
STANFORD HPN TECHNICAL REPORT TR05-HPNG-101700

SANE: A Protection Architecture for Enterprise Networks

Martin Casado, Tal Garfinkel, Aditya Akella
Dan Boneh, Nick McKeown, Scott Shenker

{casado,talg,dabo,nickm}@stanford.edu
aditya@cs.cmu.edu, shenker@icsi.berkeley.edu

Abstract

Connectivity in today’s enterprise networks is regulated
by a combination of complex routing and bridging poli-
cies, along with various interdiction mechanisms such as
ACLs, packet filters, and other middleboxes that attempt
to retrofit access control onto an otherwise permissive
Internet architecture. This leads to enterprise networks
that are inflexible, fragile and difficult to manage.

We offer SANE, a protection architecture for enter-
prise networks that overcomes these limitations. By de-
fault, hosts can only contact a logically centralized ref-
erence monitor that hands out capabilities (encrypted
source routes) for services, according to declarative ac-
cess control policies (e.g. Alice can access http-proxy).
This provides flexible fine grain access control and elim-
inates the need for more complex ad-hoc mechanisms.

1 Introduction

The Internet architecture has its origins in a more inno-
cent era, when the primary goal was to provide universal
connectivity and the focus was on overcoming technical
challenges, not defending against malicious attacks. As
a result, the Internet designers opted for an open (by de-
fault, everyone can talk to everyone), decentralized, and
cooperative architecture that has supported the phenom-
enal growth of IP networks, leading to the Internet of
today.

Unfortunately, the world has changed dramatically.
The prevalence of worms, malware and sophisticated at-
tackers makes protection an increasingly important goal.
However, the openness, decentralization, and assump-
tion of cooperation that enabled the early success of the
Internet makes protection hard, resulting in an architec-
ture ill-suited to meeting the stringent security demands
of enterprise networks.

Protection has been retrofitted to enterprise networks
via many disparate mechanisms including router ACLs,
firewalls, NATs and other middle-boxes, along with
increasingly baroque link layer technologies, such as
VLANs. However, these mechanisms are far from ideal.

They require a significant amount of configuration and
oversight [26], are quite limited in the range of poli-
cies they can enforce [28] and produce networks that
are complex [29] and brittle [30].

Moreover, even with these techniques, security within
the enterprise remains notoriously poor. Worms rou-
tinely cause significant losses in productivity [5] and po-
tential for data loss [18, 20]. Attacks resulting in theft of
intellectual property and other sensitive information are
similarly common [12].

The long and largely unsuccessful struggle to “add”
protection to conventional enterprise networks has con-
vinced us that one should start over with a clean slate,
with protection as a fundamental design goal. We de-
scribe a Secure Architecture for the Networked Enter-
prise (SANE), built from the ground up with the objec-
tive of providing protection.

SANE requires the network to be Default Off, in the
sense that every transmission in the network requires ex-
plicit authorization; for Host A to communicate to Host
B, it must first request a capability from a central pol-
icy authority. The capability (encrypted source route)
is checked by every forwarding element along the path
from Host A to Host B. This allows fine-grained con-
nectivity policies to be explicitly defined and executed
in a logically centralized fashion.

SANE minimizes the power and information avail-
able to an attacker by adopting a conservative Least
Privilege and Least Knowledge philosophy: components
in our architecture are minimally trusted, and are given
access to just the smallest set of network resources
required for completing authorized transmissions and
all network information, such as topology, forwarding
paths and next-hops are disseminated on a strictly need-
to-know basis.

Of course, any design with a logically centralized
policy authority raises issues of reliability, overload,
and vulnerability to attack. The SANE design addresses
these issues explicitly by providing multiple copies of
the policy authority and allowing it to cut off transmis-
sions from misbehaving hosts. However, we should be
clear that SANE is only intended for the enterprise do-

1



STANFORD HPN TECHNICAL REPORT TR05-HPNG-101700

main, where there is a single, well-defined policy hier-
archy, the network is actively managed and of limited
scale, and protection is paramount.

In the next section we discuss the motivation behind
our architecture followed by an overview of the basic
design in §3. In §4 we describe the architecture in de-
tail and how it integrates with IP. §5 discusses fault tol-
erance and §6 covers attack resistance. We describe our
implementation in §7. We present related work in §8 and
conclude in §9.

2 Motivation

As stated before, we believe that the principles of
openness (default-on), decentralization, and coopera-
tion, while critical to the early growth of the Internet,
are now a significant hindrance to building effective pro-
tection in today’s enterprise networks. We illustrate this
by contrasting these principles and their concrete real-
ization in today’s networks with the principles set forth
by Saltzer and Schroeder [27] in their classic work on
the design of protection systems. While these principles
were originally framed in the context of host security,
we believe they are equally germane to enterprise net-
works.

1. The principle of “least privilege” states that an en-
tity should be granted the minimum amount of access
needed to carry out its task, thus minimizing the damage
should the entity turn faulty or malicious. The princi-
ple of “fail-safe defaults” states that, by default, access
should be given only with explicit permission. This en-
sures that overlooked or misconfigured mechanisms fail
safe.

The default-on connectivity afforded by today’s net-
works is in direct violation of both of these principles.
Most clients in an enterprise need access to very few re-
sources (e.g. file server, print server, mail server), yet are
usually given much broader access rights. Consequently,
when a machine or router is compromised, the network
provides little containment.

Unfortunately, the mechanisms used to retrofit protec-
tion in enterprise networks don’t give a practical way to
implement least-privileged access. Solutions like NAT
provide very coarse-grain boundaries. VLANs are de-
signed to partition machines into common broadcast do-
mains, and do not control individual access. Their small
address space size (VLAN tags are only 12 bits) pre-
cludes their use for fine-grain access control.

When protection policies are inconsistent (e.g., when
routes change, or configurations are modified) a compo-
nent fails open; furthermore, it does so silently, which
means inconsistencies are often only discovered after an
attack [30].

2. The principle of “economy of mechanism” states
that a design should be as simple as possible. Such sim-
plicity is essential to providing assurance.

Today’s networks use a variety of decentralized rout-
ing protocols (RIP, OSPF, EIGRP and static policies),
each configured with many thousands of lines of pol-
icy [30]. Operating in conjunction with the routing pro-
tocols are a plethora of mechanisms to retrofit pro-
tection such as VLANs, ACLs, firewalls and NATs.
The network-wide security policy is therefore extremely
complex, difficult to configure and highly fragile. Re-
ports of attacks on such mechanisms are widespread [4,
6, 2, 7].

3. The principle of “psychological acceptability”
states that mechanisms must facilitate easy policy spec-
ification, and further that specification occur close
enough to the level of policy goals to make policy co-
herent.

Access control policy today is a sum of host and
router configurations. These are usually manually en-
tered [26], and specify a variety of rules ranging from
VLAN port mappings (link layer) to static routes (IP)
and packet filter rules (application layer). The interac-
tion among these configurations determines enterprise-
wide connectivity, along with dynamic mechanisms
such as NAT and learning bridges. It is not surprising,
then, that policies are very difficult to reason about, and
misconfigurations and conflicts are common.

5. The principle of “complete mediation” states that
every access to every network entity must be checked for
authority.

Since enterprises focus primarily on preventing
break-ins, internal forwarding often takes place
unchecked. Therefore, once a host has been compro-
mised, an attacker has unfettered access to many other
enterprise network resources. Mediation in enterprise
networks is made difficult by the fact that end-host
identifiers such as IP addresses and VLAN tags are
trivially forged. Moreover, a single IP address might
represent multiple hosts simultaneously (NAT), or over
time (DHCP); VLAN tags can change based on which
machine has plugged into a port.

As this quick review illustrates, today’s enterprise
networks are highly inconsistent with the Saltzer and
Schroeder security principles, which may explain why
these networks are so insecure. In an attempt to move
beyond ad hoc mechanisms and develop a more sys-
tematic security architecture for enterprise networks, we
slavishly followed the Saltzer and Schroeder security
principles. The result is SANE, which we now describe.

2



STANFORD HPN TECHNICAL REPORT TR05-HPNG-101700

3 SANE Architecture Overview

Enterprise networks have several properties that facil-
itate robust protection. First, enterprise networks are
highly structured and centrally administered, making it
practical (and probably desirable) to implement policies
in a central location. 1

Second, most machines in enterprise networks are
clients that typically contact a predictable handful of lo-
cal services (e.g. mail, printers, file server, source repos-
itory, an http-proxy or ssh gateway). This makes it feasi-
ble to grant relatively little privilege to clients and spec-
ify simple declarative access control policies – we adopt
a policy interface similar to that of a modern distributed
file systems.

Third, in an enterprise network, we can assume that
hosts and principles are authenticated; this is common
today, and already supported by widely deployed direc-
tory services such as LDAP and Active Directories. This
allows us to express policies in terms of meaningful en-
tities, such as hosts and users, instead of weakly bound
end-point identifiers such as IP and MAC addresses.

Finally, enterprise networks—when compared to the
Internet at large—can quickly adopt a new protection
architecture. “Fork-lift” upgrades of entire networks are
not uncommon, and new networks are regularly built
from scratch. Further, there is a significant willingness
to adopt new technologies due to the high cost of secu-
rity failures.

3.1 Design Overview

SANE defines a Protection Layer for enterprise net-
works: a mechanism for granting fine grain access to
network resources that provides low level enforcement
and supports high level policy specification. This pro-
tection layer resides between the link-layer (e.g. Ether-
net) and network layer (i.e. IP) in an enterprise network,
similar to the place that VLANs occupy.

The SANE protection layer controls connectivity in
the enterprise. IP continues to function as the “network
layer” providing wide area connectivity as well as a
common framing format to support the use of unmod-
ified end hosts. However, within the enterprise, IP ad-
dresses are not used for identification, location or rout-
ing.

In Figure 1, we show important components of a
SANE network. By default a network entity (switch or
host) is isolated from the rest of the network (default off)
and can only to communicate with a Domain Controller
(DC). Based on an access control policy, the DC grants
capabilities to permit communication between entities.

1A policy might be specified by many people (e.g. LDAP), but is
typically centrally managed.

Figure 1: Components and example communication in
SANE. Each end-host authenticates with the DC (step 0). The
server publishes the service with associated access controls
(step 1). The client requests a capability to communicate with
the service (step 2). The client uses that capability to commu-
nicate directly with the client (step 3).

On joining the SANE network, every principle (e.g. A
in Figure 1) must authenticate with the DC (Step 0) and
establish a secure channel. A principle B wishing to of-
fer a service publishes it with the DC under a unique
name, e.g. B.http. The principle can also specify access
controls for the service (Step 1). To access this service,
a client A must request a capability for the service from
the DC (Step 2). The DC consults its access control pol-
icy and determines whether to hand out the capability.

Throughout this document, we always refer to the do-
main controller as the DC. We refer to hosts that publish
services as servers and hosts that request access to those
services as clients.

The capabilities handed out by the DC are inserted by
the client in all packets to the server (Step 3). Capabili-
ties in SANE have a short lifetime (variable, typically 10
minutes) after which they must be requested again. The
DC also hands out capabilities for the server to commu-
nicate with the client. These are given to the client, who
hands them over to the server with the first packet.

SANE capabilities are encrypted, strict, source routes
from the client to the server. Capabilities are encrypted
so that each switch along the path can only see the
next and previous hop on a route, and authenticated to
demonstrate that the capability was generated by the
DC.

Each hop in the encrypted source route consists of
a tuple < previous hop, next hop >. Tuples are en-
crypted in layers working backward from the last hop
(See Figure 2). For example, the three hop source-route
from A to B depicted in figure 2 would be result in the
capability E1(< A, 2 > E2(< 1, 3 > E3(< 2, B >))).

3



STANFORD HPN TECHNICAL REPORT TR05-HPNG-101700

Figure 2: Packet forwarded from host A to host B using a
hop-by-hop capability. Each layer contains the next-hop infor-
mation, the previous layer and is encrypted using the associ-
ated switch’s symmetric key. The capability is passed to A by
the DC (not shown) and can be re-used to send packets to B
until it expires.

Here Ek(m) denotes encryption of message m under
key k, which is a symmetric key shared by switch k and
the DC. This type of layered routing is also called onion
routing [14]. By encryption we mean authenticated en-
cryption providing both confidentiality and integrity. 2

At each hop, a switch removes its next-hop informa-
tion from the capability. For example, if switch 2 re-
ceived the onion E2(< 1, 3 > E3(< 2, B >)), it would
remove < 1, 3 >, check that the packet arrived from
switch 1, and forward E3(< 2, B >) to switch 3. Be-
cause each switch uses its key, it can only decrypt its
own layer of the onion. Therefore, each switch knows
no more than the next and previous hop along the path.

At the bottom layer of the capability, the DC places a
server-port, which was specified when the service was
first published. The receiving host uses the server-port to
demultiplex the packet and deliver it to the correct ser-
vice. Server-ports are at the lowest layer of the capabil-
ity and cannot be modified en-route. In other words, the
server-port ensures that only the correct service on the
end-host (e.g. TCP port) will receive authorized pack-
ets.

Next, we briefly discuss some key aspects of SANE.
The full details of our architecture are provided in §4:
Policy definition. Network policies are declared using
high level constructs such as users, services and hosts:
For example, Alice can contact service http. Policy def-
inition is discussed in §4.4.
Bootstrapping. How does a host communicate with the
DC to request a capability? This is accomplished by the

2Authenticated encryption can be implemented using a block ci-
pher (such as the advanced encryption standard, AES) and a message
authentication code (MAC, such as HMAC). Alternatively, authenti-
cated encryption can be done more efficiently using the offset code-
book mode [25] which provides both confidentiality and integrity in
one pass over the data.

switches constructing a minimum spanning tree (MST).
The details are provided in §4.2.
DC has full knowledge of the topology. The overall
network topology is obtained from period link state up-
dates sent by each switch to the DC. The link state up-
date mechanism is discussed in §4.3.
Switches/hosts don’t know the topology. Each switch
makes a forwarding decision based on information in its
own layer of the capability. Other layers are opaque and
hidden by the private key in each switch. Link state up-
dates to the DC are encrypted to hide network topology.
The DC is only logically centralized. Greater scalabil-
ity and redundancy in the DC can be provided both
via clustering and replication at different points in the
topology. Each DC makes autonomous routing decision
based its own on topology and key information. Further
discussion on scaling the DC is given in§5.1.

3.2 SANE Architecture Properties

In terms of the principles set forth by Saltzer and
Schroeder, SANE has the following properties.
Fail-Safe Default. By default, a SANE element can
only forward packets based on access that has been ex-
plicitly granted via capabilities, or send packets on the
default route to the DC.
Complete Mediation. Access control is enforced at ev-
ery point in the network. Policy is applied uniformly re-
gardless of how the topology changes, or where new ele-
ments are added (e.g. wireless access points). In contrast
to today’s enterprise networks, SANE networks actually
benefit from large, highly redundant, complex topolo-
gies since the number of enforcement elements scales
with the size of the network. Adding switches and path
redundancy does not undermine existing security pol-
icy [30] but rather larger networks end up being more
robust to DOS attack, more fault tolerant, more resistant
to traffic analysis, and provide better defense in depth.
Economy of Mechanism. A key benefit of SANE is
that it uses one central, uniform mechanism—the grant-
ing of capabilities by a DC—and so eliminates the
need for many disparate protection mechanisms such as
VLAN, ACLs, firewalls, and policy routing.
Least Privilege. SANE provides least privilege in two
ways. First, a sender can only address the particular
service for which it has been explicitly granted access,
and its packets must travel over an explicitly authorized
path.

Second, switching elements can only forward packets
to their neighbors and talk to the DC. A switch cannot
obtain capabilities of its own, and so cannot initiate new
traffic to an end-host. This limits the damage that could
be carried out by a compromised switch.

4



STANFORD HPN TECHNICAL REPORT TR05-HPNG-101700

Least Knowledge. SANE end-hosts and switches only
know the network elements immediately adjacent to
them, which means a compromised switch reveals very
little topology information to an attacker. Further, the
identities of communicating end-hosts are invisible to
the switches.

Psychological Acceptability. SANE policy is defined
in terms of principles and service, and can be managed
from a single location. SANE policy can be specified
independent of topology, and uniformly applied by ev-
ery element in the system. This is quite different from
today’s networks where policy is tied to the topology
(e.g. what port you are plugged into, where you are in
relationship to the firewall) and physical addresses. Con-
sequently, complexity increases dramatically as more
dynamic elements are introduced.

3.3 Are We inSANE?

The design of SANE is so far removed from that of typ-
ical IP networks, specifically of the Internet, that the
rationale behind SANE’s design merits further justifi-
cation. It is natural to think that, in designing SANE,
we push aside many issues that were paramount for
the Internet—such as scalability, adapting to failures,
no single point-of-failure, transparency to applications,
and autonomous control. Therefore, it might appear that
we are advocating the undoing of all the good the Inter-
net has done. However, we wish to re-emphasize that
the SANE design is targeted for a specific context—
enterprise networks—where some of the above issues
are less important than in the general Internet, and oth-
ers can be handled effectively using special mechanisms
that are not otherwise typical in the Internet-at-large.

For an example of differing priorities, we note that in
carefully managed enterprise networks the fact that new
applications face significant barriers is a feature, not a
bug. Moreover, current security technologies, such as
anomaly detection, scan suppression and signature de-
tection and response engines, already pose a significant
barrier for new application deployment. In addition, net-
work scalability is of lesser concern in enterprise net-
works, since they are typically of a much smaller size
(compared to the general Internet); simple replication
techniques of the DC will allow SANE to scale to the
necessary size systems (Section 5.1 discusses replica-
tion in greater detail). Adapting to failures is an example
of an issue of real concern in the enterprise, but where
different solutions can be employed. The Internet uses
highly decentralized routing protocols to adapt to link
failures. In SANE, the necessary adaptation can be ac-
complished through the use of multiple capabilities and
hard time-outs (This is discussed in Section 5.2).

4 Architecture Details

In what follows, we describe each of the main compo-
nents of SANE in detail. We first explain how packets
are processed by switches in the network. Next, we ex-
plain how switches and end-hosts communicate with the
DC. We then have the building blocks for describing
how capabilities are created, routed and revoked (when
necessary). Finally we explain how naming and access
control works.

4.1 Forwarding Packets

All SANE packets have one of three formats:

Type: HELLO Payload

Type: DC Return Capability Authentication Payload

Type: FORWARD Cap-ID Cap-Expiration Capability Payload

When a switch receives a packet, it processes header
fields in turn. First, it must decide what type of packet
it is. There are three types: (1) HELLO packets are for
neighbor discovery, and are processed by switches lo-
cally and not forwarded; (2) DC packets are forwarded
along the MST to the DC, They carry control informa-
tion to the DC including end-host requests for capabili-
ties, authentication messages and topology information
generated by switches. and (3) FORWARD packets typi-
cally carry data between end-hosts and contain a capa-
bility which the switch processes to decide how to for-
ward the packet. If the packet is of type FORWARD, the
switch first checks the packet’s integrity then it checks
the Capability ID to see if the the capability is valid and
hasn’t been revoked by the DC. As we’ll see later in
this section, each switch keeps a list of revoked capa-
bilities, so as to stop misbehaving flows. If the capabil-
ity is on the list, the switch discards the packet. Next,
it checks the Capability Expiration field to see
if the capability has timed out. The network maintains a
coarse network-wide synchronized clock (precise within
a few seconds). If the capability has expired, the packet
is silently dropped. Finally, it is ready to decrypt and
process the capability.

4.2 Communicating with the DC

Bootstrapping: Getting Packets to the DC. Switches
need to communicate with the DC to authenticate and
send control information; and end-hosts need to com-
municate with the DC to authenticate and request capa-
bilities. So as to hide the network topology, messages to
the DC are sent over a minimum spanning tree (MST),

5



STANFORD HPN TECHNICAL REPORT TR05-HPNG-101700

in which each switch knows only the next hop towards
the DC (the root of the tree). HELLO messages are ex-
changed to build the MST. When a switch joins the net-
work, it exchanges HELLOmessages in the same way as
the well-known spanning tree protocol used in Ethernet
switches [1]. The only difference here is that the DC is
always the root of the tree.

Once the MST is setup,

1. Packets can flow from switches and end-hosts to
the DC.

2. None of the switches, end-hosts or the DC know
the network topology.

3. Switches know the identity of their neighbors.

Bootstrapping: Sending Packets from the DC. In or-
der to construct capabilities (encrypted source-routes),
the DC needs to know the network topology. The
DC calculates the topology from link-state information:
Each switch sends an encrypted neighbor list to the DC.
This presents a bootstrapping problem: To send the list,
each switch must have established a secret shared key
with the DC, yet in order to establish a key, the DC and
switch must have communicated. But the DC can’t send
packets to a switch until it knows the topology. Further-
more, communication along this path lacks attribution—
a misbehaving switch or host could send a flood of DC
messages and the DC has no mechanism to determine
the location of the sender.

We resolve this by having switches directly connected
to the DC establish shared keys first, then those one hop
away then two hops, and so on, until all switches have
authenticated and established keys.

To reliably reveal the location of a sender to the DC,
switches construct a “return capability” when they for-
ward DC packets. When it forwards a packet towards
the DC, a switch adds a layer containing the previous
and next hop, encrypted using the secret shared key; in
this manner, the switches automatically create a return
capability. This provides the DC with the exact and au-
thenticated location of the sender (topologically) as well
as a return source route, and has the same properties as
a normal capability in our system.

The DC sends packets back to switches and end-hosts
— for example, when it is responding to a capability re-
quest — using packets of type FORWARD. The DC may
use the “return capability” as the return route. However
if it has already constructed the network topology, it may
generate an alternate route for the return packet.
Structure of Return Capabilities. For completeness
we explain how return capabilities are constructed along
the MST path to the DC. As before, we use Ek(m) to
denote encryption of message m under the symmetric

key k. And, encryption is implemented using a block
cipher (such AES) and a message authentication code
(MAC) to provide both confidentiality and integrity.

Each switch on the path to DC receives a partial ca-
pability CAP from the previous hop. It adds its own data
to the capability as follows:

CAP← ESwKey (prev-hop, next-hop, CAP)

The switch or host initiating the message to the DC cre-
ates an initial capability as

CAP0 ← ESwKey(nonce, next-hop)

where nonce is used to match the response from the DC
to the outgoing message.
Authenticating and Establishing Shared Secret Keys.
We do not mandate a particular public key infrastructure
for establishing shared keys between the switches and
the DC. For example, DCs and switches can have their
own local certified public key. During the bootstrap
process, each switch can use its public key to establish
a shared secret key with the DC, for instance using one
of the IKE2 [17] protocols.

Once a switch has a shared secret key, all subsequent
packets to the DC are protected using this key. We use
a mechanism similar to IPsec’s ESP header (which pro-
vides confidentiality, integrity, and replay defense) for
this purpose. We call this the authentication header.
This header is required on all packets to the DC and is
appended to the capability (between it and the payload).
Disconnecting Misbehaving Senders. Switches and
hosts are expected to generate packets to the DC at a
rate below a predetermined threshold. If the DC detects
a host or switch not abiding by the specified rate limits,
it will instruct the upstream switch to disconnect that
entity from the network.

The “return capability” provides the DC with a reli-
able method for determining the location of the attacker
and it can issue a request to shut off first-hop links for
misbehaving senders. If the attacker is multi-homed, the
DC may need to issue a request per port used for flood-
ing. We discuss attacks of this nature in more detail in
§6.2.

4.3 Routing with Capabilities

Constructing Capabilities. After a switch authenti-
cates with the DC, it periodically sends its neighbor list,
encrypted with the shared symmetric key, to the DC. The
DC aggregates these messages to construct the switch-
level network topology which is uses to issue capabili-
ties (encrypted source routes). These source routes pro-
vide the only connectivity on the network, except for the
initial MST.

6



STANFORD HPN TECHNICAL REPORT TR05-HPNG-101700

The DC constructs capabilities using three pieces of
information: The location of the requester (contained in
the capability request), the location of the requested ser-
vice (kept from when the service was published), and
the path (calculated from the topology).

When the DC constructs a capability, it calculates
each layer recursively, starting from the receiver. It en-
crypts each layer (hop) using the symmetric key of the
corresponding switch, as follows:

1. Initialize: The inner most layer is as follows:

CAPABILITY← EKclient−port
(client-ID,

client-port, server-port, prev-hop)

where client-ID is the client’s unique ID, and the
client- and server-ports are discussed below.

2. Recurse: For each node on the path, starting from
the last node, do:

CAPABILITY← EKSwitchID
(Switch ID, next-hop,

prev-hop, CAPABILITY)

3. Finish: The completed capability is then:

CAPABILITY← EKclient−ID
(client-port, first-hop,

CAPABILITY), IV

Note that the MAC computation for each layer in-
cludes both the capability ID and its expiration time.
As a result these fields cannot be tampered with by the
sender or en-route.

The client-ID identifies the client, and is passed by
the DC to the server. It could be a well known ID, such
as the client’s name, or it could be opaque and therefore
anonymous.

The client-port number is equivalent to the transport
level source port number in TCP and UDP: the client
uses it to demultiplex packets from the server. It is also
used to identify replies to capability requests from the
DC.

Similarly, the server-port number is equivalent to the
transport layer destination port: the server uses it to de-
multiplex packets received from the client. The server-
port number is specified by the server and registered
with the DC to uniquely identify the service. Because
this field is immutable, it is not possible for an end-host
to attempt a brute force service enumeration scan (sim-
ilar to a port scan) unless it has permissions to contact
every service.

The initialization vector (IV) provided in the outer
layer is the encryption randomization value used for all
layers of the onion. It prevents an eavesdropper from
linking capabilities between the same two end-points.

Using the same IV for all layers of the capability (as
opposed to picking a new random IV for each layer) re-
duces the overall size of the capability.3

Capability Lifetimes. Every capability has a limited
lifetime. Different capabilities can have different life-
times at the discretion of the DC, and could - for exam-
ple - depend on the service. For ongoing uninterrupted
communication, a client needs to periodically request a
new capability with a new lifetime.

Every capability carries a 32-bit Capability
Expiration field in the outer layer. The value is also
used in the MAC computation at each layer of the capa-
bility, and by each switch along the path. When a switch
receives a packet, it checks that it hasn’t expired, and
then uses the value in its calculation to check the capa-
bility.

An alternative approach would be to periodically
change keys and force every capability to expire at the
same time [31]. We prefer to have the DC choose a life-
time that suits each capability, and carry a single expi-
ration time in each packet; the trade-off is that we need
a global timer. The DC and switches therefore need to
keep synchronized and secure clocks, but these don’t
need to be very precise. We assume that the lifetime is
typically measured in seconds or minutes, and that ur-
gent revocations are handled as a special case with their
own mechanism (see below). So clocks need only be
synchronized within a second or so, and the client needs
to request a new capability before the current one ex-
pires.

Revocation. The DC can revoke a capability to immedi-
ately stop flooding or other malicious behavior by hosts
or switches (for example, a switch could flood the net-
work with duplicates). If a client or server detects a mis-
behaving sender, it can ask the DC to revoke the capa-
bility and switch off the communication. It does this by
sending the DC the received capability, including ID and
expiration. The DC could then send a message directly
to each switch along the path and tell them to revoke
the capability, but this might not work if the switches
themselves are misbehaving.

Instead, the DC sends a message to be forwarded by
the server or client (whichever identified the malicious
traffic); the DC constructs a revocation packet (below)
that travels back on the reverse path of the offending
capability. Each revocation contains a digital signature
signed by the DC using its private key.

Type: REVOKE expiration capability ID SIGNATUREdcpk

3For standard modes of operation (such as CBC and counter-mode)
reusing the IV this way has no affect on security, since each layer uses
a different symmetric key.

7



STANFORD HPN TECHNICAL REPORT TR05-HPNG-101700

The server or client forwards the revocation command
to the switch it received the malicious traffic from. The
switch verifies the revocation signature using the DC’s
public key, caches the revocation and compares it with
the capabilityID of each incoming packet. If a match is
found, the switch drops the packet and forwards the re-
vocation to the previous hop switch. This hop-by-hop
push-back continues until the revocation reaches the
sender (either an end-host or a misbehaving switch). Re-
vocations are removed from a switch’s cache after they
expire (as determined by the expiration field).
Mobility. Our network layer is divorced from the phys-
ical topology, thus client mobility within the LAN is
transparent to servers. When a client changes its posi-
tion (e.g., moves to a different wireless access point)
it refreshes the capability set it holds from the DC and
passes new return routes the servers. If a client moves,
and another takes its place, the new client may receive
unauthorized traffic from outstanding capabilities. This
is no different than networks today and content privacy
can be maintained through end-to-end cryptography.

Server mobility is not explicitly supported. If a server
moves to a different location, it has no mechanism for
passing an updated capability to the client (which has
no published a service). Instead we require clients to
refresh their capability set if they detect packets aren’t
getting through.

4.4 Naming and Access Control

The basic primitives of authenticated principles and ca-
pabilities for services can support a wide range of policy
models. We opted for a very simple policy model similar
to that of today’s file systems.

Our naming scheme keeps directories containing ser-
vices (much like a hierarchical file system contains di-
rectories of files). Directories and services posses ACLs
specifying who can lookup, acquire and publish ser-
vices, as well as who can modify ACLs. Names are de-
limited by periods to maintain compatibility with exist-
ing applications.

To give a concrete example, martin has a group
of friends that he shares music and videos with at
school. He has a directory hpn.martin.friends
where he can publish service, and tal, greg and
sundar can list and acquire services. When his stream-
ing audio server comes on line, it publishes itself in
the directory as ambient-stream, thus to connect
to it, tal would direct his streaming audio client to
hpn.martin.friends.ambient-stream.

Compound principles are also supported (names de-
limited by colon’s). This is particularly useful for deal-
ing with revocation. For example, suppose tet, (tal’s
computer) began acting maliciously by flooding the

server with traffic. Access for this account can be re-
voked using a negative ACL for tet:tal. Thus, tal
will still have access to the service from another com-
puter, tav, using tav:tal.

4.5 Legacy and Wide-Area Issues

SANE can support and integrate legacy, unmodified
operating systems with standard IP stacks. Supporting
them - and providing connectivity to the wide area - re-
quires two additional network components.
1. Proxies are directly on route between a host and the
DC, and translate IP naming events to corresponding
SANE events. They map DNS traffic to SANE name
queries, translate the responses and manage the addition,
deletion and caching of capabilities. Proxies encapsulate
IP packets generated by the end-host with SANE head-
ers and decapsulate received packets.
2. Gateways are positioned on the perimeter of a SANE
network and provide connectivity to the wide area. For
outgoing packets they cache the capability and gener-
ate a mapping from the IP packet header (e.g., IP/port
4-tuple) to the associated capability. All incoming pack-
ets are checked against this mapping and, if one exists,
the appropriate capability is appended and the packet is
forwarded.
Publishing a Service. In today’s networks offering a
service consists of binding to a port on the end-host
and often changing configuration in the network such
as modifying firewall rules or enabling port-forwarding
in NAT.

SANE services can be with the DC in any number of
ways – via a command line tool, offering a web interface
from the proxy, or hooking into the bind call on the local
host ala SOCKS [19].
Capability Refresh on Timeout. It is the responsibil-
ity of proxies to refresh capabilities during timeouts and
link failures. The latter is more difficult as it requires
transport-level semantics to determine if sent packets
are going unacknowledged. While it is reasonable to
assume this can be done with well known protocols
such as TCP, it isn’t general, nor desirable to embed
per-protocol logic. Instead, we suggest that the proxies
themselves issue periodic, acknowledged requests to in-
dependently test whether a capability is able to traverse
the network. Link-state probes must not be recogniz-
able by an attacker en-route or she can selectively let
them pass while continuing to drop data. To accomplish
this we use a reserved service ID (only visible to the
receiver) to mark probe capabilities.
Non-DNS Traffic. In today’s network, it is not nec-
essary for an IP flow to first issue a DNS request.
Raw IP addresses can be used in place of hostnames.

8



STANFORD HPN TECHNICAL REPORT TR05-HPNG-101700

When local resolution is used (such as that provided by
/etc/hosts) the host doesn’t issue a DNS request
and therefore the lookup isn’t exposed to the proxy. It
may therefore require some local configuration to ensure
that initial connections are preceded by a DNS request.
One solution, used in our implementation, is to regis-
ter services as the text representation of the IP address
and port (e.g. “192.168.1.23:80”) and have the proxies
issue requests for traffic that it does not have a cached
capability for.

5 Scalability and Fault Tolerance

SANE is different from the traditional Internet model in
two significant ways: It relies on a central entity (DC)
for all connectivity, and there is no explicit support for
adaptive routing in the network. These design choices
have implications with respect to scalability and fault
tolerance. As the network grows, the DC’s bandwidth
and computational power become limiting resources;
and failures in a large network might overwhelm the DC.

In this section we discuss how to replicate the DC, so
as to reduce its load and make it fault-tolerant. We reit-
erate that a single SANE domain is not designed to scale
to Internet size networks. Rather, we briefly discuss how
larger networks can use a hierarchy of multiple domains.
We then describe how connectivity is maintained in the
wake of network faults, and how to dampen the size of
the response through switch level redundancy and issu-
ing multiple or randomized paths.

5.1 Replicating the Domain Controller

The DC is centralized in the sense that routing and ac-
cess control decisions are not executed in a distributed
manner. But this is only logical centralization — it does
not preclude clustering (physical decentralization) or
replicating the domain controller (topological decentral-
ization) as a means of providing greater scalability and
fault tolerance.

The DC can be replicated at a single point in the
topology via clustering. Capabilities can easily be gen-
erated independently and in parallel, so long as topology
and access control updates are atomic.

Replicating the DC at different points in the topol-
ogy is possible too. Basic connectivity to multiple DCs
can be provided by multiple MSTs, one rooted at each
DC. Switches must authenticate and send their neigh-
bor lists to each DC separately. Consistency is not re-
quired as each DC grants routes independent of other
DCs. Principles randomly choose a DC to send requests
to in order to distribute load. If DCs all belong to the
same enterprise - and hence trust each other - service

advertisements and access control policy can be repli-
cated between DCs using existing methods for ensuring
distributed consistency in a name service. (We will con-
sider the case where DCs can’t trust each other in the
next section.)

SANE can be extended to support multiple domains.
One approach we are investigating is to allow domains
to operate in a hierarchy, similar to DNS. One domain is
selected as the root of the hierarchy and arbitrates com-
munication between the children domains, much like a
DC does for end-hosts. There is a great deal of addi-
tional detail required to give multiple domains an ade-
quate treatment, thus we consider it beyond the scope of
this paper and a topic for future work.

5.2 Recovering from Network Failure

In SANE it is the end-host’s responsibility to determine
network failure.4 End-hosts will typically detect net-
work failure because packets get lost and traffic goes
unacknowledged. Alternatively, SANE-aware hosts can
send periodic probes or keep-alive messages using the
capability (We discussed legacy hosts in §4.5). Either
way, as soon as an end-host suspects a path has failed,
it can request a new capability. The DC receives regular
link-state information, and so can provide a new capa-
bility over a new path (if there is one).

An alternative approach (that we are exploring) is that
when a switch receives a capability to forward a packet
to a failed link, it passes the packet to the DC instead, so
it can push a new capability to the sender.

If a link fails, a lot of capabilities might need replac-
ing, which could swamp the DC with requests. This
could be solved by: (1) Providing greater link connec-
tivity (and therefore reducing the number of capabilities
per link), and/or (2) Issuing multiple capabilities per-
request. We consider each method in turn.

Providing greater link connectivity is easy with
SANE: A good property of SANE is that additional
switches and links can be added without compromising
existing protection policy. Redundancy in network paths
reduces the average numbers of flow traversing a given
path.

Issuing multiple capabilities means two end-hosts can
have available several ways to reach each other – ide-
ally over disjoint paths. If a capability fails, it simply
switches to another capability without contacting the
DC. Even two or three alternate routes can provide a
high degree of fault tolerance [16]. In addition, to pro-
vide greater path diversity, the DC can randomly select
n of the k shortest paths to send to the client. Another
advantage of handing out multiple capabilities is that the

4This is because direct communication from switches to end-hosts
violates least privilege and creates new avenues for DoS.

9



STANFORD HPN TECHNICAL REPORT TR05-HPNG-101700

end-host can set aggressive time-outs to detect link fail-
ures. This offers quick fail-over, and will only result in
minor packet re-ordering at the receiver, in the worst
case. Modern TCP stacks can gracefully handle such
modest amounts of reordering [33].

6 Attack Resistance

A SANE network should degrade gracefully in face of
attacks from malicious hosts, switches or DCs. In what
follows, we present potential attacks on SANE and (op-
tional) architectural extensions that mitigate them.

6.1 Revocation State Exhaustion

As discussed in Section 4.3, to support revocation
SANE switches must maintain revocation lists. Such
lists are typically stored using a fast content addressable
memory (CAM), which is a scarce resource. Thus an at-
tacker can exhaust it by hoarding capabilities and then
abusing them to induce revocation.

To allow a SANE network to gracefully recover from
such revocation state exhaustion attacks, we use the fol-
lowing approach:5 Each switch contains a small CAM
(e.g. 100 entries) to store the IDs of revoked capabili-
ties. If an attacker exhausts this state, the switch simply
generates a new key invalidating all pre-existing capa-
bilities that pass through it, clears its revocation list, and
passes its new key to the DC. In addition, the DC (or
the server) tracks the number of revocations issued per
sender. When this number crosses a predefined thresh-
old, the sender is removed from the service’s access con-
trol list or, potentially, from all access control lists.

Using this approach a SANE network can quickly
converge to a state where attackers hold no valid ca-
pabilities and cannot obtain new ones. However, many
well behaved senders may have to refresh their capabil-
ities, temporarily degrading performance.

A threshold allows senders to have a “second chance”
to prove they are not being framed by a misbehaving
switches on route: If a switch uses a sender’s capability
to flood a receiver (eliciting a revocation) the sender can
use a different capability to the a misbehaving switch.
Since the sender gets several chances, no punitive action
is taken.

6.2 Tolerating Malicious Switches

A malicious switch can attempt to sabotage the network
by selectively dropping packets, advertising false topol-

5Another approach would be to use resource limits (e.g. per princi-
ple capability limits) to bound the damage a given malicous principle
can inflict. However, if many nodes are malicous, this approach is in-
sufficient.

B

DC

A

C

X
D

Figure 3: Attacker A can deny service to C by selectively
dropping its packets and letting its parent’s (B) through. As
a result C cannot communicate with the DC even though a
alternate path exists through D.

ogy information, or manipulating traffic traversing it.
We consider such attacks next.

Sabotaging MST Discovery. To attack the MST con-
struction process, a switch can advertise a false distance
to attract traffic destined for the DC to itself. There are
two attacks to consider here:

A malicious switch can falsely advertise its position
as being closer to the DC than it really is. This can nom-
inally create a path inefficiency or more seriously cause
a momentary denial of service by dropping all through
traffic. In the latter case, the switches adjacent to the ma-
licious switch will treat this as a link failure and pick a
different neighbor, thus routing around the problematic
switch.

A Malicious switch may inflict a more subtle attack
by selectively allowing packets from its neighbors and
dropping all other traffic. An example of this attack is
depicted in Figure 3: node A only drops patckets from
node C. Since node A appears to be functioning nor-
mally to node B, it does not change its forwarding path
to the DC. Therefore, C cannot communicate with the
DC even though an alternate patch exists through D.

We combat this by modifying the header in packets to
the DC to mask the identity of the sender from switches
en-route. Normally, the header on packets destined for
the DC (i.e., the IPSec ESP header) contains a consistent
originating NodeID in cleartext, so that the DC knows
which key to use to authenticate and decrypt the pay-
load. We replace this static NodeID with an ephemeral
nonce provided by the DC. Every response from the DC
will contain a nonce to use as the NodeID in the next
message. To further obscure the identity of the sender,
all messages are padded and the timing associated with
periodic messages to the DC should be randomized.

With this approach, if a switch drops all packets it will
inevitably drop packets belonging to its nearest neigh-
bors as well, causing traffic to be diverted away from it.
If a switch drops random packets, connectivity is only
temporarily degraded, but not lost.

10



STANFORD HPN TECHNICAL REPORT TR05-HPNG-101700

Bad Link State Advertisement. Malicious switches
can try to attract traffic by falsifying connectivity in-
formation in link state updates. A simple approach to
safeguard against such attacks is for the DC to only add
edges to its network map when the switches at either end
have both advertised it.

This safeguard does not prevent colluding nodes from
falsely advertising a link between themselves. Unfortu-
nately such collusion cannot be externally verified. No-
tice that such collusion can only result in a temporary
denial of service attack when capabilities containing a
false link are issued (When end-hosts are unable to route
over a false link, they immediately request a fresh capa-
bility). However, the isolation properties of the network
are still preserved.
Malicious Data Injection. SANE packet payloads are
not bound to headers by an integrity check. Therefore, a
malicious switch en-route to the destination can silently
modify the payload. End-to-end secrecy and integrity
checks, while useful, offer little protection for com-
ponents that examine the payload before (e.g. middle-
boxes) or during the integrity check (e.g. OpenSSL).
Thus, they still leave open an attack vector to an on-
path attacker . Exploits in end-host data-integrity mech-
anisms (IPsec, SSL), are not unheard of [3] and vulner-
abilities in complex middleboxes (SpamFilters, VirusS-
canners, Firewalls, IDS) are a relatively common occur-
rence [4, 6, 2]. If a malicious switch modifies existing
payload to include an exploit, the attacker is protected
from discovery because the capability implicates the le-
gitimate sender.

To address this threat, we incorporate an optional in-
tegrity checksum into packet headers. These checksums
are appended to the capability by the sender and checked
by designated switches along the path, as well as the
recipient. Apart from preventing malicious switches
from hijacking connections, this mechanism provides
accountability: an administrator can now inspect traf-
fic logs to identify the exact attack origin and propa-
gation path. To implement this features, we can piggy-
back on the existing shared keys between the DC and
the switches:

• Before a DC returns a capability to an end-host, it
designates specific switches along the path to check
data integrity. Suppose switches ID1 and ID2 are
chosen.
When constructing the capability, the DC adds a
field in the onion layers of switches ID1 and ID2

indicating that they should validate the data in-
tegrity checksum. We let k1, k2 denote the shared
key between the DC and ID1, ID2 respectively.
The DC derives MAC keys from its shared keys
with these switches by computing: kmac,i ←

hmacki
(CAP-IDi) for i = 1, 2. The DC sends

kmac,1 and kmac,2 to the sender along with the ca-
pability.

• For each packet, the sender computes the two tags
ti ← HMACkmac,i

(m) for i = 1, 2 where m is
the packet payload. It appends the the tags ti to the
capability.6

• Switch ID1 derives the MAC key kmac,1 from the
key k1 and the CAP-ID. When processing a packet
which contains an indication that ID1 should val-
idate the checksum, it (optionally) validates the
MAC ti and drops the packet if it fails to verify.
If successful, ti is removed from the packet before
forwarding.

6.3 Tolerating a Malicious DC

DCs are highly trusted entities in a SANE network. This
can create a single point of failure from a security stand-
point since the compromise of any one DC yields total
control to an attacker.

To prevent such a take-over, we distribute trust among
DC’s using threshold cryptography, as follows (The full
details are beyond the scope of this paper. We only
sketch the basics):

We split the DC’s secret across a few server (say
n < 6) such that two of them are needed to generate a
capability. The sender then communicates with two out
of the n DC’s to obtain the capability. Thus, an attacker
gains no additional access by compromising a single
DC.7 Access control policy and service registration must
be done independently with each DC by the end-host
using standard approaches for consistency such as two-
phase commit. When a new DC comes online, or when
a DC re-establishes communication after a network par-
tition, it must have some means of re-syncing with the
other DCs. This can be achieved via standard byzantine
agreement protocols [11].

Even with this approach, a DC must be restricted to
shut off ports only the MST that it is a root of; Other-
wise, rogue DCs can shut off all communication. Sim-
ilarly, if we allow DC to issue revocations, a rouge DC
can shut down the entire network. To deal with this,
the revocation mechanism can be extended using asym-
metric threshold cryptography [13]. We omit the details
from this paper.

6Note that hashing m with a collision resistant hash prior to apply-
ing HMAC makes it possible to compute both tags at about the same
time that it takes to compute a single tag.

7Implementing threshold cryptography for symmetric encryption
is done combinatorially [9]—start from a t-out-of-t sharing (namely,
encrypt a DC master secret under all DC server keys) and then con-
struct a t-out-of-n sharing from it.

11



STANFORD HPN TECHNICAL REPORT TR05-HPNG-101700

7 Implementation

We implemented a SANE network consisting of
switches, IP proxies, a gateway to the Internet and a
DC within our group LAN. We describe our experiences
developing and using SANE within an operational net-
work environment.
Development and Test Environment. All develop-
ment was done in C++ within an in-house user-space
networking environment based on the Virtual Net-
work System (VNS) [10]. Working outside the kernel
provided us with a flexible development, debug and
execution environment. It also simplified running and
testing over multiple varied and complex network
topologies.

All network components (switches, proxies, the gate-
way and DC) are implemented as user-space processes
that have the ability to directly process raw Ether-
net frames and communicate with physical hosts. VNS
provides that ability to run the processes within user-
specified topologies as well as to interface with physical
machines. We used point-to-point Ethernet to provide
connectivity between network components.

Development was done on Fedora Linux, kernel 2.6.
We tested the implementation by running the network
components on Linux workstations interconnecting 7
physical hosts used daily as office workstations. All
hosts were interconnected via 100Mb Ethernet.
Switches. Our switch implementation supports all core
functionality including neighbor discovery, MST con-
struction, and link-state forwarding. We use OCB-
AES [25] for capability construction and decryption.
Switches were preconfigured with the DC’s public key,
and they generated local IDs randomly.

We configured the switches to send HELLO packets
on startup, during detection of a link change and on 15
second intervals. Link state packets were sent subse-
quent to authentication with the DC, on detection of a
link change and on 30 second intervals.

The only dynamic state maintained on each switch
was a hash table of capability revocations which con-
tained a capability ID and the associated expiration time.
Domain Controller. In our implementation the DC con-
sists of four separate modules, topology construction,
name hosting and resolution, capability construction,
and, authentication and registration. For authentication
purposes, the DC was preconfigured with the public
keys of all switches.

For end-to-end path calculations, we used a bidirec-
tional search from both the source and destination. All
computed routes were cached to speed up computation
for capability requests between the same end-hosts. All
cached routes were checked against the current topology
for correctness before re-use.

Services are stored in a map that matched text strings
to the switch and port the service is connected to. A sep-
arate map is used to store the access control list for each
service.

For capabilities we use 8bit port identifiers and 64bit
MACs. Switch and principal IDs are 32bits and service
IDs are 16bits. The first layer of the capability requires
24bytes while each additional layer uses 14bytes. The
longest path on our test topologies was 10 switches re-
sulting in a 164byte header. Capabilities are given a 15
minute lifetime.

The registration component serves an extensible in-
terface for new switches and users to register with the
network. Registration is the setup required prior to join-
ing the network so a switch or principle has the appro-
priate information needed to authorize with the DC.
End Hosts. We were able to integrate end-hosts run-
ning both Windows and Linux into the network with lit-
tle modification. The only configuration necessary was
to reduce the MTU size of the host interfaces to pro-
vide space for SANE headers. Reducing the MTU to
1300bytes was sufficient.

We developed a command line utility to allow the
publication of services and setting of access controls
from an end-host.
Testing. Our goal in implementing SANE was to under-
stand the implications of running SANE within a real
network. We ran our implementation within our local
network for two weeks, supporting local connectivity of
7 workstations running NSF, HTTP, IMAP and SMTP.
In additional we ran a SANE gateway that handles all
traffic to the WAN. We tested over multiple switch-level
topologies containing 4 to 20 switches.

For encryption, our implementation used a an 128 bit
AES key. Given pre-computed routes, on a commodity
2.3 GHz PC, our DC was able to generate 10-hop capa-
bilities at a rate of 20,000 per second.

Our implementation was not optimized for perfor-
mance. In practice SANE switches would be imple-
mented in hardware and the DC, proxies and gateway
would run on dedicated machines. However, a quick
back-of-the-envelope estimate of load on the DC sug-
gest that even our modest implementation could handle
a moderate-sized enterprise with a single DC:

Assuming that a DC is responsible for 10000 end-
nodes (in a moderate-sized enterprise), and that each
end-node initiates 10 new transfers per minute with
other unique end-hosts, the DC receives about 1667
capability requests per second. If we assume an aver-
age transmission lifetime of 2 minutes, and a capability
timeout interval of 1 minute (requiring one refresh per
transmission lifetime, on average), the request rate at the
DC doubles to 3334 per second. This is one third of our

12



STANFORD HPN TECHNICAL REPORT TR05-HPNG-101700

simple implementation’s capacity for generating capa-
bilities.

We now estimate the bandwidth requirements to sup-
port the above network. Assuming a 10-hop network,
responses to capability requests (which will include a
capability for client-to-server communication and one
for server-to-client) are at most 0.4KB in size, assuming
10-hop network paths. This results in 13Mbps of traffic
on the network for issuing (or reissuing) capabilities.

As part of our future work, we plan to continue ex-
ploring the performance implications of running SANE
in large networks with attack-level traffic conditions.

8 Related Work

SANE shares much in common with predicate rout-
ing [26], both proposals argue for unified policy spec-
ification and enforcement. Predicate routing unifies se-
curity and routing by defining connectivity as a set of
declarative statements from which routing tables and fil-
ters are generated. Our work is distinct in that users (as
opposed to end-point IDs or IP addresses in Predicate
routing) are first class objects and can be used in defin-
ing access controls. Secondly we do not require out-of-
band control elements, but rather provide default con-
nectivity to the DC. Finally, predicate routing was not
designed to support least-knowledge. Routers maintain
full topology information and end-hosts are easily iden-
tifiable from network flows.

Weaver et. al [28] argue that existing configurations of
course-grained network perimeters (e.g. NIDS, multiple
firewalls) and end-host protective mechanisms (e.g. anti-
virus software) are ineffective against worms, both when
employed individually, or in combination. Further, they
advocate augmenting traditional coarse grain perimeters
with fine grain protection mechanisms throughout the
network.

Much recent work has focused on DoS remediation
through network enforced capabilities [8, 31, 32] on
the WAN. These systems assumes no cooperation be-
tween network elements nor do they have a notion of
centralized control. Instead, clients receive capabilities
from servers directly (and servers from clients), Capa-
bilities are constructed on route by the initial capability
requests. This offers a very different policy model than
SANE as it is designed to meet different needs (limiting
wide area DoS) and relies on different assumptions (no
common administrative domain).

Raghavan et. al in Platypus [23] uses authenticated
source routes to enforce ISP policy compliance and
identify the billable network entities. The goal of Platy-
pus is use tracking and not attack resistance: unlike our
scheme in which issued routes are opaque and strictly

immutable, they use visible, loose source routes which
are composable. This approach is unsuitable for our pur-
poses. For example, a sender capable of collecting capa-
bilities would be able to construct arbitrary routes (and
thus connectivity) within the network.

Other proposals have suggested replacing link-layer
distributed spanning tree based routing with link state
routing [22, 21] to achieve better scalability, stability
and fault tolerance.

Myers et. al. [21] facilitate this by changing the Eth-
ernet model to provide explicit host registration and dis-
covery based on a directory service, instead of the tradi-
tional broadcast discovery service (ARP) and implicit
MAC address learning. This provides better scalabil-
ity and transparent link-layer mobility and eliminates
the inefficiencies of broadcast Similarly, we eliminate
broadcast in favor of tighter traffic control through link
state updates. However, we eschew the use of persistent
end-host identifiers, instead associating each routable
destination i.e., services with the switch port where it
registered from.

In their 4D architecture Rexford et. al. [24, 15] ar-
gue that the decentralized routing policy, access control
and management has resulted in complex routers and
cumbersome, difficult to manage networks. Similar to
SANE, they argue that routing (the control plane) should
be separated from forwarding, resulting a very simple
forwarding path.

Although 4D centralizes routing policy decisions,
they retain the security model of today’s networks,
where routing (forwarding tables) and access controls
(filtering rules) are still decoupled, disseminated to for-
warding elements and executed on the forwarding path,
on the basis of weakly-bound end-point identifiers (IP
address). In our work, there is no need to disseminate
forwarding tables or filters as forwarding decisions are
made a priori and encoded in source routes.

9 Conclusion

We believe that enterprise networks are different from
the Internet at large, and deserve special attention: Se-
curity is paramount; centralized control is the norm, and
uniform, consistent policies are important.

Providing strong protection is difficult, and always re-
quires some tradeoffs: On one hand there are clear ad-
vantages to having an open environment where connec-
tivity is unconstrained and every end-host can talk to
every other. But just as clearly, such openness is prone
to attack by malicious users from inside or outside the
network.

We set out to understand what it takes to design a
network so secure that it is almost unthinkable for an

13



STANFORD HPN TECHNICAL REPORT TR05-HPNG-101700

end-host or switch to mount an effective attack. Drastic
goals call for drastic measures, and we understand that
our proposal - SANE - is an extreme approach. SANE
is conservative in the sense that it enforces a philosophy
of Least Privilege and Least Knowledge to all parties,
except a trusted, central Domain Controller. We believe
that this is typical and acceptable practice in enterprises,
where central control, and restricted access to informa-
tion is common.

We suspect that our approach would share much in
common with any approach that has the same goals. For
example, if we want switches to forward packets, but
we want to hide from them the identity of both end-
hosts, the service, and the path packets take, then it re-
quires significant effort and mechanism. Our approach
- encrypted source-routes - has the interesting property
of hiding all unnecessary information, without requiring
state in the network, and we believe it is both practical
and scalable.

References
[1] 802.1d mac bridges. http://www.ieee802.org/1/pages/802.1D-

2003.html.

[2] Cisco security advisory: Cisco ios remote router crash.
http://www.cisco.com/warp/public/770/ioslogin-pub.shtml, Au-
gust 1998.

[3] Cert advisory ca-2002-23 multiple vulnerabilities in openssl.
http://www.cert.org/advisories/CA-2002-23.html, July 2002.

[4] Cert advisory ca-2003-13 multiple vulnerabilities in snort pre-
processors. http://www.cert.org/advisories/CA-2003-13.html,
April 2003.

[5] Sasser worms continue to threaten corporate productiv-
ity. http://www.esecurityplanet.com/alerts/article.php/3349321,
May 2004.

[6] Technical cyber security alert ta04-036aarchive http pars-
ing vulnerabilities in check point firewall-1. http://www.us-
cert.gov/cas/techalerts/TA04-036A.html, February 2004.

[7] Icmp attacks against tcp vulnerability exploit.
http://www.securiteam.com/exploits/5SP0N0AFFU.html,
April 2005.

[8] T. Anderson, T. Roscoe, and D. Wetherall. Preventing internet
denial-of-service with capabilities. SIGCOMM Comput. Com-
mun. Rev., 34(1):39–44, 2004.

[9] E. Brickell, G. D. Crescenzo, and Y. Frankel. Sharing block
ciphers. In Proceedings of Information Security and Privacy,
volume 1841 of LNCS, pages 457–470. Springer-Verlag, 2000.

[10] M. Casado and N. McKeown. The virtual network system. In
Proceedings of the ACM SIGCSE Conference, 2005.

[11] M. Castro and B. Liskov. Practical byzantine fault tolerance and
proactive recovery. ACM Transactions on Computer Systems
(TOCS), 20(4):398–461, Nov. 2002.

[12] D. Cullen. Half life 2 leak means no launch for christmas.
http://www.theregister.co.uk/2003/10/07/half life 2 leak means/,
October 2003.

[13] Y. Desmedt and Y. Frankel. Threshold cryptosystems. In Ad-
vances in Cryptology - Crypto ’89, 1990.

[14] D. M. Goldschlag, M. G. Reed, and P. F. Syverson. Hiding Rout-
ing Information. In R. Anderson, editor, Proceedings of Infor-
mation Hiding: First International Workshop, pages 137–150.
Springer-Verlag, LNCS 1174, May 1996.

[15] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rex-
ford, G. Xie, H. Yan, J. Zhan, and H. Zhang. A clean slate 4d
approach to network control and management. In In ACM SIG-
COMM Computer Communication Review, October 2005.

[16] G. C. S. Jian Pu, Eric Manning. Routing reliability analysis of
partially disjoint paths. In IEEE Pacific Rim Conference on Com-
munications, Computers and Signal processing (PACRIM’ 01),
volume 1, pages 79–82, 2001.

[17] C. Kaufman. Internet key exchange (ikev2) protocol. draft-ietf-
ipsec-ikev2-10.txt (Work in Progress).

[18] A. Kumar, V. Paxson, and N. Weaver. Exploiting underlying
structure for detailed reconstruction of an internet-scale event.
In to appear in Proc. ACM IMC, October 2005.

[19] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones.
Socks protocol version 5. RFC 1928, 1996.

[20] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and
N. Weaver. Inside the slammer worm. IEEE Security and Pri-
vacy, 1(4):33–39, 2003.

[21] A. Myers, E. Ng, and H. Zhang. Rethinking the service model:
Scaling ethernet to a million nodes. In ACM SIGCOMM Hot-
Nets, November 2004.

[22] R. J. Perlman. Rbridges: Transparent routing. In INFOCOM,
2004.

[23] B. Raghavan and A. C. Snoeren. A system for authenticated
policy-compliant routing. In Proc. ACM SIGCOMM ’04, 2004.

[24] J. Rexford, A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. My-
ers, G. Xie, J. Zhan, and H. Zhang. Network-wide decision
making: Toward a wafer-thin control plane. In Proceedings of
HotNets III, November 2004.

[25] P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: A block-
cipher mode of operation for efficient authenticated encryption.
In ACM Conference on Computer and Communications Secu-
rity, pages 196–205, 2001.

[26] T. Roscoe, S. Hand, R. Isaacs, R. Mortier, and P. Jardetzky. Pred-
icate routing: Enabling controlled networking. SIGCOMM Com-
put. Commun. Rev., 33(1):65–70, 2003.

[27] J. Saltzer and M. Schroeder. The protection of information in
computer systems. Proceedings of the IEEE, 63(9), 1975.

[28] N. Weaver, D. Ellis, S. Staniford, and V. Paxson. Worms vs.
perimeters: The case for hard-lans. In Proc. Hot Interconnects
12, August 2004.

[29] G. Xie, J. Zhan, D. Maltz, H. Zhang, A. Greenberg, G. Hjalm-
tysson, and J. Rexford. On static reachability analysis of ip net-
works. In IEEE INFOCOM 2005, March 2005.

[30] G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. Greenberg, and
G. Hjalmtysson. Routing design in operational networks: A look
from the inside. In Proc. ACM SIGCOMM ’04, pages 27–40,
New York, NY, USA, 2004. ACM Press.

[31] A. Yaar, A. Perrig, and D. Song. Siff: A stateless internet flow
filter to mitigate ddos flooding attacks. In In Proceedings of the
IEEE Security and Privacy Symposium, May 2004.

[32] X. Yang, D. Wetherall, and T. Anderson. A dos-limiting net-
work architecture. In Proc. ACM SIGCOMM ’05, pages 241–
252, New York, NY, USA, 2005. ACM Press.

[33] M. Zhang, B. Karp, S. Floyd, and L. Peterson. Rr-tcp: A
reordering-robust tcp with dsack. In Proc. of IEEE International
Conference on Networking Protocols (ICNP 2003), 2003.

14


