
Improving the Safety, Scalability, and Efficiency
of Network Function State Transfers

Aaron Gember-Jacobson and Aditya Akella
University of Wisconsin-Madison
{agember,akella}@cs.wisc.edu

ABSTRACT

Several frameworks have been proposed to orchestrate the
transfer of internal state between network function (NF) in-
stances. Unfortunately, these frameworks suffer from safety,
efficiency, and scalability problems due to their excessive use
of packet buffering. We propose two novel enhancements,
packet reprocessing and peer-to-peer transfers, to address
these issues. We show these enhancements reduce the av-
erage per-packet latency overhead by up to 92% and state
transfer times by up to 70%.

CCS Concepts

•Networks → Middle boxes / network appliances;
Network dynamics; Programmable networks;

Keywords

Network functions virtualization; peer-to-peer; software de-
fined networking

1. INTRODUCTION
Network functions (NFs) tend to create and maintain com-

plex internal state in order to perform intricate cross-packet
and cross-flow analyses. Such rich packet processing can
help improve the security, performance, and efficiency of a
network and its applications. However, the stateful nature
of NFs makes it difficult to reroute traffic without negatively
impacting NF behavior.

For example, consider a scenario where an intrusion pre-
vention system (IPS) is heavily loaded and must be scaled
out in order to maintain suitable performance (e.g., low la-
tency). Network functions virtualization (NFV) [3] allows
us to launch another IPS instance and balance load between
multiple instances to avoid performance bottlenecks. How-
ever, to ensure the IPS blocks all suspicious traffic, we must
ensure that the NF state associated with existing flows (e.g.,
partial signature matches) is available at whichever IPS in-
stance is now responsible for that traffic.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HotMiddlebox’15, August 17-21, 2015, London, United Kingdom

c© 2015 ACM. ISBN 978-1-4503-3540-9/15/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2785989.2785997

Prior work has shown that virtual machine (VM) replica-
tion is too coarse, and per-flow consistent updates [15] are
too slow, to adequately maintain NF correctness and per-
formance [7]. Instead, frameworks like Split/Merge [13] and
OpenNF [7] have been designed to move and copy internal
NF state at fine granularity. These frameworks allow us to
maintain correct NF behavior amidst dynamic redistribu-
tion of packet processing: e.g., during elastic NF scaling,
NF upgrades, or selective NF offload.

Unfortunately, frameworks like OpenNF and Split/Merge
suffer from key safety, efficiency, and scalability problems.
These issues arise due to limitations in how the frameworks
provide certain safety guarantees. In particular, Split/Merge
and OpenNF both rely on a central controller to buffer pack-
ets during a state transfer so that no packets, or state up-
dates, are lost [7, 13]. This approach imposes high latency
overhead on packets arriving during the transfer, and re-
quires significant CPU and memory capacity at the con-
troller. For example, consider a scenario where OpenNF is
used to move 800 flows between two instances of the Bro
IDS [11], while traffic is flowing at a rate of 20K pack-
ets/second (0.15Gbps). Buffering packets at the controller
increases packet latencies by 93x (≈46.5ms), requires a buffer
capacity of 2K packets, and consumes 6% of the controller’s
CPU1. Furthermore, there is no mechanism to address buffer
overflow, which means loss-freedom is not guaranteed!

We present two enhancements to remedy these issues:

1) Packet reprocessing allows an NF instance to con-
tinue processing packets while a state transfer occurs. If
a packet triggers an update to state, a copy of the packet
is sent to the new NF instance, where it is reprocessed to
bring the transferred state “up to speed.” This design re-
duces the latency overhead imposed on packets, provides a
mechanism for safely recovering from buffer overflow, and,
for some NFs, reduces the amount of buffer space required.
The key challenge is preventing the new NF instance from
outputting packets or log entries that were already output
by the original NF instance.

2) Peer-to-peer (P2P) transfer sends state and pack-
ets directly from one NF instance to another, without any
buffering at the controller. This accelerates the state trans-
fer and reduces the CPU and memory burden on the con-
troller. The key challenge is correctly injecting packets into
the new NF’s input stream.

1Our controller machine is equipped with a 4-core 2.8GHz
Intel Xeon CPU and 6GB of memory.

dstInst
 srcInst

Control App

sw

Move fspace
srcInst→dstInst

Export
state

2

Import
state

3

Reroute fspace

Controller 1
4

Buffer pkts

in fspace

Figure 1: Parts of an NF state management frame-
work, and the steps for a move operation; packet
buffering is required for loss-free moves

Our preliminary evaluation with OpenNF and two NFs [2,
11] shows that packet reprocessing reduces the average per-
packet latency overhead by up 92%, and P2P transfer re-
duces the total state transfer time by up to 70%.

2. BACKGROUND
Frameworks like Split/Merge [13] and OpenNF [7] facil-

itate fine-grained transfers of internal NF state to support
fast and safe reallocation of flows across NF instances. In
these frameworks (Figure 1), a scenario-specific control ap-
plication decides: (i) when internal NF state should be
moved—e.g., after a new NF instance is launched; (ii) what
subset of state should be moved—this is usually defined in
terms of a flow space (fspace), e.g., all state pertaining to
flows originating from a particular subnet; and (iii) between
which pair of NF instances the transfer should occur. A
central controller then asks the source NF (srcInst) to ex-
port the state pertaining to flows in fspace. This state is
provided to and imported by the target NF (dstInst). In
Split/Merge, the state is transferred directly from srcInst to
dstInst, while in OpenNF the state passes through the con-
troller. In either case, NFs must be modified prior to run
time to support such export/import operations. Finally, the
controller updates the forwarding state in a software-defined
networking (SDN) switch (sw), such that traffic in fspace is
now forwarded to dstInst.
Since end-hosts may continue to generate packets during

a move operation, these frameworks must carefully manage
packet processing to avoid introducing inconsistencies in NF
state. In the simplest case, OpenNF drops all packets in
fspace that arrive at srcInst during a state transfer. However,
if an NF is located “off-path” and processes a copy of all
traffic, the drops will not trigger retransmissions from end-
hosts,2 and the NF’s analyses may be incomplete: e.g., the
Bro IDS may fail to raise some security alerts if only part of
the data sent over a connection is checked for malware [7].

To address this issue, OpenNF and Split/Merge provide
a loss-free move operation, in which packets in fspace are
buffered at the controller until the state transfer completes.
In Split/Merge the controller receives packet events from sw,
while in OpenNF the packet events come from srcInst; the
latter design ensures packets that are in-transit from sw to
srcInst at the start of the move are not lost. OpenNF also
supports an order-preserving move [7], but we exclude this
from our discussion due to its complexity.

Due to OpenNF’s stronger guarantees and open source
licensing, the rest of the paper discusses problems and so-
lutions primarily in the context of OpenNF. However, the
same ideas extend to Split/Merge (Section 7).

2End-hosts will retransmit when network-induced drops oc-
cur prior to packet cloning.

Transfer size (flows)

● ●

●

●

●

●

●

●

●

M
a

x
 b

u
ff
e

r
o

c
c
u

p
.

(p
k
ts

)

0

500

1000

1500

2000

200 300 400 500 600 700 800

12K pps
16K pps
20K pps

Figure 2: Required buffer capacity when moving
state for n flows with a traffic rate of r pps

3. PROBLEMS WITH A LOSS-FREE MOVE
We now discuss the safety, efficiency, and scalability prob-

lems that arise from the way in which OpenNF performs
a loss-free move of internal NF state. We also examine
whether mechanisms used in virtual machine (VM) migra-
tion and SDN can address these issues.

Controller Resources. A loss-free move requires signifi-
cant packet buffering. The controller must buffer all packets
in fspace that arrive at srcInst between the start of state ex-
port (step 2 in Figure 1) and the end of state import (step
3). Assuming a move operation affects n active flows, the
state export and import operations take a total of s seconds
per flow, and the aggregate traffic rate for the n flows is r

packets per second (pps), then the controller must buffer up
to s× n× r packets.

However, OpenNF introduced a late-locking and early-
release (LLER) optimization to start buffering packets of a
flow as late as possible and flush the buffer as early as possi-
ble. In particular, packets from a given flow are processed at
srcInst until srcInst starts to export state pertaining to that
flow. Similarly, the controller releases buffered packets from
a flow as soon as dstInst has imported all state pertaining
to the flow, even if state for other flows is not yet imported.

Figure 2 shows the actual buffer capacity requirements for
a loss-free move, with LLER, between two Bro IDS instances
(s ≈ 8 ms). Even with low values for n and r, the con-
troller must have buffer space for thousands of packets: e.g.,
transferring state for 800 flows while the traffic rate for these
flows is just 20K pps (0.15Gbps) requires a buffer capacity
of 2K packets. The same scenario requires a buffer capacity
of 38K packets in Split/Merge, due to the lack of LLER.

Packet buffering also consume controller CPU resources:
e.g., an additional 6% of the CPU is consumed when the
traffic rate rises from 4K pps to 20K pps.

Buffer Overflow. As the traffic rate (r) increases beyond a
few Gbps, or state export/import time (s) increases beyond
a few tens of milliseconds, the controller may not be able to
provide the required buffer capacity—especially if multiple
moves are occurring simultaneously. Since packets are not
processed by srcInst before being sent to the controller, any
packets which cannot be buffered at the controller will never
be processed, and all NF state updates that would have oc-
curred from processing these packets will never occur. This
violates the loss-free safety guarantee that prompted buffer-
ing in the first place!

Latency Overhead. Finally, we face the problem of in-
flated packet latencies. We measure latency based on the
time a packet arrives at sw and the time an NF instance

outputs (a modified version of) the packet.3 LLER reduces
the average latency overhead due to buffering by up to 63%,
but the average latency of packets arriving during a loss-free
move may still be over 50ms. Furthermore, latency overhead
grows as the controller receives more packets: e.g., when
moving state for 800 flows between two IDS instances, the
average per-packet latency overhead rises from 3ms to 47ms
when the packet rate increases from 4K pps to 20K pps—a
15x increase in latency with just a 5x increase in traffic rate!

3.1 Potential Solutions
The above issues are reminiscent of challenges faced in VM

migration and SDN. Below, we consider whether solutions
from these domains can address the efficiency and scalability
problems in OpenNF.

VM Memory Deltas. When VMs are migrated, packets
must be buffered between the time the VM stops running
at its old location and the time it starts at its new location.
State-of-the-art VM migration techniques [5] minimize this
downtime by sending multiple rounds of memory deltas be-
fore stopping the VM to capture and send a final delta. This
same technique cannot be applied in OpenNF, because in-
ternal NF state is managed at sub-page granularity.

Distributed SDN Controllers. Highly reactive SDN ap-
plications (e.g., fine-grained data center traffic engineering [4])
can quickly overwhelm an SDN controller due to the high
volume of control messages received from SDN switches.
This is similar to the high volume of packets in OpenNF.
Several distributed SDN controllers have been proposed [6,
9, 10, 16] to address this issue. However, scaling out the
controller introduces new state consistency challenges.

Our Solutions. Given the insufficiency of prior solutions,
we propose two novel enhancements to improve the safety,
efficiency, and scalability of loss-free moves in OpenNF (and
Split/Merge). We introduce packet reprocessing as a mech-
anism to reduce latency overhead, guarantee loss-freedom
amidst buffer overflow, and, for some NFs, reduce buffer ca-
pacity demands (Section 4). Then we introduce P2P trans-
fers to reduce the number of packets subjected to additional
latencies and improve controller scalability (Section 5).

4. PACKET REPROCESSING
Packet reprocessing fundamentally changes the way

OpenNF (or Split/Merge) handles packets that arrive dur-
ing a loss-free move operation. First, srcInst continues pro-
cessing all packets in fspace that arrive during the opera-
tion, even if processing a packet results in updates to state
that has already been exported. This reduces latency over-
head and provides a source of up-to-date state if packets are
dropped due to buffer overflow. Second, dstInst imports a
“snapshot” of state from srcInst, and then brings it “up to
speed,” rather than requiring the absolute latest state to be
moved from srcInst. This provides an opportunity to reduce
buffer demands when moving state for NFs where only some
packets trigger state updates.

Process Packets Twice. Our key insight is to process
packets twice—once at srcInst and once at dstInst. A packet
in fspace that arrives at srcInst during a move operation is
processed by srcInst to: (i) update state at srcInst, and (ii)

3For NFs which do not output packets, we use the time an
NF instance finishes processing the packet.

obtain any output the NF creates as a result of receiving this
packet. For example, a network address translator (NAT)
rewrites packet headers and outputs the modified packet,
while an IDS logs an alert if malicious traffic is detected.
Then, the packet is re-processed by dstInst solely to obtain
any state updates the NF requires to process future packets.
For example, a NAT needs the mapping created during the
processing of the first packet of a flow in order to correctly
process future packets from the flow, and an IDS needs meta-
data from prior packets to detect attacks that span multiple
packets or flows. We do not want dstInst to produce packet
or log output during this reprocessing, because srcInst has
already produced such output.

This introduces a key challenge: how do we suppress an
NF’s output while reprocessing a packet? There are many
different points in an NF’s code where packet or log output
may be produced, and this output should be produced dur-
ing normal processing, but not during reprocessing. Fortu-
nately, NFs typically use standard libraries and system calls
to produce packet and log output: either PCAP (pcap_dump,
pcap_inject, etc.) or socket (send, sendto, etc.) functions
for the former, and regular I/O functions (write, printf,
etc.) for the latter.4 We can thus easily replace all calls to
these standard output functions—using a simple find and
replace applied to the NF’s code—with calls to wrapper
functions. Each wrapper function checks whether a (thread-
local) global variable has been set to indicate the current
packet is being reprocessed, and, if not, calls the appropri-
ate library/system function.

Buffering. Packet reprocessing still requires packets to be
buffered at the controller, but this buffering is no longer
part of the critical path for packet processing. For every
packet in fspace that arrives at srcInst during a loss-free
move, srcInst (i) sends the packet to the controller, and (ii)
processes the packet normally. This means packet processing
is only delayed by the time it takes an NF to copy the packet.
The controller buffers packets from srcInst if the state per-

taining to the corresponding flow has not yet been imported
by dstInst—as is always done with a loss-free move with
LLER. Once dstInst acknowledges that it has imported a
flow’s state, the controller marks the flow’s buffered packets
with a “do-not-output”flag and sends them to dstInst for re-
processing. The flag informs dstInst that it should suppress
packet and log output while it processes these packets.

Note that state is kept on srcInst until some time after the
move operation completes, rather than deleting the state
immediately after it is exported. This ensures srcInst has
the necessary state for normal packet processing.5

Handling Buffer Overflow. In addition to reducing la-
tency overhead, packet reprocessing allows us to guarantee
a move is loss-free, even when the controller’s packet buffer
overflows. As discussed in Section 3, buffer overflow nor-
mally causes packets, and their corresponding updates to
be lost. However, with packet reprocessing, the NF state
on srcInst is always up-to-date, because any packet in fs-
pace that arrives at srcInst during the move is both sent
to the controller and processed by srcInst. Therefore, we

4If NFs use non-standard output functions, we can easily
extend our design to include these functions.
5We assume NFs (have been modified to) lock the appropri-
ate state objects while a packet is being processed in order
to prevent a partially modified object from being exported.

can always re-export state from srcInst, and import the up-
dated state on dstInst, without worrying about processing
buffered, or dropped, packets at dstInst. We formally prove
the correctness of this algorithm in Section 6.

Careful buffer management can help minimize the number
of buffer overflows and state re-transfers. The most advan-
tageous drop policy is to identify the flow with the largest
number of currently buffered packets and drop all buffered
packets for this flow. Then, we re-export and import just
the state pertaining to the affected flow. This policy will
free up the largest amount of buffer space in relation to the
number of state re-transfers.

Reducing Buffer Capacity Demands. Packet reprocess-
ing also introduces an opportunity to reduce the number of
packets that need to be buffered during a move operation.
Recall that packets are reprocessed by dstInst solely to ob-
tain any state updates the NF requires to process future
packets. Thus, if no state is updated when a packet is pro-
cessed,6 we only need to process the packet at srcInst to ob-
tain any output the NF creates as a result of receiving this
packets; dstInst does not need to re-process packet, thereby
eliminating the need to potentially buffer the packet.

Some NFs routinely update internal state for every packet—
e.g., an IPS, IDS, or WAN optimizer—while others only up-
date state for select packets—e.g., a stateful firewall only
updates NF state when a TCP handshake completes or a
connection finishes.7 The latter can selectively clone pack-
ets to reduce buffer demands, and lighten the reprocessing
load at dstInst. This is similar to Pico Replication’s ap-
proach for eliminating unnecessary state cloning and output
buffering at srcInst [12]; however, our goal is to reduce the
burden on the controller and dstInst.

Limitations. Maintaining correct NF behavior in the pres-
ence of packet reprocessing requires an NF’s execution to be
deterministic. In other words, if an NF starts from some
state Si and processes some packet, it is essential that the
resulting state is always Si+1 and the output (if any) is al-
ways Oi+1. Without this property, dstInst could end up
in a different state (S′

i+1) than srcInst after reprocessing a
packet, and the behavior of dstInst going forward could differ
from the behavior that would have resulted if only dstInst
had processed the packet or the move operation had never
occurred. We can guarantee this property for many NFs
by seeding an NF’s random number generator, forcing pack-
ets to be processed in the order they arrived at sw [7], or
including extra metadata with packet clones [14].

5. P2P TRANSFER
Packet reprocessing can reduce the latency overhead im-

posed on packets that arrive during a loss-free move, but it
cannot reduce the number of packets that must be processed
during the move. To achieve the latter, we must reduce the
time it takes to complete a state transfer.

Our key insight is to avoid triangular routing. In other
words, we transfer state and packets directly from srcInst to
dstInst without passing through the controller.

6Or the updated state is not critical for achieving the NF
behavior we desire: e.g., only statistics are updated.
7A stateful firewall may reset a timeout value every time it
receives a packet, but this timeout is generally much longer
than a move operation, such that we can wait to reset the
timeout until after dstInst starts processing all packets.

Bridge

ethIn

vethP2Pbr vethNFbr

NF
Process

P2P
Conn

vethP2Pin vethNFin

Figure 3: Setup for injecting packets from P2P con-
nection into dstInst’s input stream; solid red path is
taken by normal packets, dashed blue path is taken
by packets that require reprocessing

New Functions. Our P2P transfer algorithm relies on two
new NF-facing API functions:

void transfer(dstInst,fspace)
void accept(srcInst)

The latter is invoked on dstInst to indicate it should: (i) lis-
ten for an incoming socket connection from srcInst, (ii) im-
port any state received over the connection, and (iii) buffer
and reprocess any packets received over the connection. The
former is invoked on srcInst to indicate it should: (i) con-
nect to dstInst, (ii) export and send any state pertaining
to active flows in fspace, and (iii) send packets that need
to be reprocessed. Both functions can be implemented in
an NF-agnostic manner using the existing export (get), im-
port (put), and event raising functions included in OpenNF’s
original NF-facing API [7].

Injecting packets. Although the new functions are rela-
tively simple, we face a key systems engineering challenge on
dstInst: how are packets arriving on the P2P connection in-
jected into dstInst’s packet input stream? Normally dstInst
reads raw packets directly from a network interface (ethIn).
OpenNF’s original controller-driven design takes advantage
of the packet output capabilities of SDN switches to inject
packets into the link to dstInst such that the packets ar-
rive at ethIn. However, unless srcInst or dstInst establishes
a control channel with the switch, we cannot leverage this
same design in a P2P transfer.

Instead, we rely on virtual Ethernet (veth) interfaces and
bridging to inject packets from the P2P connection into
dstInst’s input stream (Figure 3). When an NF starts, we
create a bridge and two veth pairs—vethP2Pin/vethP2Pbr
and vethNFbr/vethNFin. The interfaces in a veth pair are
virtually wired together, such that a packet sent on one veth
interface is received by the other veth interface. We add
vethP2Pbr, vethNFbr, and ethIn to the bridge. We then
configure the NF to read packets from vethNFin.

When a packet arrives on ethIn, it passes through the
bridge to vethNFbr, causing it to be received by vethNFin
and read by the NF (solid red path in Figure 3). When a
packet arrives on a P2P connection—or a packet that previ-
ously arrived on a P2P connection is released from a buffer—
we send the packet on vethP2Pin; the packet is received by
vethP2Pbr, sent across the bridge to vethNFbr, received by
vethNFin, and read by the NF (dashed blue path).

6. EVALUATION
We now evaluate the efficiency, scalability, and safety im-

provements resulting from packet reprocessing and P2P trans-
fer. We answer three important questions: (i) How much
does packet reprocessing reduce latency overhead? (ii) Can
P2P transfer reduce state transfer times? (iii) Does our
algorithm for recovering from buffer overflow provably guar-
antee loss-freedom?

Traffic rate (1000s of pps)

● ● ● ●

●

●

● ●

●

A
v
g

 p
a

c
k
e

t
la

te
n

c
y
 (

m
s
)

0

5

10

15

20

25

4 12 20 28 36 44 52

●

Redirected pkts
Reprocessed pkts
Normal pkts

Figure 4: Improvements in latency overhead

We conduct our evaluation using a modified version of
OpenNF [1] and two popular NFs—Bro IDS [11] and PRADS
asset monitor [2]. Our testbed has an OpenFlow-enabled HP
ProCurve 6600 switch and a dozen low-end servers (4-core
Intel Xeon 2.8GHz CPU, 6GB RAM, 2 x 1 Gbps NICs). We
generate traffic by replaying a university-to-cloud network
traffic trace [8].

6.1 Packet Reprocessing
We evaluate the latency benefits of packet reprocessing

using a slightly modified version of the Bro IDS that out-
puts packets after they are analyzed. We conduct a loss-
free move affecting 800 active flows while replaying traffic
at varying rates—up to 52K packets per second (0.4Gbps).
We measure per-packet latency as the time elapsed between
a packet arriving at sw and a packet begin output by an
IDS instance. We compare the latency of: (i) packets pro-
cessed normally by srcInst prior to the move, (ii) packets
in fspace that are both processed and output by srcInst and
reprocessed by dstInst, and (iii) packets in fspace that arrive
during the move but are only processed by dstInst. The last
case captures the latency overhead imposed by OpenNF’s
original design.

Figure 4 shows the average packet latency in each of the
three cases—labeled normal, reprocessed, and redirected, re-
spectively. We first observe that the latency for normal
packets plateaus, and the latency for redirected packets dips,
when the traffic rate is above 36K pps (0.3Gbps). This is
the point where we exceed the packet processing capacity
of a single Bro instance. More importantly, below this rate,
we observe that packet reprocessing offers a 58% to 92% re-
duction in packet latency overhead compared to OpenNF’s
original design. Although, packets in fspace that arrive dur-
ing a move operation still incur an ≈2x inflation in latency
compared to packets processed prior to the move. This over-
head stems from the NF using some of its resources to export
state.

6.2 P2P Transfer
We now evaluate the benefits of a P2P transfer using the

PRADS asset monitor [2]. We move state for varying num-
bers of flows between two PRADS instances and measure
the time required to transfer state for all flows.

We first examine the improvements for move operations
conducted in isolation. Figure 5(a) shows the time to com-
plete the state transfer for varying numbers of flows with
and without P2P transfer; each data point is averaged across
three iterations. We observe that P2P transfer reduces the
average state transfer time by at least 31%, and up to 70%,
depending on the amount of state transferred.

●

●

●

●

●

●

●

Transfer size (1000s of flows)

A
v
g

 t
ra

n
s
fe

r
ti
m

e
 (

m
s
)

0

200

400

600

800

1000

0 5 10 15 20 25

● Regular Transfer
P2P Transfer

(a) Single operation

●
●

●

●

●

●

of simultaneous moves

● ●

●

●

●

●

A
v
g

 t
im

e
 p

e
r

m
o
v
e

 (
m

s
)

0

200

400

600

800

1000

1200

1400

0 5 10 15 20

●

●

Regular 1K flows
P2P 1K flows
Regular 3K flows
P2P 3K flows

(b) Simultaneous operations

Figure 5: Improvements in state transfer time

Next, we examine the improvements for move operations
conducted simultaneously. Figure 5(b) shows the average
sate transfer time per operation when between 1 and 20
operations occur simultaneously. We observe the transfer
time per move is near constant with P2P transfers, regard-
less of the number of flows affected by each move operation.
In contrast, without P2P transfers, the state transfer time
steadily increases as the number of simultaneously opera-
tions increases.

6.3 Safe Buffer Overflow
Lastly, we prove that our algorithm for handling buffer

overflow (Section 4) is loss-free. We assume srcInst and
dstInst have some CPU and network headroom to accom-
modate the transfer of state and packets. We believe this is
a reasonable assumption since networks generally run well
below 100% utilization.

Let pi be the ith packet for a flow f that arrives at sw
and 〈p〉i,j be the sequence of packets from i to j. Also,
let Si,j = φSinit (〈p〉i,j) be the value of the state for f after
processing 〈p〉i,j starting from initial state Sinit .

Let pk (1 < k < n) be the first packet for f to arrive at
sw after the routing update. Then, 〈p〉1 ,k−1 will be sent to
srcInst, and 〈p〉k,n will be sent to dstInst.

Of the packets sent to srcInst, let ph−1 (1 < h < k) be
the last packet for f processed by srcInst before exporting
state for f . Then, S1 ,h−1 will be transferred to dstInst, and
all packets 〈p〉h,k−1 will be sent to dstInst for reprocessing.
If no buffer overflow occurs, all packets 〈p〉h,k−1 will arrive
at dstInst and be processed, with S1 ,h−1 as the initial flow
state. The resulting state will be S1 ,k−1 . Packets 〈p〉k,n will
arrive directly from sw and be processed, resulting in the
desired state S1 ,n .

Now assume buffer overflow occurs. Let pi−1 (h < i < k)
be the last packet for f buffered at dstInst prior to overflow.
This implies dstInst will reprocess 〈p〉h,i−1 , with S1 ,h−1 as
the initial flow state, resulting in state S1 ,i−1 at dstInst.
This also implies srcInst has processed 〈p〉h,i−1 , resulting in
state S1 ,i−1 at srcInst.

Let pj−1 (i < j < k) be the last packet for f processed by
srcInst before re-exporting state for flow f . Then, S1 ,j−1 will
be transferred to dstInst and replace whatever state dstInst
currently has for f . Now, all packets 〈p〉j ,k−1 will be sent to
dstInst for reprocessing. If no further buffer overflow occurs,
all packets 〈p〉j ,k−1 and 〈p〉k,n will arrive at dstInst and be
processed, with S1 ,j−1 as the initial flow state. The resulting
state will be S1 ,n , implying move is loss-free.

7. DISCUSSION
Although we have focused on OpenNF [7], the same ideas

apply to frameworks like Split/Merge [13]. Split/Merge uses
a central controller to buffer packets during a move opera-
tion, so high controller resource demands, safety violations
due to buffer overflow, and high latency overhead are all
problems in this framework. Packet reprocessing can be
implemented in Split/Merge by: (i) instructing the SDN
switch to send packets to both srcInst and the controller
during the move operation, and (ii) modifying NFs, as de-
scribed in Section 4, to suppress output while reprocessing
packets released from the controller’s buffer. Split/Merge al-
ready transfers internal NF state in a P2P manner, but we
can add P2P-like transfer of packets by instructing the SDN
switch to mark and send packets to dstInst, rather than the
controller, during a move operation.

8. CONCLUSION
Frameworks like Split/Merge [13] and OpenNF [7] make

it possible to move internal NF state to safely accommodate
dynamic redistribution of packet processing. However, we
have shown these frameworks suffer from safety, efficiency,
and scalability problems due to their reliance on packet
events and packet buffering. To address these issues, we
presented two novel enhancements: (i) packet reprocessing
processes packets twice to avoid delaying NF output, while
still ensuring future packets are processed using the latest
NF state; and (ii) P2P transfers avoid triangular routing
by directly transferring state and packets between NF in-
stances. These two mechanisms reduce packet latency over-
head by up to 92% and reduce the average state transfer time
by up to 70%. These critical enhancements pave the way for
broader adoption of NF state management frameworks.

9. ACKNOWLEDGEMENTS
We would like to thank Mark Coatsworth and Chaithan

Prakash for their assistance in implementing our enhance-
ments in OpenNF. We would also like to thank the anony-
mous reviewers for their insightful feedback. This work is
supported by the Wisconsin Institute on Software-Defined
Datacenters of Madison and National Science Foundation
grants CNS-1302041, CNS-1330308 and CNS-1345249. Aaron
Gember-Jacobson is supported by an IBM PhD Fellowship.

References

[1] OpenNF code. http://opennf.cs.wisc.edu/code.

[2] Passive Real-time Asset Detection System. http://
prads.projects.linpro.no.

[3] Network Functions Virtualisation – Introductory White
Paper. http://www.tid.es/es/Documents/NFV White
PaperV2.pdf, 2012.

[4] T. Benson, A. Anand, A. Akella, and M. Zhang. Mi-
crote: Fine grained traffic engineering for data centers.
In CoNEXT, 2011.

[5] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration
of virtual machines. In NSDI, 2005.

[6] A. A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman,
and R. R. Kompella. Towards an elastic distributed
SDN controller. In HotSDN, 2013.

[7] A. Gember-Jacobson, R. Viswanathan, C. Prakash,
R. Grandl, J. Khalid, S. Das, and A. Akella. OpenNF:
Enabling innovation in network function control. In
SIGCOMM, 2014.

[8] K. He, L. Wang, A. Fisher, A. Gember, A. Akella, and
T. Ristenpart. Next stop, the cloud: Understanding
modern web service deployment in EC2 and Azure. In
IMC, 2013.

[9] T. Koponen, M. Casado, N. Gude, J. Stribling,
L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata, H. In-
oue, T. Hama, and S. Shenker. Onix: A distributed
control platform for large-scale production networks. In
OSDI, 2010.

[10] A. Krishnamurthy, S. P. Chandrabose, and A. Gember-
Jacobson. Pratyaastha: An efficient elastic distributed
SDN control plane. In HotSDN, 2014.

[11] V. Paxson. Bro: a system for detecting network intrud-
ers in real-time. In USENIX Security (SSYM), 1998.

[12] S. Rajagopalan, D. Williams, and H. Jamjoom. Pico
Replication: A high availability framework for middle-
boxes. In SoCC, 2013.

[13] S. Rajagopalan, D. Williams, H. Jamjoom, and
A. Warfield. Split/Merge: System support for elastic
execution in virtual middleboxes. In NSDI, 2013.

[14] J. Sherry, P. Gao, S. Basu, A. Panda, A. Krishna-
murthy, C. Macciocco, M. Manesh, J. Martins, S. Rat-
nasamy, L. Rizzo, and S. Shenker. Rollback recovery
for middleboxes. In SIGCOMM, 2015.

[15] R. Wang, D. Butnariu, and J. Rexford. OpenFlow-
based server load balancing gone wild. In Hot-ICE,
2011.

[16] S. H. Yeganeh and Y. Ganjali. Kandoo: A framework
for efficient and scalable offloading of control applica-
tions. In HotSDN, 2012.

