serviceability]

General Terms

Management, Measurement, Performance

Keywords

Flash crowds, Web performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
INM’07, August 27–31, 2007, Kyoto, Japan.
Copyright 2007 ACM 978-1-59593-788-9/07/0008 ...$5.00.

1. INTRODUCTION
Providers of Web-based applications have to provision resources

(processing and memory capacity, access bandwidth, database and
storage) to ensure good response time. Providing this consistently
under a broad range of operating conditions requires an ability to
predict the volume and mix of requests. Large providers typically
resort to over-provisioning, distributed content delivery, or dynamic
resource provisioning. Smaller providers provision for the common
case by trading off robustness to large variations in workload for a
cheaper infrastructure. Yet, operators are left without a sense of
how their application infrastructure will handle large increases in
traffic due to planned events or unexpected surges due to attacks or
flash crowds. Such events can lead to significant loss of revenue
and dissatisfied users if the infrastructure is unable to maintain rea-
sonably good service or at least degrade gracefully.

We introduce a profiling service to help operators better under-
stand the ability of their Internet applications to withstand increased
request load. We propose Mini-Flash Crowds (MFC) – a mech-
anism that reveals constraints in the application infrastructure by
quantifying the number and type of simultaneous requests that are
likely to tax specific resources and affect response time. Using
MFC, an application provider can compare the impact of an in-
crease in database-intensive requests versus an increase in bandwidth-
intensive requests. Armed with other information (say, through
controlled lab testing), the operator can make better decisions on
provisioning additional resources or introducing request shaping.

A MFC is a phased set of controlled measurements in which
an increasing number of distributed clients make synchronized re-
quests to a remote application server. These requests attempt to ex-
ercise a particular part of the infrastructure such as network band-
width, local disk, or back-end database. As the number of syn-
chronized clients increases, one or more resources may become
stressed, leading to a small but discernible rise in the response
time. At this point, inferences can be made about the resource pro-
file of the application. The number of clients making simultaneous
requests is increased only up to a pre-set maximum – if there is
no change in the response time, we label the application infras-
tructure as unconstrained. This somewhat conservative approach
allows MFC to reveal resource limitations for many applications
while limiting its intrusiveness on the tested sites.

The MFC technique can be thought of as a “black-box” approach
for determining the resource limitations of an Internet application,
or for uncovering performance glitches, vulnerabilities, and config-
uration errors that were not apparent from internal testing in a lab
or data center. The key advantages of the MFC approach are: i)
lightweight and non-intrusive measurements that have minimal im-
pact on, and involvement from, production servers; ii) use of real,
distributed clients that test the deployed application infrastructure,

and accurately reflect the effects of wide-area network conditions;
and iii) ability to work with a broad range of Web applications with
little or no modification, while at the same time providing some
tunability to run more application-specific tests.

We conducted many wide-area and controlled lab experiments
using synthetic workloads to validate MFC’s ability to track server
response times and reveal resource constraints. We also conducted
preliminary experiments over live Web servers and known Phishing
servers. Early results indicate that the MFC approach is an impor-
tant contribution to the set of tools and services for profiling the
performance and availability of Web servers.

2. MINI-FLASH CROWD DESIGN

2.1 Solution Requirements
Our goal is to develop a mechanism that gives application providers

useful information about resource limitations without imposing un-
due load on their infrastructure. From the operator’s point of view,
the mechanism should accurately reflect the application’s perfor-
mance under realistic load conditions; i.e., the information should
be representative. Traditional benchmarking approaches in con-
trolled LAN settings (e.g., [11]) do not account for wide-area con-
ditions or characteristics of the actual Internet connectivity (e.g.,
speed, diversity, etc.). Thus, we need to stress the actual appli-
cation infrastructure using clients distributed around the Internet.
Secondly, the approach should be largely automatic, requiring min-
imal input from operators about the specifics of the application and
infrastructure. Finally, allowing some tunability is desirable for
testing specific applications, and for tailoring the measurement to
different operational goals. Some applications may be tolerant to
large increases in response time (e.g., software binary distribution
services), while others may be more sensitive to increases in re-
sponse time (e.g., it may be important to know that a 10% increase
in request volume causes the response time to double).

2.2 MFC methodology
The above requirements raise several technical challenges. De-

veloping a generic request workload that can exercise a specific
combination of resources on a production server infrastructure is
difficult. Given an observed increase in response time, it is non-
trivial to attribute it to contributions from individual server resources.
For example, it may be very difficult to attribute a 50ms increase
in response time to a bandwidth bottleneck at the server versus a
limitation of the server processing capacity. Another challenge is
the problem of exercising tight control on the load imposed on the
application infrastructure from a set of distributed clients whose
requests may be affected unpredictably by wide-area conditions.

To exercise specific server resources, we issue concurrent re-
quests from a number of clients for a particular type of content. For
example, to exercise a server’s network connection, we can make
concurrent requests for large objects hosted at the server (e.g., bi-
nary executables, movie files). To minimize the need for server-
side input and to maintain a level of generality in the approach, we
survey the content hosted on the server and automatically classify
it into different types using heuristics such as file name extensions
and file sizes. We achieve tight control over the load on the server
resources by scheduling client requests in a centralized manner us-
ing measurements of the network delay between each client and the
target server.

Figure 1 shows a single coordinator orchestrating the MFC ex-
periment on a target server. At the coordinator’s command, a spec-
ified number of participating clients send synchronized requests to
the target server. A set of measurers monitor the progress of the

Figure 1: Structure of a Mini-Flash Crowd experiment.

MFC by sampling the response time at the target and communicat-
ing with the coordinator. The coordinator uses the feedback from
clients and measurers to determine how long to run the MFC. The
overall experiment consists of a profiling step, followed by several
measurement phases.

Profiling target content. Before the MFC experiment begins, the
profiling step involves the coordinator crawling the target site. The
coordinator classifies the objects discovered during the crawl into
a number of categories based on content-type, for example, regu-
lar/text (for text and HTML files), binaries (e.g, .pdf, .exe, .tar.gz
files), images (e.g., .gif, .jpg files), and queries (e.g., form ele-
ments). Objects are further classified into three categories based
on the reported object sizes (issuing a HEAD request for files and
GET request for queries) – Small Objects, Large Objects and Small

Queries. The Small Objects and Large Objects groups contain reg-
ular files, binaries, and images whose sizes are less than 10KB or
greater than 100KB, respectively. We also note the URLs which ap-
pear to generate dynamic responses (e.g., by executing scripts), and
sort them by the size of the returned data. The Small Queries cat-
egory is populated with the smallest 10th percentile from this set.
Note that a small query is not necessarily a “form”, but a prede-
fined URL with a “?” which indicates a CGI script. The categories
of object requests are selected for their expected impact on specific
server resources (refer Section 3).

MFC Stages. After completing the profiling step, the MFC exper-
iment proceeds in stages. In each stage, the MFC attempts to exer-
cise a specific set of server resources by making a varying number
of synchronized requests for objects from the same category.

In the Small Object stage, participating clients request unique

small objects (if available). Assuming the same objects are not re-
quested simultaneously by other clients (and hence cached in the
server’s file system), we expect this stage to primarily impact the
disk sub-system. In the Large Object stage, participating clients re-
quest the same large object simultaneously, primarily exercising the
server’s network access bandwidth. Since we request the same ob-
ject multiple times, the likely caching reduces risk of impacting of
the disk. In the Small Query stage, clients make requests for unique
dynamically generated data if available; else the same object is re-
quested. Since such queries often require some interaction with a
backend database, we expect that this stage will affect the back-end
information system, irrespective of whether the clients request the
same or different small queries1. Finally, in the Base stage, clients
make a HEAD request for the base Web page hosted on the tar-
get servers (e.g. index.html or index.php). This stage provides an

1The load on the database backend is likely to be lighter in the latter
case due to caching of results in the DB front-end.

estimate of the basic request processing time at the server.
Within each stage, we assume that the load on the server’s re-

sources is strictly monotonic in the number of simultaneous re-
quests. However, there may not be a discernible load on server
resources for a number of reasons: (1) the server caches objects
and other clients (not part of the MFC) request the same object syn-
chronously, or (2) the application infrastructure consists of multiple
replicated servers, or (3) the server dynamically provisions addi-
tional resources to handle increases in request volume. Without
knowledge of the server side configuration, it is difficult to deter-
mine if caching, load balancing, or dynamic provisioning affects
a particular stage of the MFC experiment. Thus, if response time
does not grow with the number of participating clients in a stage,
we cannot infer the effect of the MFC on server resources. The
lack of a perceptible degradation in performance does imply that
the server is well-equipped to handle the requests. If the response
time does increase monotonically, then we can assume that server-
side resources are indeed being exercised.

Epochs. Each stage of a MFC experiment is composed of several
Epochs. In epoch i, the coordinator directs Ni participating clients
to issue concurrent requests of a given type to the target. Clients
participating in epoch i constitute a crowd. The coordinator also
determines the particular object that a client or measurer should
request in an epoch.

During an epoch, the measurers closely monitor the target server
to ascertain if the MFC is causing response times to increase appre-
ciably. The measurers make concurrent requests for either the same
type of object as the crowd or other types of content. The latter ap-
proach is useful for quantifying the correlation among resources on
the target server (e.g., “How does a disk-intensive workload impact
the response time of a dynamic or DB-intensive request?”). The
measurers must access the target site at the same time as the crowd
to track the impact of the MFC on the target accurately. At the end
of the epochs, the measurers report the normalized response time
(response time for request − RTT between measurer and target) to
the coordinator.

Based on the measurers’ response times for requests in epochs
1..i, the coordinator either terminates the stage, or moves to epoch
i+1. The coordinator uses the following simple algorithm to decide
the next step:

Check: If the median normalized response time reported by the
measurers in an epoch i (i ≥ 3) is greater than a threshold θ, the
MFC enters a “check” phase. The goal of this phase is to ascertain
that the observed degradation in response time is due to overload
on a server resource and not due to noise in measurement. The
coordinator creates two additional epochs, one numbered “i-” with
Ni − δ clients, and the other numbered “i+” with Ni + δ clients. If
the measurers’ median response time in these epochs is also above
θ, the check succeeds and the coordinator terminates the MFC
experiment. Otherwise, the check fails and the MFC progresses to
epoch i + 1.

We note that the variation in the measurers’ response time indi-
cates the confidence we can attach to the measurement: the larger
the variation, the higher the likelihood that the measurements were
affected by noise.

Progress: If the measurers report no perceptible increase in the
target’s response time in a regular epoch, or the check phase fails,
the coordinator progresses to the next epoch where a larger number
of clients participate. To ensure that the target does not face sudden
load surges, the coordinator increases the size of the crowd by a
small, fixed value (we set this to 5 in our experiments).

Terminate: If the check phase succeeds, or the number of partic-
ipating clients exceeds a certain threshold, the coordinator termi-

nates the experiment and resets all clients and measurers.

Synchronization. In any given epoch, the load on the target server
is proportional to the number of concurrent requests it is serv-
ing, which directly determines the server’s response time. Thus,
an important requirement is that when k clients participate in an
epoch, the number of concurrent MFC requests at the server is
≈ k. Implementing a distributed synchronization protocol among
the clients introduces unwanted complexity; we rely on techniques
that achieve reasonable synchronization in practice. Specifically,
we exploit the centralized coordinator to schedule client requests
in a synchronous way.

To ensure synchronization, the coordinator issues a command to
the clients (and the measurers) at the beginning of the experiment
to measure the round-trip latency to the target server2. Client i then
reports the round-trip delay, T

target
i

, back to the coordinator. The
coordinator also measures the round-trip delay from itself to each
client, T

coord
i .

Based on these measurements, the coordinator schedules client
requests so that they all arrive at the server at roughly the same time
T . Note that the actual HTTP request arrives at the server roughly
at the same time as the completion of the 3-way SYN hand-shake.
To synchronize client request arrivals, the coordinator issues a com-
mand to client i at time T −0.5∗T

coord
i −1.5∗T

target
i

. Assuming
that the network latency between the coordinator and the clients has
not changed since the initial latency measurements, client i will re-
ceive this command at time T − 1.5 ∗ T

target
i

; at this time, client
i issues the request specified in the command by initiating a TCP
hand-shake with the server. Again, assuming client-target network
latency does not change, the first byte of client i’s HTTP request
will arrive at the target at time T .

Since the time-span of a MFC experiment is less than a few min-
utes, we believe that the assumption of stationary network latencies
is not unreasonable [12].

3. VALIDATION
We address the following questions through validation experi-

ments performed in controlled laboratory settings: (1) Are requests
from MFC clients adequately synchronous? (2) How well can MFC
track response time of the server? (3) How effective are MFC re-
quests at exercising the intended resources at the target server?

3.1 Validating Synchronization and Response
Time Tracking

To answer the first two questions, we set up a server that does
not host any real content and just returns a blank page. The server
runs a lightweight HTTP server [1] on Linux 2.6.9 on a 3.2 GHz
Pentium-4 machine with 1GB of RAM. The MFC software was
deployed on 70 PlanetLab machines (both clients and measurers).
Both the coordinator and the target web server are high-end ma-
chines within University of Wisconsin, with high-bandwidth con-
nectivity to the Internet. The target server receives no other request
traffic. We instrument the server to track request arrival times and
to implement synthetic response time models.

Synchronization. To test the accuracy of the synchronization, we
log the arrival times of each incoming HTTP request at the target
server. Figure 2 shows the arrival time of each request with a crowd
size of 45 clients. In these experiments, the coordinator commands
the clients to make a HTTP request roughly d = 15s after taking
the latency measurements. About 70% of the requests arrive within

2To do this, we use TCP pings, i.e., we measure the delay be-
tween the transmission of a SYN packet and the reception of a
SYN+ACK.

5ms of each other (clients 7 through 40), and 90% of the requests
arrive within 30ms of each other (clients 3 through 43), indicating
that our synchronization algorithm works reasonably well.

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Client request index

Re
qu

est
 ar

riva
l tim

e (
mil

lise
con

ds)

Figure 2: The arrival times at the target server for 45 partici-

pating clients

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60

M
ill

is
ec

on
ds

Crowdsize

Measured Response Time
True (Model) Response Time

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50 60

M
ill

is
ec

on
ds

Crowdsize

Measured Response Time
True (Model) Response Time

(a) Linear (b) Exponential

Figure 3: Emulation of response time functions.

Accurate Emulation of Response Time. Next, we incorporate ar-
tificial response time models into the validation server. Each model
defines the average response time per incoming request as a func-
tion of the number of simultaneous requests at the server. The arti-
ficial response times were strictly non-decreasing functions of the
pending request queue size.

We show the response times estimated by the measurers for two
models: Linear (Figure 3(a)) and Exponential (Figure 3(b)). In
both cases, we see that the measurers are able to faithfully track the
server response time function.

3.2 Understanding Resource Constraints
We now examine the effectiveness of MFC in exercising specific

resources at the target server. We set up a Apache 2.2 Web server
(with the worker multi-processing module) on a 3 GHz Pentium-4
machine with 1GB RAM running Ubuntu Edgy (2.6.17.10 kernel)3.
We emulate a MFC on this target server with clients located on the
same LAN as the server.

For each experiment we measure (1) the response times seen by
the measurers and MFC clients, and (2) server-side resource uti-
lization using system diagnostic utilities (we use atop to monitor
the CPU, resident memory, disk access, and network usage at the
server). Unless otherwise specified we use crowd sizes in the range
of 5-50 clients, in increments of 5.

Small object workload. In the small object workload, every client
requests a 20 byte object from the target validation server. We
consider two variants of this experiment: unique small objects and

3For the synchronization and response time evaluation we chose
a simple server software that is easy to instrument with the func-
tionality we desired. For these experiments we use a more realistic
configuration

same small objects to distinguish caching effects at the server. Fig-
ure 4 shows the results of the same small object experiment. There
is little perceivable load on the server and correspondingly no sub-
stantial increase in the observed response time. The absence of
disk reads for the duration of the experiment indicates server-side
caching. The CPU, network, and memory utilization increase very
slightly with crowd size (not shown).

Next, we populate the server with a large number of unique 20
byte objects. Figure 5 shows that the observed response time when
each client requests a unique object in each epoch. We see a 20×
increase when compared to the same small object experiment for
the corresponding crowd size. The network and memory utilization
are comparable to the same small object experiment. Unlike the
same objects experiment, the number of disk reads grows linearly
with crowd size, accounting for the large increase in response time.

Large objects. In the large object workload, each MFC client re-
quests the same 100KB object from the server. Figure 6 shows a
significant increase in the median response time observed by the
clients due to the network load on the server. CPU, memory, and
disk utilization remain negligible during the experiment – the net-
work bandwidth constraint is primarily responsible for the increase
in response time.

Small dynamic object workload. For emulating a dynamic object
or database query workload we set up a backend database (database
details are not relevant for this validation experiment). The query
of interest causes the server to retrieve 50000 entries in one of the
database tables and return their mean and standard deviation. Note
that the query workload is not network intensive as the responses
are less than 100 bytes. The backend database is a MySQL server
with the query cache size set to 16MB. Many database implemen-
tations proactively cache query responses to avoid additional query
overhead. We experimented with two server-side software inter-
faces for the database backend: the FastCGI [8] module and
Mongrel [4], a lightweight server explicitly designed for handling
dynamic objects. FastCGI’s inefficient implementation4 caused mem-
ory usage on the server increased dramatically with crowd size;
thus we focus on the results using Mongrel. For crowd sizes up to
50, we see that the response time stays within 10ms (not shown).
The actual database backend appears to be efficient in caching query
responses; we observed little effect on disk, CPU, and memory use.

We also examine a unique small dynamic object workload to
identify resource bottlenecks in the absence of database query caching
effects. Figure 7 shows our validation measurements; the most in-
teresting feature is the median response time increasing due to the
increased CPU utilization.

Implications of Validation Experiments. We see that by choosing
appropriate workloads it is possible to narrow down the impact on
specific server resources. This validates the MFC premise that it is
feasible to provide useful inferences on resource constraints using a
lightweight measurement infrastructure. We also came across two
other interesting effects which helped us put the applicability of
the MFC approach in perspective: i) impact on serial vs. parallel
accessed resources, and ii) granularity of MFC inferences.

An increase in the observed response time in the MFC exper-
iment under a particular type of request can be attributed to two
possibilities. One is an increase in the load on a specific server
resource, where each additional request consumes a proportional
fraction of the resource. The other is an increase due to server-

4FastCGI forks a new process for each request. As the number of
requests increases, each of the forked process independently inher-
its the memory image of the parent process leading to very high
memory usage during the experiment.

5 10 15 20 25 30 35 40 45 50
0

50

100

Response time in ms

5 10 15 20 25 30 35 40 45 50
0

5

10

Crowdsize

Disk Reads

Figure 4: Same 20 byte small object

5 10 15 20 25 30 35 40 45 50
0

100

200

300

5 10 15 20 25 30 35 40 45 50
0

50

Crowdsize

Response time in ms

Disk reads

Figure 5: Unique 20 byte small object

5 10 15 20 25 30 35 40 45 50
0

200

400

Response time in ms

5 10 15 20 25 30 35 40 45 50
0

5000

Crowdsize

Network usage in KB

Figure 6: Same 100KB large object

5 10 15 20 25 30 35 40 45 50
0

1000

2000

Response time in ms

5 10 15 20 25 30 35 40 45 50
0

50

100

CPU utilization (%)

5 10 15 20 25 30 35 40 45 50
0

50

Crowdsize

Disk reads

Figure 7: Unique small dynamic object request with Mongrel

side scheduling and resource serialization constraints, where ad-
ditional requests do not impose any additional load on a resource,
but merely create larger-sized queues of requests waiting for the re-
source (e.g., serialized access to a single disk). Thus, serialization
bottlenecks can impact our ability to detect resource constraints.

Server throughput is determined by a number of factors, includ-
ing hardware performance, software throughput, and the server-
side components used for handling requests. Our experiments show
that while we may be able to isolate resource constraints at a “sub-
system” level (e.g., disk subsystem, database access subsystem,
network subsystem), providing information at a finer granularity
to precisely pinpoint if the constraint is a hardware or software in-
efficiency is difficult. Even with full access to the server and the
ability to fully instrument it, performing root-cause analysis of per-
formance degradations is still non-trivial given the complexity of
modern day servers and applications. Naturally, inferences from
remote measurements alone are more challenging.

Ultimately any fine-grained analysis of resource constraints are
best understood by the individual administrators managing the tar-
get server or applications being tested. We sought to indicate coarse-
grained resource constraints as a guideline for better server provi-
sioning. Our validation results demonstrate the promise of the MFC
approach to achieve this goal.

4. PRELIMINARY MEASUREMENTS
We present two sets of preliminary wide-area measurements us-

ing the MFC approach. Over the course of one week, we ran the
“Base” stage of the MFC (HTTP HEAD requests to index.html)
against 200 live Web servers and 44 known phishing servers, using
65 Planetlab machines as clients. We use a threshold θ = 100ms,
i.e., if the difference between the observed response time (median

across measurers5) and the base response time (corresponding to a
crowd size of 5) is more than 100ms we stop the MFC experiment.
Generic Web servers: For purposes of illustration, we group dif-
ferent Websites into four non-overlapping categories based on the
Alexa “reach per million” metric [2]6: 50 Web sites each with reach
in the range 1-10, 10-100, 100-1000, and 1000-10000. We expect
that Websites with small reach would be qualitatively similar to one
another in terms of provisioning, and different from Websites with
much larger reach.

 1−10 10−100 100−1000 1000−10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ALEXA Reach

F
ra

ct
io

n
of

 s
er

ve
rs

 w
ith

 s
to

pp
in

g
cr

ow
ds

iz
e

10−20
20−40
40−60
60−70

Figure 8: Breakdown of stopping crowd sizes for various Alexa

reach ranges with a HEAD request

Figure 8 shows a summary of the crowd size at which different
Web servers show a degradation of more than 100ms in response
time. For each reach category, we break down the crowd size val-
ues into sub-ranges as shown. We observe that, as expected, the
fraction of Webservers that show a 100ms degradation in response
time decreases significantly as we move to larger reach categories
(95% for the 1-10 category vs 35% for 1000-10000). However, we
find it surprising that more than 30% of the Websites even in the
1000-10000 category show visible degradation in response times
even with fewer than 65 simultaneous requests.
Phishing Sites: We also conducted a preliminary measurement
study of a number of phishing sites obtained from Phish-tank [5].
Our goal was to understand how these these servers compare against
popular or low-end Web servers in terms of their provisioning. We
tested 44 different phishing sites, of which 40 showed a 100ms re-
sponse time increase with a crowd size less than 45. Figure 9 shows
the breakdown of the crowd sizes for the 40 clients that showed
such an increase. More than 60% of the phishing sites showed such
an increase with a crowd size less than 15. If we compare this to
the Alexa 1-10 category Websites from Figure 8, we find that the

5In our experiments, we treat each client as a measurer as well, i.e.,
we do not use a separate set of measurers.
6If a Web site has a reach per million of 1000, it means that the
Web site was visited by 1000 people in Alexa’s sample of 1 million
users.

57%

16%

16%

2%

9%

10−20
20−30
30−40
40−50
< 100 ms

Figure 9: Breakdown of stopping crowd sizes with HEAD re-

quest for phishing sites

corresponding fraction of sites was 40%, suggesting, again as ex-
pected, that most of the phishing sites are hosted on fairly low-end
servers similar to the lower-reach Websites.

5. DISCUSSION

Differences with real flash-crowds. One of the key emphasis of
our work is that we use a mini- flash crowd that differs signifi-
cantly from a real flash crowd. The key difference is that we run
the measurements under a controlled setup. Thus, the requests from
the MFC experiment appear like normal requests, except that they
have ability to measure performance tipping points. We explicitly
ensure that the target does not face a sudden surge in load unlike a
real flash crowd. This implies that the target Website does not enter
a panic mode of operation and thus skew the experiment results.

Multi-server Websites. Our current infrastructure assumes that a
single IP address corresponds to a single physical host and the re-
sponse times are measured under this assumption. This assumption
does not hold for Websites that use certain load balancing tech-
niques (e.g., using DNS redirects or IP anycast) in the server back-
end, or use a distributed deployment of servers (e.g., CDNs). The
MFC approach can still be used to identify how such servers re-
act to realistic flash-crowd scenarios; however identifying specific
hardware bottlenecks becomes harder when the Websites use reac-
tive load balancing techniques.

Security Implications. The presence of a public MFC infrastruc-
ture raises a concern that the approach can be exploited to launch
targeted attacks with maliciously crafted request patterns to servers.
However, we note that the MFC service will be applied in a re-
stricted manner with access controls and the experimental parame-
ters chosen to ensure the non-intrusiveness of the experiments.

Implementation inefficiencies vs. Performance prediction. At
a high-level, we would like the MFC setup to achieve two goals.
First, we want to identify (to some approximation) implementation
inefficiencies and resource bottlenecks in a Web server infrastruc-
ture. Second, we want to provide a framework for Web site admin-
istrators to predict the performance under heavy load. While our
initial design, measurement and validation experiments confirm the
former goal, the latter goal requires that the setup be able to pro-
vide a full load-response curve. We plan to explore performance
prediction in future work.

Implications for Administrators. Ultimately, the MFC measure-
ments have to be translated into meaningful suggestions for net-
work operators. For example, if a few small queries cause problems
then they need to fix query lookups; if large objects are causing
early keel-over they need to either break them up or pre-cache etc.
We are currently working on providing a systematic framework for
operators to debug Website performance.

6. RELATED WORK
Web server benchmarking tools [6, 11, 3, 10] range in sophisti-

cation. Some emulate multiple user sessions, create client requests
for dynamic content and emulate several “standardized” workloads
for e-commerce and regular Web browsing scenarios. Controlled
emulation is done in a laboratory setting using average inter-arrival
times, number of clients, and rate of requests derived from mea-
surements taken at real Web servers. Benchmarks are used to stress
test a server by running multiple clients in parallel where both
clients and server are on the same LAN. MFCs use clients across
the wide-area Internet generating more representative results. MFC’s
targeted requests exercise specific server resources in a controlled
way yielding detailed and fine-grained observations.

Early work on flash crowds [9] proposed server-side heuristics
to distinguish flash crowds and DDoS attacks. Chen et. al identify
flash crowds by examining performance degradation in responses
from a Website [7]. These techniques are useful to identify when a
server is experiencing extreme load but MFCs accurately pin-point
the request volume at which the server’s response time begins to
show perceptible degradation.

7. SUMMARY
We presented the initial design of MFC – a light-weight wide-

area profiling service that reveals resource bottlenecks in a Web-
server infrastructure. Using controlled measurements with an in-
creasing number of distributed clients making synchronized requests
to exercise specific resources of a remote server, we are able to
faithfully track the impact on different server resources. Through a
number of wide-area experiments and controlled lab tests, we show
that our approach is non-intrusive and usable for actively probing
live servers. We presented the results from a preliminary measure-
ment study of resource provisioning on live public Web servers and
known phishing servers. We are currently running extensive experi-
ments with other MFC stages over a much larger set of Web servers.
We are also running more targeted measurements at interesting spe-
cial categories of Websites such as phishers, blogs, typosquatters,
and startup company Websites.

8. REFERENCES
[1] Anti-Web HTTPD Homepage. http://www.hcsw.org/awhttpd/.

[2] Alexa. http://www.alexa.com.

[3] Mindcraft Benchmarks: WebStone.
http://www.mindcraft.com/webstone/.

[4] Mongrel: V2. http://www.rubyonrails.org.

[5] Phishtank. http://phishtank.org.

[6] SPECweb2005 Benchmark. http://www.spec.org/web2005, 1999.

[7] X. Chen and J. Heidemann. Flash Crowd Mitigation via Adaptive Admission
Control Based on Application Level Observations. Transactions on Information

Technology, 5(3):532–569, 2005.

[8] P. Heinlein. Fastcgi. Linux J., 1998(55es):1, 1998.

[9] J. Jung, B. Krishnamurthy, and M. Rabinovich. Flash crowds and denial of
service attacks: Characterization, and implications for CDNs and web sites. In
World Wide Web, May 2002.

[10] D. Mosberger and T. Jin. httperf: a tool for measuring web server performance.
SIGMETRICS Perform. Eval. Rev., 26(3):31–37, 1998.

[11] SPECweb99 Benchmark. http://www.spec.org/osg/web99, 1999.

[12] Y. Zhang, N. Duffield, V. Paxson, and S. Shenker. On the Constancy of Internet
Path Properties. In First Internet Measurement Workshop, Nov. 2001.

