
XIA: Efficient Support for Evolvable Internetworking

Dongsu Han Ashok Anand† Fahad Dogar Boyan Li Hyeontaek Lim

Michel Machado∗ Arvind Mukundan Wenfei Wu† Aditya Akella†

David G. Andersen John W. Byers∗ Srinivasan Seshan Peter Steenkiste†

Abstract
Motivated by limitations in today’s host-centric IP net-
work, recent studies have proposed clean-slate network
architectures centered around alternate first-class princi-
pals, such as content, services, or users. However, much
like the host-centric IP design, elevating one principal
type above others hinders communication between other
principals and inhibits the network’s capability to evolve.
This paper presents the eXpressive Internet Architecture
(XIA), an architecture with native support for multiple
principals and the ability to evolve its functionality to ac-
commodate new, as yet unforeseen, principals over time.
We describe key design requirements, and demonstrate
how XIA’s rich addressing and forwarding semantics fa-
cilitate flexibility and evolvability, while keeping core
network functions simple and efficient. We describe case
studies that demonstrate key functionality XIA enables.

1 Introduction
The “narrow waist” design of the Internet has been tremen-
dously successful, helping to create a flourishing ecosys-
tem of applications and protocols above the waist, and
diverse media, physical layers, and access technologies
below. However, the Internet, almost by design, does not
facilitate a clean, incremental path for the adoption of
new capabilities at the waist. This shortcoming is clearly
illustrated by the 15+ year deployment history of IPv6
and the difficulty of deploying primitives needed to secure
the Internet. Serious barriers to evolvability arise when:
• Protocols, formats, and information must be agreed

upon by a large number of independent actors in the
architecture; and
• There is no built-in mechanism that supports (and

embraces) incremental deployment of new function-
ality with minimal friction.

IP today faces both of these barriers. First, senders,
receivers, and every router in between must agree on the
format and meaning of the IP header. It is not possible,
therefore, for a destination to switch to IPv6-based ad-

Carnegie Mellon University
∗Department of Computer Science, Boston University
†University of Wisconsin-Madison

dressing and still remain reachable by unmodified senders
who use IPv4. Second, today’s paths to incremental de-
ployment typically involve tunnels or overlays, which
have the drawback that they hide the new functionality
from the existing network. For example, enabling a sin-
gle router in a legacy network to support some form of
content-centric networking is fruitless if that traffic ends
up being tunneled through the network using IPv41.

This paper presents a new Internet architecture, called
the eXpressive Internet Architecture or XIA, that ad-
dresses these problems from the ground up. XIA main-
tains some features of the current Internet, such as a nar-
row waist that networks must support, and packet switch-
ing, but it differs from today’s Internet in several areas.

The philosophy underlying the design of XIA is, sim-
ply, that we do not believe we can predict the usage mod-
els for the Internet of 50 years hence. The research com-
munity has presented compelling arguments for support-
ing many types of communication—content-centric net-
working [26, 44], service-based communication [20, 38],
multicast [19], enhanced support for mobility [4, 40, 48],
and so on. We believe that a new network architecture
should facilitate any or all of these capabilities, and it
must be possible to enable or disable “native” support for
them as makes sense in that time and place.

The key architectural element that XIA adds to improve
evolvability is one we call expressing intent. XIA’s ad-
dresses can simultaneously express both a “new” type of
address (or addresses), and one or more backwards com-
patible pathways to reach that address. This notion is best
explained by example: Consider the process of retrieving
a particular piece of content (CID) using a network that
provides only host-to-host communication, much like to-
day’s Internet. The source would send a packet destined
to a destination network (Dom); the destination network
would deliver it to a host; the host would deliver it to a
process providing a service (Srv) such as HTTP; and the
process would reply with the desired content, as such:

Dom Hst Srv CID

1Without resorting to deep packet inspection of various sorts, which
itself is typically fragile.

XIA makes this path explicit in addressing, and allows
flexibility in expressing it, e.g., “The source really just
wants to retrieve this content, and it does not care whether
it goes through Dom to get it.” As a result, this process of
content retrieval might be expressed in XIA by specifying
the destination address as a directed acyclic graph, not a
single address, like this:

Dom Hst Srv CID

By expressing the destination in this way, senders give
flexibility to the network to satisfy their intent. Imagine a
future network in which the destination domain supported
routing directly to services [20] (instead of needing to
route to a particular host). Using the address as expressed
above, this hypothetical network would already have both
the information it needs (the service ID) and permission to
do so (the link from the source directly to the service ID).
A router or other network element that does not know how
to operate on, e.g., the service ID, would simply route
the packet to the furthest-along node that it does know
(the domain or the host in this example). Note that the
sender can use the same address before and after support
for service routing is introduced.

XIA terms the types of nodes in the address princi-
pals; examples of principals include hosts, autonomous
domains (analogous to today’s autonomous systems), ser-
vices, content IDs, and so on. The set of principals in XIA
is not fixed: hosts or applications can define new types
of principals and begin using them at any time, without
waiting for support from the network. Of course, if they
want to get anything done, they must also express a way
to get their work done in the current network. We believe
that the ability to express not just “how to do it today”,
but also your underlying intent, is key to enabling future
evolvability.

The second difference between XIA and today’s In-
ternet comes from a design philosophy that encourages
creating principals that have intrinsic security: the ability
for an entity to validate that it is communicating with the
correct counterpart without needing access to external
databases, information, or configuration. An example of
an intrinsically secure address is using the hash of a public
key for a host address [10]. With this mechanism, the host
can prove that it sent a particular packet to any receiver
who knows its host address. Intrinsic security is central to
reliable sharing of information between principals and the
network and to ensuring correct fulfillment of the contract
between them. It can furthermore be used to bootstrap
higher level security mechanisms.

We make the following contributions in this paper: We
outline novel design ideas for evolution (§2), and sys-

tematically incorporate them into the eXpressive Inter-
net Protocol (XIP) (§3). We describe optimizations for
high-speed per-hop packet processing, which can achieve
multi-10Gbps forwarding speed. Then, through concrete
examples, we show how networks, hosts, and applications
interact with each other and benefit from XIA’s flexibility
and evolvability (§4). Through prototype implementation
and deployment, we show how applications can benefit,
and demonstrate the practicality of XIP and the architec-
ture under current and (expected) future Internet scales
and technology (§5). We discuss related work (§6) and
close with a conclusion and a list of new research question
that XIA raises (§7).

2 Foundational Ideas of XIA
XIA is based upon three core ideas for designing an evolv-
able and secure Internet architecture:
1. Principal types. Applications can use one or more
principal types to directly express their intent to access
specific functionality. Each principal type defines its own
“narrow waist”, with an interface for applications and
ways in which routers should process packets destined to
a particular type of principal.

XIA supports an open-ended set of principal types,
from the familiar (hosts), to those popular in current re-
search (content, or services), to those that we have yet to
formalize. As new principal types are introduced, appli-
cations or protocols may start to use these new principal
types at any time, even before the network has been mod-
ified to natively support the new function. This allows
incremental deployment of native network support with-
out further change to the network endpoints, as we will
explore through examples in §4.2 and §4.3.
2. Flexible addressing. XIA aims to avoid the “boot-
strapping problem”: why develop applications or proto-
cols that depend on network functionality that does not
yet exist, and why develop network functionality when no
applications can use it? XIA provides a built-in mecha-
nism for enabling new functions to be deployed piecewise,
e.g., starting from the applications and hosts, then, if pop-
ular enough, providing gradual network support. The key
challenge is: how should a legacy router in the middle
of the network handle a new principal type that it does
not recognize? To address this, we introduce the notion
of a fallback. Fallbacks allow communicating parties to
specify alternative action(s) if routers cannot operate upon
the primary intent. We provide details in §3.2.
3. Intrinsically secure identifiers. IP is notoriously
hard to secure, as network security was not a first-order
consideration in its design. XIA aims to build security
into the core architecture as much as possible, without
impairing expressiveness. In particular, principals used
in XIA source and destination addresses must be intrin-
sically secure, i.e., cryptographically derived from the

2

associated communicating entities in a principal type-
specific fashion. This allows communicating entities to
more accurately ascertain the security and integrity of
their transfers; for example, a publisher can attest that it
delivered specific bytes to the intended recipients. While
the implementation of intrinsic security is not a focus of
this paper, we briefly describe the intrinsic security of our
current principal types in §3.1, as well as the specification
requirements for intrinsic security for new principal types.

3 XIP
XIA facilitates communication between a richer set of
principals than many other architectures. We therefore
split both the design and our discussion of communication
within XIA into two components. First, the basic building
block of per-hop communication is the core eXpressive In-
ternet Protocol, or XIP. XIP is principal-independent, and
defines an address format, packet header, and associated
packet processing logic. A key element of XIP is a flexible
format for specifying multiple paths to a destination prin-
cipal, allowing for “fallback” or “backwards-compatible”
paths that use, e.g., more traditional autonomous system
and host-based communication.

The second component is the per-hop processing for
each principal type. Principals are named with typed,
unique eXpressive identifiers which we refer to as XIDs.
In this paper, we focus on host, service, content, and
administrative domain principals to provide an example
of how XIA supports multiple principals. We refer to the
above types as HIDs, SIDs, CIDs, and ADs, respectively.
The list of principal types is extensible and more examples
can be found in our prior work [8].

Our goal is for the set of mandatory and optional prin-
cipals to evolve over time. We envision that an initial
deployment of XIA would mandate support for ADs and
HIDs, which provide global reachability for host-to-host
communication—a core building block today. Support
for other principal types would be optional and over time,
future network architects could mandate or remove the
mandate for these or other principals as the needs of the
network change. Or, put more colloquially, we do not see
the need for ADs and HIDs disappearing any time soon,
but our own myopia should not tie the hands of future
designers!

3.1 Principals
The specification of a principal type must define:

1. The semantics of communicating with a principal of
that type.

2. A unique XID type, a method for allocating XIDs
and a definition of the intrinsic security properties of
any communication involving the type. These intrin-
sically secure XIDs should be globally unique, even
if, for scalability, they are reached using hierarchical

means, and they should be generated in a distributed
and collision-resistant way.

3. Any principal-specific per-hop processing and rout-
ing of packets that must either be coordinated or kept
consistent in a distributed fashion.

These three features together define the principal-specific
support for a new principal type. The following para-
graphs describe the administrative domain, host, service,
and content principals in terms of these features.

Network and host principals represent autonomous rout-
ing domains and hosts that attach to the network. ADs
provide hierarchy or scoping for other principals, that is,
they primarily provide control over routing. Hosts have a
single identifier that is constant regardless of the interface
used or network that a host is attached to. ADs and HIDs
are self-certifying: they are generated by hashing the pub-
lic key of an autonomous domain or a host, unforgeably
binding the key to the address. The format of ADs and
HIDs and their intrinsic security properties are similar to
those of the network and host identifiers used in AIP [10].

Services represent an application service running on
one or more hosts within the network. Examples range
from an SSH daemon running on a host, to a Web
server, to Akamai’s global content distribution service, to
Google’s search service. Each service will use its own ap-
plication protocol, such as HTTP, for its interactions. An
SID is the hash of the public key of a service. To interact
with a service, an application transmits packets with the
SID of the service as the destination address. Any entity
communicating with an SID can verify that the service
has the private key associated with the SID. This allows
the communicating entity to verify the destination and
bootstrap further encryption or authentication.

In today’s Internet, the true endpoints of communica-
tion are typically application processes—other than, e.g.,
ICMP messages, very few packets are sent to an IP desti-
nation without specifying application port numbers at a
higher layer. In XIA, this notion of processes as the true
destination can be made explicit by specifying an SID
associated with the application process (e.g., a socket) as
the intent. An AD, HID pair can be used as the “legacy
path” to ensure global reachability, in which case the AD
forwards the packet to the host, and the host “forwards”
it to the appropriate process (SID). In §4, we show that
making the true process-level destination explicit facili-
tates transparent process migration, which is difficult in
today’s IP networks because the true destination is hidden
as state in the receiving end-host.

Lastly, the content principal allows applications to ex-
press their intent to retrieve content without regard to its
location. Sending a request packet to a CID initiates re-
trieval of the content from either a host, an in-network
content cache, or other future source. CIDs are the cryp-
tographic hash (e.g., SHA-1, RIPEMD-160) of the associ-

3

ated content. The self-certifying nature of this identifier
allows any network element to verify that the content
retrieved matches its content identifier.

3.2 XIP Addressing
Next, we introduce key concepts for XIP addresses that
support the long-term evolution of principal types, the
encoding mechanism for these addresses, and a represen-
tative set of addressing “styles” supported in XIP.

3.2.1 Core concepts in addressing

XIA provides native support for multiple principal types,
allowing senders to express their intent by specifying a
typed XID as part of the XIP destination address. How-
ever, XIA’s design goal of evolvability implies that a
principal type used as the intent of an XIP address may
not be supported by all routers. Evolvability thus leads
us to the architectural notion of fallback: intent that may
not be globally understood must be expressed with an
alternative backwards compatible route, such as a glob-
ally routable service or a host, that can satisfy the request
corresponding to the intent. This fallback is expressed
within an XIP address since it may be needed to reach the
intended destination.

XIP addressing must also deal with the fact that not
all XID types will be globally routable, for example, due
to scalability issues. This problem is typically addressed
through scoping based on network identifiers [10]. Since
XIA supports multiple principal types, we generalize scop-
ing by allowing the use of XID types other than ADs for
scoping. For example, scaling global flat routing for CIDs
may be prohibitively expensive [12, 42], and, thus, re-
quests containing only a CID may not be routable. Allow-
ing the application to refine its intent using hierarchical
scoping using ADs, HIDs, or SIDs to help specify the
CID’s location can improve scalability and eliminate the
need for XID-level global routing. We explore the effec-
tiveness of using this more scalable approach in §5.3.

The drawback of scoping intent is that a narrow inter-
pretation could limit the network’s flexibility to satisfy
the intent in the most efficient manner, e.g., by delivering
content from the nearest cache holding a copy of the CID,
rather than routing to a specific publisher. We can avoid
this limitation by combining fallback and scoping, a con-
cept we call (iterative) refinement of intent. When using
refinement of intent, we give the XID at each scoping
step the opportunity to satisfy the intent directly without
having to traverse the remainder of the scoping hierarchy.

3.2.2 Addressing mechanisms

XIA’s addressing scheme is a direct realization of these
high-level concepts. To implement fallback, scoping, and
iterative refinement, XIA uses a restricted directed acyclic
graph (DAG) representation of XIDs to specify XIP ad-
dresses. A packet contains both the destination DAG and

the source DAG to which a reply can be sent. Because of
symmetry, we describe only the destination address.

Three basic building blocks are: intent, fallback, and
scoping. XIP addresses must have a single intent, which
can be of any XID type. The simplest XIP address has
only a “dummy” source and the intent (I) as a sink:

I

The dummy source (•) appears in all visualizations of
XIP addresses to represent the conceptual source of the
packet.

A fallback is represented using an additional XID (F)
and a “fallback” edge (dotted line):

I

F

The fallback edge can be taken if a direct route to the
intent is unavailable; we allow up to four fallbacks.

Scoping of intent is represented as:

S I

This structure means that the packet must be first routed
to a scoping XID S, even if the intent is directly routable.

These building blocks are combined to form more
generic DAG addresses that deliver rich semantics, imple-
menting the high-level concepts in §3.2.1. To forward a
packet, routers traverse edges in the address in order and
forward using the next routable XID. Detailed behavior
of packet processing is specified in §3.3.2.

3.2.3 Addressing style examples

XIP’s DAG addressing provides considerable flexibil-
ity. In this subsection, we present three (non-exhaustive)
“styles” of how it might be used to achieve important
architectural goals.
Supporting evolution: The destination address encodes
a service XID as the intent, and an autonomous domain
and a host are provided as a fallback path, in case routers
do not understand the new principal type.

SID1

AD1 HID1

This scheme provides both fallback and scalable routing.
A router outside of AD1 that does not know how to route
based on intent SID1 directly will instead route to AD1.
Iterative refinement: In this example, every node in-
cludes a direct edge to the intent, with fallback to domain
and host-based routing. This allows iterative incremental
refinement of the intent. If the CID1 is unknown, the
packet is then forwarded to AD1. If AD1 cannot route to
the CID, it forwards the packet to HID1.

CID1

AD1 HID1

4

An example of the flexibility afforded by this addressing
is that an on-path content-caching router could directly
reply to a CID query without forwarding the query to the
content source. We term this on-path interception. More-
over, if technology advances to the point that content IDs
became globally routable, the network and applications
could benefit directly, without changes to applications.
Service binding and more: DAGs also enable appli-
cation control in various contexts. In the case of legacy
HTTP, while the initial packet may go to any host han-
dling the web service, subsequent packets of the same
“session” (e.g., HTTP keep-alive) must go to the same
host. In XIA, we do so by having the initial packet
destined for: • → AD1 → SID1. A router inside AD1
routes the request to a host that provides SID1. The
service replies with a source address bound to the host,
•→ AD1→ HID1→ SID1, to which subsequent packets
can be sent.

Other uses of DAGs are described in [9]. Some poten-
tial uses of DAG-based addresses, such as source routing,
raise questions of policy and authorization that we do
not explore in this paper. Here, we focus on supporting
evolvability, refinement, and closely related uses such as
binding and rebinding (§4).

3.3 XIP Header and Per-Hop Processing
This section describes the XIP packet format and per-hop
processing that routers perform on packets. Later, in §5,
we show that this design satisfies both the requirements
for flexibility and efficient router processing.

3.3.1 Header format

Figure 1 shows the header format. Our header encodes a
source and a destination DAG, and as a result our address
is variable-length—NumDst and NumSrc indicate the
size of the destination and source address. The header
contains fields for version, next header, payload length,
and hop limit. More details are described in [9].

Our header stores a pointer, LastNode, to the previ-
ously visited node in the destination address, for routers
to know where to begin forwarding lookups. This makes
per-hop processing more efficient by enabling routers to
process a partial DAG instead of a full DAG in general.

DAGs are stored as adjacency lists. Each node in the
adjacency list contains three fields: an XID Type; a 160-
bit XID; and an array of the node indices that represent
the node’s outgoing edges in the DAG. The adjacency
list format allows at most four outgoing edges per node
(Edge0. . .Edge3). This choice balances: (a) the per-
hop processing cost, overall header size, and simple router
implementation; with (b) the desire to flexibly express
many styles of addressing. However, we do not limit
the degree of expressibility; one can express more out-
going edges by using a special node with a predefined

XIDType to represent indirection.
Note that our choice of 160-bit XID adds large over-

head, which could be unacceptable for bandwidth or
power-limited devices. We believe, however, that com-
mon header compression techniques [30] can effectively
reduce the header size substantially without much compu-
tational overhead.

3.3.2 Per-hop processing

Figure 2 depicts a simplified flow diagram for packet pro-
cessing in an XIP router. The edges represent the flow of
packets among processing components. Shaded elements
are principal-type specific, whereas other elements are
common to all principals. Our design isolates principal-
type specific logic to make it easier to add support for
new principals.

When a packet arrives, a router first performs source
XID-specific processing based upon the XID type of the
sink node of the source DAG. For example, a source DAG
•→ AD1→ HID1→CID1 would be passed to the CID
processing module. By default, source-specific process-
ing modules are defined as a no-op since source-specific
processing is often unnecessary. In our prototype, we
override this default only to define a processing module
for the content principal type. A CID sink node in the
source DAG represents content that is being forwarded to
some destination. The prototype CID processing element
opportunistically caches content to service future requests
for the same CID.

The following stages of processing iteratively examine
the outbound edges of the last-visited node of the DAG
in priority order. We refer the node pointed by the edge
in consideration as the next destination. To attempt to
forward along an adjacency, the router examines the XID
type of the next destination. If the router supports that
principal type, it invokes a principal-specific component
based on the type, and if it can forward the packet using
the adjacency, it does so. If the router does not support the
principal type or does not have an appropriate forwarding
rule, it moves on to the next edge. This enables principal-
specific customized forwarding ranging from simple route
lookups to packet replication or diversion. If no outgoing
edge of the last-visited node can be used for forwarding,
the destination is considered unreachable and an error is
generated.

3.3.3 Optimizations for high performance

The per-hop processing of XIA is more complex than
that of IP, which raises obvious concerns about the perfor-
mance of routers, especially in scenarios using more com-
plex DAGs for addressing. In this section, we show that,
despite those concerns, an XIP router can achieve com-
parable performance to IP routers by taking advantage
of well-known optimizations, such as parallel processing

5

Version NextHdr PayloadLen
HopLimit NumDst NumSrc LastNode

XIDType
160-Bit ID

Edge0 Edge1 Edge2 Edge3
Destination Nodes

(NumDst×28B)

...

Source Nodes
(NumSrc×28B)

32 bits

XIDType
160-Bit ID

Edge0 Edge1 Edge2 Edge3
...

Figure 1: XIP packet header.

Source
XID
Type

Classifier

Next-Dest
XID
Type

Classifier

Route
Success

?

Fall Back no

OutputyesInput

Principal-Specific Processing

AD

SID
HID

CID

AD

SID
HID

CID

Figure 2: Simplified diagram of an XIP router.

and fast-path evaluation.
Packet-level parallelism: By processing multiple pack-
ets concurrently, parallel packet processing can speed up
XIP forwarding. Fortunately, in XIP, AD and HID packet
processing resembles IP processing in terms of data de-
pendencies; the forwarding path contains no per-packet
state changes at all. In addition, the AD and HID lookup
tables are the only shared, global data structure, and like
IP forwarding tables, their update rate is relatively in-
frequent (once a second or so). This makes it relatively
straightforward to process packets destined for ADs and
HIDs in parallel. While SID and CID packet processing
may have common data structures shared by pipelines,
any data update can be deferred for less synchronization
overhead as the processing can be opportunistic and can
always fall back into AD and HID packet processing. This
makes CID and SID packet processing parallelizable.

Packet-parallel processing may result in out-of-order
packet delivery, which disrupts existing congestion con-
trol mechanisms in TCP/IP networks [31]. One solution
is to preserve intra-flow packet ordering by serializing
packets from the same flow and executing them in the
same pipeline processor, or alternatively by using a re-
ordering buffer [22, 46]. An alternative solution is to
design to ensure that congestion control and reliability
techniques deployed in XIP networks are more tolerant
of reordering [13].
Intra-packet parallelism: As discussed earlier, a DAG
may encode multiple next-hop candidates as a forwarding
destination. Since the evaluation of each candidate can
be done in parallel, this address structure also enables
intra-packet parallel processing. While the different next-
hops can be evaluated in parallel, the results of these
lookups must be combined and only the highest priority
next-hop candidate with a successful lookup should be
used. Note that this synchronization stage is likely to
be expensive in software implementations and this type
of parallelism may be most appropriate in specialized
hardware implementations.
Fast-path evaluation: Finally, the XIP design can
use fast-path processing to speed commonly observed
addresses—either as an optimization to reduce average
power consumption, or to construct low cost routers that
do not require the robust, worst-case performance of back-
bone routers. For example, our prototype leverages a

look-aside cache that keeps a collision-resistant finger-
print of the destination DAG address2 and the forward-
ing result (the output port and the new last-node value).
When a packet’s destination address matches an entry in
the cache, the router simply takes the cached result and
skips all other destination lookup processing. Otherwise,
the router pushes the packet into the original slow-path
processing path. Since the processing cost of this fast path
does not depend on the address used, this performance
optimization may also help conceal the impact of packet
processing time variability caused by differences in DAG
complexity.

In §5.1, we show that the combination of these opti-
mizations enables XIP routers to perform almost as well
as IP routers. In addition, we show that hardware imple-
mentations would be able to further close the gap between
XIP and IP performance.

4 XIA Addresses in Action
We elaborate how the abstractions introduced in previous
sections can be put to work to create an XIP network. The
following subsections explain how addresses are created
and obtained, and show how XIA’s architectural compo-
nents can work together to support rich applications.

4.1 Bootstrapping Addresses
We assume the existence of autonomous domains and a
global inter-domain routing protocol for ADs, e.g., as
discussed in [10]. We walk through how HIDs, SIDs, and
CIDs join a network, and how communication occurs.
Attaching hosts to a network: Each host has a pub-
lic/private key pair. As a first step, each host listens for a
periodic advertisement that its AD sends out. This mes-
sage contains the public key of the AD, plus possibly
“well-known” services that the AD provides such as a
name resolution service. Using this information, the host
then sends an association packet to the AD, which will be
forwarded by the AD routers to a service that can proceed

2The use of collision-resistant hash eliminates the need to memcmp
potentially lengthy DAGs. The fingerprint is a collision-resistant hash on
a portion of the XIP address, which consists of the last-visited node and
a few next-hop nodes, effectively representing forwarding possibilities
of the flow of the packets. Such an operation is shown to scale up to 222
Gb/s [41] in hardware. We assume this is implemented in the NIC. Mod-
ern network interfaces already implement hash-based flow distribution
for IPv4 and IPv6 for receiver-side scaling and virtualization.

6

with authentication based on the respective public keys.
Advertising services and content: We have designed
an XIA socket API which is described in detail in our
technical report [9]. We describe here how hosts can
advertise services or content using this API.

To advertise a service, a process running on a host first
calls bind() to bind itself to a public key of the service.
This binding inserts the SID (the hash of the service’s pub-
lic key) into the host’s routing table so that the service is
reachable through the host. Likewise, putContent()
stores the CID (the hash of the content) in the host’s rout-
ing table. Since at this point services and content are only
locally routable, request packets will have to be scoped
using the host’s HID, e.g., • → AD→ HID→ CID, to
reach the intent.

For a service or a content to be reachable more broadly,
the routing information must be propagated. For example,
an AD can support direct routing to services and content
within its domain using an intra-domain routing protocol
that propagates the SIDs and CIDs supported by each host
or in-network cache to the routers. Global route propaga-
tion can be handled by an inter-domain routing protocol,
subject to the AD’s policies and business relationships.
We leave the exact mechanism, protocol, and policy for
principal-specific routing (e.g., content or service routing)
as future research.
Obtaining XIP addresses: Now we look into how two
parties (hosts, services or content) can obtain source and
destination XIP addresses to communicate. As in today’s
Internet, obtaining addresses is the application’s responsi-
bility. Here, we provide a few example scenarios of how
XIP addresses can be created.

Source address specifies the return address to the spe-
cific instance of the principal (i.e., a bound address).
Therefore, when a principal generates a packet, the source
address is generally of the form •→ AD→ HID→ XID.
The AD-prefix is given by the AD when a host attaches
to the network; the HID is known by the host; and the
XID is provided by the application, allowing the socket
layer to create the source address. XIDs will often be
ephemeral SIDs. In this case, the socket layer can auto-
matically create an SID when connect() is issued to
an SID socket without calling bind(). This is similar to
the use of ephemeral ports in TCP/IP.

Destination address can be obtained in many alterna-
tive ways. One way is to use a name resolution service
to resolve XIP addresses from human readable names.
For example, a lookup of “Google search” in the name
resolution service can return a DAG that includes the in-
tent SID along with one or more fallback ADs that host
(advertised) instances of the service (similar to today’s
DNS SRV records). Alternatively, a Web service can
embed URLs in its pages that include an intent CID for
an image or document, along with the original source

ADBoF
XIA

Internet

AD SIDResolv

ServerS

Name resolution serviceClient

Figure 3: Bank of the Future example scenario.
(• → AD→ HID) or content-distribution SIDs as fall-
backs. This information can be in the form of a “ready-
to-use” DAG, or as separate fields that can be assembled
into a destination address (e.g., iterative refinement style)
by the client based on local preferences. For example, the
client could choose to receive content via a specific CDN
based on the network interface it is using.

Note that we intentionally placed the burden of speci-
fying fallbacks to the application layer. This is because a
fallback is an authoritative location of an intent that the
underlying network may not know about. Name resolu-
tion systems and other application-layer systems are more
suitable to provide such information in a globally consis-
tent manner. On the other hand, network optimizations
can be applied locally in a much more dynamic fashion.
Networks may choose to locally optimize for intent by
locally replicating the object of intent and dynamically
routing the intent.

A final point is that client ADs may have policies for
what addresses are allowed. For example, it may want
to specify that all packets entering or leaving the AD go
through a firewall. This can be achieved by inserting an
SIDFirewall in the address, e.g., •→ AD→ SIDFirewall →
HID→ SID for a source address.

4.2 Simple Application Scenarios
In this section and the next, we use the example of online
banking to walk through the lifecycle of an XIA appli-
cation and its interaction with a client. Our goal is to
illustrate how XIA’s support for multiple principals and
its addressing format give significant flexibility and con-
trol to the application.

In Figure 3, Bank of the Future (BoF) provides a secure
on-line banking service hosted at a large data center on
the XIA Internet. The service runs on many BoF servers
and it has a public key that hashes to SIDBoF . We assume
that all components in BoF’s network natively support
service and content principals. We focus on a banking
interaction between a particular client host HIDC, and a
particular BoF process PS running on server HIDS.
Publishing the service: When process PS starts on the
server, it binds an SID socket to SIDBoF by calling
bind() with its public/private key pair. This SID bind-
ing adds SIDBoF to the server’s (HIDS) routing table, and
the route to SIDBoF is advertised in the BoF network
ADBoF . The service also publishes the association be-
tween a human readable service name (e.g., “Bank of

7

the Future Online”) and • → ADBoF → SIDBoF through
a global name resolution service (SIDResolv).
Connection initiation and binding: When a client
wants to connect to the service, it first contacts the name
resolution service SIDResolv to obtain the service address.
It then initiates a connection by sending a packet des-
tined to • → ADBoF → SIDBoF using the socket API.
The source address is •→ ADC→HIDC→ SIDC, where
ADC is the AD of the client, and SIDC is the ephemeral
SID. This packet is routed to ADBoF and then to an in-
stance of SIDBoF . After the initial exchange, both pro-
cesses will establish a session, which includes, for ex-
ample, establishing a symmetric key derived from their
public/private key pairs. Because of this session state,
the client needs to continue to communicate with the
same server, not just any server that supports SIDBoF . To
ensure this, the client changes the destination address
to • → ADBoF → HIDS → SIDBoF , where HIDS is the
server that it is currently talking to.
Content transfer: The client can now download content
from the on-line banking service. For convenience, we
assume that the content being transferred is a Web page.
Let us consider both static (faq.html) and dynamic content
(statement.html), both of which may contain static images.
For static (cacheable) content, the SIDBoF service will
provide the client with the CID f aq of the static Web page
faq.html along with the CIDs of the images contained in
it. The client can then issue parallel requests for those
content identifiers, e.g., using • → ADBoF →CID f aq as
the destination address for the Web page. The request for
dynamic (non-cachable) content, e.g., a list of recent bank
transactions, is directly sent to SIDBoF .

4.3 Support for Richer Scenarios
Using the example above, we now show how XIA’s ad-
dressing format can support more challenging scenarios
such as evolution towards content networking, process mi-
gration, and client mobility. §5.2 provides an evaluation
of these example scenarios.
Network evolution for content support: The previous
section described how the client can specify static content
using scoped intent. Switching to the iterative refinement
style (§3):

CID

AD HID

means that routing through the specified AD or HID is
optional, and opens the door for any set of XIA routers to
satisfy the client’s request for static content.

The DAG address format supports incremental deploy-
ment of content support in an XIA Internet. As a first
step, BoF can deploy support for CIDs internally in its
network. Even if no ISPs support CIDs, the above address
will allow the delivery of the above request (using the AD)

to the BoF network, where the intent CID can be served.
As the next step, some ISPs may incrementally deploy

on-path caches. The above address allows them to op-
portunistically serve content, which may allow them to
cut costs by reducing their payments to upstream service
providers [6]. Over time, as support for content-centric
networking expands, ISPs may make bilateral agreements
to enable access to each other’s (cached) content. XIA can
help leverage such off-path caches as well; of course, it
would require ISPs to exchange information about cached
content and update router forwarding tables appropriately.
Process migration: XIA’s addressing can also support
seamless process (service) migration through re-binding.
Suppose that the server process PS migrates to another
machine, namely HIDT , as part of load balancing or
due to a failure; we assume that appropriate OS sup-
port for process migration is available. At the start of
migration, the route to SIDBoF is removed from the old
server and added to the new server’s routing table. Be-
fore migration, the service communication was bound to
•→ ADBoF →HIDS→ SIDBoF . After migration, the OS
notifies the ongoing connections of the new HID, and the
binding is changed to • → ADBoF → HIDT → SIDBoF
at the socket layer. Notification of the binding change
propagates to the client via a packet containing the mes-
sage authentication code (MAC) signed by SIDBoF that
certifies the binding change. When the client accepts the
binding change message, the client updates the socket’s
destination address. To minimize packet drops, in-flight
packets from the client can be forwarded to the new server
by putting a redirection entry to SIDBoF in the routing
table entry of the old server.
Client mobility: The same re-binding mechanism can be
used to support client mobility in a way that generalizes
approaches such as TCP Migrate [40]. When a client
moves and attaches to another AD, ADnew, the new source
address of the client becomes: • → ADnew → HIDC →
SIDC. When a rebind message arrives at the server, the
server updates the binding of the client’s address.

Although the locations of both the server and the client
have changed in the previous two examples, the two SID
end-points did not change. The intrinsic security property
remains the same because it relies on the SID. Both the
server and the client can verify that they are talking to the
services whose public keys hash to SIDBoF and SIDC.

5 Evaluation
We evaluate the following three important aspects of XIA:
(i) Router processing: Can we scale XIA’s packet forward-
ing performance? In §5.1, we show that using techniques
borrowed from fast IP forwarding, the speed of an XIA
router can be made comparable to that of an IPv4 router.
(ii) Application design: How does XIA benefit application
design and performance? In §5.2, we show that use of

8

CPU 2x Intel Xeon L5640 2.26 GHz (12MB Cache, QPI 5.86 GT/s)
NIC 2x Intel Ethernet Server Adapter X520-T2
Motherboard Intel Server Board S5520UR

Table 1: Router Hardware Specification
multiple principal types can simplify application design,
and that applications can benefit from the type-specific
in-network optimizations allowed by the architecture.
(iii) Scalable routing on XIA: How does forwarding and
routing scale with the number of XIA identifiers in use?
In §5.3, we show that XIA routing can scale well beyond
support for today’s network requirements to more extreme
hypothetical scenarios.

5.1 Router Design and Performance
We first demonstrate that XIA’s forwarding is fast enough
for a practical deployment. We show that the packet
processing speed of an XIA router is comparable to that
of an IP router, and various techniques can be leveraged
to further close the performance gap.
Implementation: To measure the packet processing
speed, we set up a software router and a packet gener-
ator to exploit packet-level parallelism by leveraging their
NIC’s receiver-side-scaling (RSS) function to distribute
IP and XIP packets to multiple CPU cores3. The imple-
mentation uses the Click modular router framework [28]
for processing IP and XIP packets, and PacketShader’s
I/O Engine (NIC driver and library) [24] for sending and
receiving packets to and from the NICs. Table 1 provides
the specification of the machines.
Forwarding performance: We used a forwarding table
of 351K entries based on the Route Views [35] RIB snap-
shot on Jan 1, 2011. IP uses this table directly; XIA
pessimistically uses 351K entries for the AD forwarding
table, associating each CIDR block with a distinct AD.

To measure XIA packet processing performance, we
generate packets using five different DAGs for the desti-
nation address: FB0, FB1, FB2, FB3, and VIA. FB0 is
the baseline case where no fallback is used. FBi refers to
a DAG which causes the XIA router to evaluate exactly i
fallbacks and to then forward based on the (i+1)-th route
lookup. To force this, we employ a DAG with i fallbacks:
the intent identifier and the first i−1 fallback identifiers
are not in the routing table, but the final fallback is. The
last DAG, VIA, represents the case where an intermediate
node in the DAG has been reached (e.g., arrived at the
specified AD). In this case, the router must additionally
update the last-visited node field in the packet header to
point to the next node in the DAG before forwarding, un-
like the other scenarios. Identifiers are generated based
on a Pareto distribution over the set of possible desti-
nation ADs (shape parameter: 1.2) to mimic a realistic
heavy-tailed distribution.

3To enable RSS on XIP, we prepend an IP header when generating
the packet, but immediately strip the IP header after packet reception.

Figure 4 (a) and (b) respectively show the impact of
varying packet size4 on packet forwarding performance
in packets and bits per second. Figure 4 (c) shows the
actual goodput achieved excluding the header in each of
the above experiments. The results are averaged over ten
runs each lasting two minutes. Large packet forwarding is
limited by I/O bandwidth, and therefore XIA and IP show
little performance difference. For small packets of 192
bytes, XIA’s FB0 performance (in pps) is only 9% lower
than IP. As more fallbacks are evaluated, performance
degrades further but is still comparable to that of IPv4
(e.g., FB3 is 26% slower than IP). However, the goodput
is much lower due to XIA’s large header size. We be-
lieve that in cases where the goodput is important, header
compression techniques will be an effective solution.
Fast-path processing: We can further reduce the gap be-
tween IP forwarding and XIP forwarding using fast-path
processing techniques outlined in §3.3.3. Our fast-path im-
plementation uses a small per-thread table, which caches
route lookup results. The key used for table lookups is
a collision-resistant hash of the partial DAG consisting
of the last visited node and all its outbound edges. Our
choice of hash domain aligns with the fact that a given
router operates only on a partial DAG. We assume that the
NIC hardware performs this task upon packet reception
and the driver reads the hash value along with the packet
(§3.3.3). We emulated this behavior in our evaluation.
We generate 351K unique partial DAGs, and each thread
holds 1024 entries in the lookup table. In total, the ta-
ble holds 14% of these partial DAGs. Figure 5 shows
the result with and without this fast-path processing for
packet size of 192 bytes. Without the fast-path, the per-
formance degrades by 19% from FB0 to FB3. However,
with fast-path this difference is only 7%. With a marginal
performance gain of IP fast-path, the gap between FB3
and IP fast-path is reduced to 10%.
Intra-packet parallelism: Note that the fast-path opti-
mizations do not improve worst-case performance, which
is often critical for high-speed routers that must forward
at line speed. High-speed IP routers often rely on spe-
cialized hardware to improve worst-case performance.
Although we do not have such specialized hardware for
XIP, we use micro-benchmarks to estimate the perfor-
mance that might be possible. The micro-benchmark
results in Figure 6 show that the route lookup time is
dominant and increases as more fallbacks are looked up.
Fallbacks within a packet can be processed in parallel

4We include a 14 byte MAC header in calculations of packet size and
throughput. We only report the performance of packet sizes in multiples
of 64 bytes because of limitations of our underlying hardware. When
packet sizes do not align with the 64 byte boundary, DMA performance
degrades significantly; we suspect this is triggering a known defect with
our Intel hardware. This along with the additional IP and MAC header
(34 bytes) and XIP’s larger header size (minimum 64 bytes) resulted in
a minimum packet size of 128 bytes for XIA.

9

 0

 5

 10

 15

 20

 0 200 400 600 800 1000 1200 1400 1600

T
h
ro

u
g
h
p
u
t(

M
p
p
s)

Packet size (bytes)

IP
XIA FB0
XIA FB1
XIA FB2
XIA FB3
XIA VIA

(a) Throughput in Mpps

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000 1200 1400 1600

T
h
ro

u
g
h
p
u
t(

G
b
p
s)

Packet size (bytes)

IP
XIA FB0
XIA FB1
XIA FB2
XIA FB3
XIA VIA

(b) Throughput in Gbps

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000 1200 1400 1600

G
o
o
d
p
u
t

(G
b
p
s)

Packet size (bytes)

IP
XIA FB0
XIA FB1
XIA FB2
XIA FB3
XIA VIA

(c) Goodput in Gbps

Figure 4: Packet forwarding performance of a software router. The forwarding table has 351 K entries.

 0

 2

 4

 6

 8

 10

 12

 14

IP FB0 FB1 FB2 FB3

Pe
rf

o
rm

a
n
ce

 (
M

p
p
s)

IP Fast-path
IP w/o Fast-path

XIA Fast-path
XIA w/o Fast-path

Figure 5: Fast-path processing
smooths out total cost.

0 100 200 300 400 500 600 700
Processing time (ns)

IP

IP-FP

FB0

VIA

FB1

FB2

FB3

FB3-FP

Classification
Fast-path
Lookup (Slow)
Other Overhead
Queueing

Figure 6: In-memory packet pro-
cessing benchmark (no I/O).

 0

 0.5

 1

 1.5

 2

FB0 FB1 FB2 FB3

N
o
rm

a
liz

e
d
 P

ro
ce

ss
in

g
 T

im
e

Intra-packet parallelism
Serial processing

Figure 7: Parallel and serial
route lookup cost.

using special-purpose hardware to further close the gap.
Figure 7 shows a comparison between serial and four-
way parallel lookup costs without the fast-path processing
in our software router prototype, where we deliberately
exclude the I/O and synchronization cost in the parallel
lookup. The reason we exclude these costs is that while
the overhead of intra-packet parallelism is high in our
software implementation, we believe that such parallel
processing overhead will be minimal in hardware router
implementations or highly-parallel SIMD systems such
as GPU-based software routers [24]. The figure shows
that the performance gap between FB0 and FB3 can be
eliminated with specialized parallel hardware processing.

In summary, our evaluation shows that DAG-based for-
warding can be implemented efficiently enough to support
high speed forwarding operations.

5.2 Application Design and Performance
We now evaluate XIP’s support for applications by im-
plementing and evaluating several application scenar-
ios. While it is hard to quantitatively measure an ar-
chitecture’s support for applications, we demonstrate that
XIA is able to retain many desirable features of the cur-
rent Internet and subsume the benefits of other architec-
tures [20, 26, 29]. Through this exercise, we show that
XIP’s flexible addressing and support for multiple princi-
pals simplifies application design, accommodates network
evolution, and accelerates application performance.
Implementation: Using our XIA socket API [9], and our
Click implementation of the XIP network stack, we imple-
ment in-network content support, service migration, and

client mobility. To closely model realistic application be-
havior, we built a native XIA Web server that uses service
and content principals, and a client-side HTTP-to-XIA
proxy that translates HTTP requests and replies into com-
munications based on XIP service and content principals.
This proxy allows us to run an unmodified Web browser
in an IP network. Implementing the proxy and server
using our socket API required only 305 SLOC of Python
code, and in-network content support took 742 SLOC of
C++, suggesting that the principal-specific socket API
and router design facilitates software design.

We now evaluate scenarios described in §4.2 and §4.3.
Content transfer and support for evolution: We cre-
ated a wide-area testbed spanning two universities. The
service side (CMU) operates the XIA Web server, and the
client side (UWisc) performs Web browsing. The server
serves dynamic and static Web pages, each of which con-
sists of either a dynamic or static HTML file and a static
image file (15 KB in each Web page). We use the address-
ing style described in §4.3.

Baseline content transfer: To highlight the applica-
tion’s use of multiple principals, we first show the base-
line case where the content request takes the fallback path
and the content is fetched from the origin server. Figure 8
(a) and (b) respectively show the steps and time taken
to retrieve the dynamic and static Web page. When the
document is dynamic (a), the server uses service-based
communication to directly send the document; it also
transmits a CID for the client to access the static image.
In the static case (b), the service sends CIDs for both
the document and the image, and the client fetches them

10

(a)Dynamic+Static

22ms

23ms

(b)Static only

22ms

23ms

(c)Cached

22ms

0.7ms
Cache

Client (UWisc)
Server (CMU)

Content communication
Service communication

Figure 8: Content transfer.

 12.2

 12.4

 12.6

 12.8

 13

 0 100 200 300 400 500 600 700

S
e
q
u
e
n
ce

 #
 (

K
)

Elapsed time (milliseconds)

Service frozen
(341 ms)

Service rebind
Client rebind

 0.5 RTT

 1 RTT
 0.5 RTT

Req sent

Resp recv

Figure 9: Service migration.

 1.85

 1.9

 1.95

 2

 0 50 100 150 200 250 300 350 400

S
e
q
u
e
n
ce

 #
 (

K
)

Elapsed time (milliseconds)

(1) 3G->3G

(2) 3G->3G (lost)

(3) 3G->WiFi

(4) WiFi->WiFiClient rebind
(3G->WiFi)

Service rebind

 1 RTT (3G)

Req sent

Resp recv

 1 RTT (WiFi)

Figure 10: Client mobility.

using content communication. In both cases, it takes two
round-trip times (45 ms) to retrieve the content.

Evolution: To highlight XIA’s support for evolution,
we consider two scenarios: 1) An in-network cache is
added within the client’s network without any changes to
the endpoints, and 2) endpoints do not use XIA’s fallback;
clients first send the request to the primary intent, then
redirect the intent to the original server after a timeout.

Figure 8(c) shows that content retrieval becomes faster
(22.7 ms) just by adding an in-network cache without any
changes (i.e., request packets in (b) and (c) are identical).
This is enabled by iterative refinement-style addressing,
which permits the intent to be satisfied at any step, while
allowing it to fallback to the original server when it’s not.

In the second scenario, the source does not use a fall-
back address and only uses a CID in its DAG address. The
completion time becomes much worse (87 ms, not shown
in the figure). The initial content request is dropped by
the network because an intermediate router does not know
how to route to the content. After a timeout, the appli-
cation redirects the content request to the original server
using the address: •→ ADBoF → HIDS→CID.
Service migration: As shown in §4.3, XIA supports
seamless service migration with rebinding. To evaluate
our service migration support, we run service SIDBoF on
a virtual machine, which initially resides in a host ma-
chine (HIDS), and later migrates to another host (HIDT).
We use KVM’s live migration [3] to implement stateful
migration of a running process; we move the VM along
with the process running the service.

Figure 9 shows the timeline of service migration. The
client makes continual requests to the service, who re-
sponds to these requests. Initially this session is bound
to: • → ADBoF → HIDS→ SIDC. When live migration
is initiated (not shown in the figure), the service continues
to run on HIDS, but the underlying VM starts copying its
state to the new host in the background. When most of
the state is transfered to HIDT , SIDBoF (and the VM) is
frozen to perform the final state transfer.

After the final state transfer, the VM and the service
resume at HIDT . At this time, the service rebinds to
HIDT (Service rebind). However, the client is still
directing queries to HIDS, because it is not aware of the

rebinding. The service then notifies the client of the new
binding: •→ ADBoF → HIDT → SIDC. When the client
receives this message, it rebinds to the new DAG after ver-
ification (Client rebind). The rebound client then
starts sending subsequent requests to the new address. Af-
ter one round-trip time, the client receives responses from
the service. The communication is interrupted in between
the rebinds. The duration of this interruption due to XIA
address rebinding is minimal (the shaded region; about
1.5 RTT). The downtime due to VM migration (freezing)
is much longer (341 ms) in our experiment. In a more
sophisticated migration implementation, packet drops can
be eliminated by buffering all packets received during the
entire service interruption period at HIDS and redirecting
them to the service at HIDT when it completes rebinding.

Client mobility: In this scenario, a client moves
from a 3G network (RTT=150ms) to a WiFi network
(RTT=25ms). The client is using a simple ping-like echo
service on a server during the move. After connecting
to the WiFi network, the client sends a cryptographically
signed rebind message, notifying the server of the new
binding: •→ ADnew→ HIDC→ SIDC.

Figure 10 shows the timeline of events and the sequence
numbers of packets from the echo service; blue dots in-
dicate the time and the sequence number of the requests
sent by the client, and purple dots those of the responses
received by the client. Different regions (regions 1 to 4)
indicate the network from which the request is sent from
the client and to which the response is sent by the service.
Only the packets in flight at Client rebind are lost
(shaded area, region (2)) since they are sent to the 3G
network, to which the client is no longer connected. How-
ever, after Service rebind, responses are sent to the
WiFi network. Note that packet loss can be eliminated if
the 3G network forwards these packets to the new loca-
tion; this can be done by updating the routing entry for the
client’s HID on the 3G network. One round-trip time after
Client rebind, the client begins receiving responses
from the service. However, due to the difference in the
round-trip times of the 3G and the WiFi network, packet
reordering happens at the server-side, and the service re-
sponds to requests made from the 3G network prior to
client rebind as well as from the WiFi network after client

11

Forwarding Table Public Key Store Content Store

HIDs (100M) 6.25 GB 50 GB -
SIDs (2 Billion) 125 GB 1 TB -

CIDs (YouTube 2009 [16]) 21 TB - 168 PB
CIDs (WWW 2010 [18]) At least 227 TB - -

Table 2: Forwarding table size and public key store
size of an AD with 100 million hosts.

rebind for a short period of time (regions (3) and (4)).
In summary, XIP’s flexible addressing supports seam-

less network evolution and provides adequate application
control, while keeping the application design simple.

5.3 Scalability
We now turn to a discussion of scalability. First, we
demonstrate that XIA works as a “drop-in” replacement
for IP, using AD and HID routing much as today’s net-
work uses CIDR blocks and ARP within subnets. We
then examine scaling to plausible near-term scenarios,
such as deploying on-path or near-path content caching,
in which routers maintain large lists of content chunks
stored in a nearby cache. We conclude by looking at long-
term deployment ideas that would stretch the capabilities
of near-term routers, such as flat routing within a large
provider such as Comcast; and those requiring further
advances to become plausible, such as global flat routing.
XIA at today’s Internet scale. IP relies on hierarchy to
scale: The “default-free” zone of BGP operates on only a
few hundred thousand prefixes, not the 4 billion possible
32-bit IP addresses. XIA’s AD principals can provide the
same function, and we expect that at first, core routers
would provide only inter-AD routing. Similar to AIP, the
number of ADs should be roughly close to that of today’s
core BGP routing tables. §5.1 demonstrated that handling
XIP forwarding with a routing table of this size is easy
for a high-speed software router.

HID routing within a domain is likely to have a larger
range, from a few thousand hosts, to several million.
Many datacenters, for example, contain 100K or more
hosts [33]. We expect that extremely large domains might
split into a few smaller domains based upon geographic
scope. XIP routing handles these sizes well: A 100K-
entry forwarding table requires only 6.2MB in our (not
memory optimized) implementation. Boosting the num-
ber of table entries from 10 K to 10 M decreases forward-
ing performance by only 8.3% (for Pareto-distributed flow
sizes with shape=1.2) to 30.9% (for uniformly distributed
flows); this slowdown is easily addressed by adding a
small amount of additional lookup hardware.

While we believe naive flat forwarding will work
in many networks, highly scalable systems, such as
TRILL [5] and SEATTLE [27] can also be used.
Supporting tomorrow’s scale. XIP provides consider-
able flexibility in achieving better scalability. First, XIP
is not limited to a single level of hierarchy; a domain
could add a second subdomain XID type beneath AD to

improve its internal scalability. Second, other identifier
types can be used to express hierarchy. For example, re-
lated content IDs can be grouped using a new principal
(e.g., into an object ID). Doing so requires no coopera-
tion from end-hosts: they must merely change the DAG
address returned by naming to reflect the new hierarchy.

PortLand [33] suggests that a new layer-2 routing and
forwarding protocol is needed to support millions of vir-
tual machines (VMs) in data centers. In XIA, we can
create a HIDHost → HIDV M hierarchy5 that reduces the
number of independently routable host identifiers and
the forwarding table size by 1 to 2 orders of magnitude
(we can also omit HIDV M by exposing all services in
guest VMs to the host if the host’s forwarding table is not
overloaded, as in the service migration example of §5.2).

Hierarchy reduces forwarding table size at the cost of
more bandwidth for headers; in XIA, this cost is modest:
adding an extra XID requires 28 bytes/packet, but this ad-
dition might greatly simplify network components. Also,
adding hierarchy in XIA does not hinder evolution. Us-
ing iterative refinement addressing, later networks could
choose to ignore the hierarchy and route directly to the in-
tended destination. This is the case even for hosts—were
memory ever to become so cheap that global host-based
routing was practical. More likely, however, this allows
optimizations: A network might be willing to store a
“redirect pointer” for a recently departed mobile host, sim-
ilar to some optimizations proposed for Mobile IP. These
pointers would operate on the host ID independent of
hierarchy, but would be limited in number and duration.

On-path content caching and interception is a con-
crete example of opportunistic in-network optimization.
A router forwards content (chunk) responses to a cache-
engine, which caches the chunk. The router then inter-
cepts the requests for chunks that are in the cache, and
forwards these requests to the cache-engine, which serves
the content. The forwarding table size can be small in this
case, since it only contains information about the local
cache (a 4 GB cache with an average object size of 7.8
KB [15] requires a forwarding table of size <32 MB.).
Hypothetical extremes. We now look at some extreme
scenarios to better understand what kind of advances that
are needed to make them feasible in XIA.

Some of the largest organizations have tens of millions
of hosts. The largest cable operator has about 23 million
customers [1], and Google is preparing to manage 10
million servers in the future [2]. YouTube (2009) has 1.8
billion videos [16] (large objects), and the World Wide
Web (2010) has at least 60 billion pages (small objects).
Table 2 shows the space needed to route on HIDs and SIDs

5For readers concerned about the performance penalty for having to
go through a host, a simple filter can be inserted in modern NICs for
direct access to VMs. Similar functionality for IPv4 matching is already
implemented in many server-class NICs.

12

in an AD with 100 million hosts, and CIDs for YouTube
and the Web6. Even though for large organizations, the
HID and SID tables can fit in DRAM, its cost might be
prohibitive if all devices had such a large table.

XIA does not make these extreme designs possible to-
day; they may require non-flat identifiers or inexact rout-
ing [47], or techniques that have not yet been developed.
Instead, XIP’s flexible addressing makes it possible to
take advantage of them if they are successfully developed
in the future.

6 Related Work
Substantial prior work has examined the benefits of net-
work architectures tailored for specific principal types.
We view this work as largely complementary to ours, and
we have drawn upon it in the design of individual prin-
cipal types. The set of relevant architectural work is too
large to cite fully, but includes proposals for content and
service-centric networks, such as CCN [26], DONA [29],
TRIAD [23], Serval [20], and many others.
Extensibility through indirection: One approach used
in prior work to support multiple principal types devises
solutions that leverage indirection, such as through name
resolution or via overlays. For example, the Layered Nam-
ing Architecture [12] resolves service and data identifiers
to end-point identifiers (hosts) and end-point identifiers
to IP addresses. i3 [42] uses an overlay infrastructure that
mediates sender-receiver communication to provide en-
hanced flexibility. Like XIA, these architectures improve
support for mobility, anycast, and multicast, but at the cost
of additional indirection. Of course, an advantage of these
approaches that leverage indirection over XIA is their ease
of deployment atop today’s Internet. DONA eliminates
the cost of indirection by forwarding a packet in the pro-
cess of name resolution. Like DONA, XIA separates the
name (intent) from its locations. However, XIA differs
in two key aspects: 1) XIA makes translation from name
to location as part of packet forwarding and combines it
with principal-specific processing. 2) DONA relies on the
network for correct translation from a name to its loca-
tion, but XIA relies on the backwards-compatible paths
provided by the application.
Extensibility through programmability has been pur-
sued through many efforts such as active networks [43],
aiming to ease the difficulty of enhancing already-
deployed networks. The biggest drawback to such ap-
proaches is resource isolation and security. In contrast,
XIA does not make it easier to program new function-

6 We estimate the number of SIDs by assuming that each host uses
up to 20 ephemeral SIDs at a time on average. For large objects, the
forwarding table is 0.0125% of the content size assuming a chunk
size similar to BitTorrent. For the Web, the average object size is
(7.8KB) [15]. We then double the size assuming a 50% load factor hash
table for storage.

ality into existing routers—although an active networks
approach could potentially be applied in tandem.

Architectures that evolve well have been a more recent
focus. OPAE [21] shares our goals of supporting evolu-
tion and diversity, but their design focuses primarily on
improved interfaces for inter-domain routing and appli-
cations, whereas XIA targets innovation and evolution of
data plane functionality within or across domains. OPAE
allows a domain to adopt any architecture, but does not
specify how to do so incrementally, while XIA’s fallback
mechanisms allows incremental adoption of new principal
types by design. Role-based architecture [14] promotes a
non-layered design where a role provides a modularized
functionality—similar to XIA’s principal-specific process-
ing. However, it is unclear how it allows incremental
deployment of new functionality like XIA does.

Ratnasamy et al. propose deployable modifications to
IP to enhance its evolvability [37]; but does not admit the
expressiveness afforded by XIA. Others have argued that
we should concede that IP (and HTTP) are here to stay,
and simply evolve networks atop them [36]. However,
this is not a solution in the long run; EvoArch [7] points
out that merely pushing the narrow waist from layer 3 to
layer 5 would result in yet another “ossified” layer.

Finally, virtualizable networks admit evolution by al-
lowing many competing Internet instances to run con-
currently on shared hardware [11, 39, 45]. Clark et al.
present a compelling argument for the need to enable
competition at an architectural level [17], which we inter-
nalized in our support for multiple principals. We believe
that there are substantial benefits to ensuring that all appli-
cations can communicate with all other applications using
a single Internet instance, but virtualizable networks offer
the potential for stronger isolation properties and to sup-
port farther-reaching architectural changes than XIA (e.g.,
such as moving to a fully circuit-switched network). Sub-
stantial research remains in moving these architectures
closer to fruition and in comparing their strengths.

Borrowed foundations: Self-certifying identifiers were
used in many systems [25, 32]. AIP [10] used self-
certifying identifiers for both network and host addresses,
as XIP does, to simplify network-level security mecha-
nisms. Several content-based networking proposals, such
as DONA [29], use them to ensure the authenticity of
content. Serval [20] similarly names services based upon
the hash of a public key. These works demonstrate the
substantial power of these intrinsically secure identifiers,
which XIA generalizes to an architectural requirement.

Addressing schemes: The flexibility of DAG-style ad-
dressing has been used elsewhere, notably Slick Pack-
ets [34]. Our addressing scheme uses this concept in a
new way, to provide support for network evolution.

13

7 Conclusion
XIA builds upon the TCP/IP stack’s proven ability to
accommodate technology evolution at higher and lower
network layers by incorporating evolvability directly into
the narrow waist of the network. XIA supports expressive-
ness, evolution and trustworthy operation through the use
of an open-ended set of principal types, each imbued with
intrinsic security. The centerpiece of our design, XIP, is a
network-layer substrate that enables network innovation,
and has the potential to support and amalgamate diverse
sets of ideas from other clean-slate designs.

Substantial research remains to address issues such as
crafting transport protocols that take advantage of con-
tent caching; devising a congestion-control mechanism
that accommodates all principals; adapting or engineer-
ing suitable intra- and inter-domain routing protocols for
HIDs and ADs; and incorporating trustworthy protocols
that leverage intrinsic security. We view the large scope
of future work as an architectural strength, showing that
XIA enables a wealth of future innovations in routing, se-
curity, transport, and application design, without unduly
sacrificing performance in the pursuit of flexibility.

Acknowledgments
We thank Sangjin Han for sharing his experience on router
performance evaluation. We are also grateful to our shep-
herd Jon Crowcroft and anonymous reviewers for their
feedback. This research was supported in part by the Na-
tional Science Foundation under awards CNS-1040757,
CNS-1040800, and CNS-1040801.

References
[1] Comcast press room - corporate overview. http://www.comcast.

com/corporate/about/pressroom/corporateoverview/
corporateoverview.html, 2011.

[2] Google: one million servers and counting. http://www.pandia.
com/sew/481-gartner.html, 2007.

[3] KVM: Kernel based virtual machine, 2012.
http://www.linux-kvm.org/page/Main_Page.

[4] MobilityFirst Future Internet Architecture Project. http:
//mobilityfirst.winlab.rutgers.edu/, 2010.

[5] IETF transparent interconnection of lots of links (TRILL) working group,
2012. http://datatracker.ietf.org/wg/trill/charter/.

[6] P. Agyapong and M. Sirbu. Economic incentives in content-centric net-
working: Implications for protocol design and public policy. In Proc. Re-
search Conference on Communications, Information and Internet Policy,
Sept. 2011.

[7] S. Akhshabi and C. Dovrolis. The evolution of layered protocol stacks leads
to an hourglass-shaped architecture. In Proc. ACM SIGCOMM, Aug. 2011.

[8] A. Anand, F. Dogar, D. Han, B. Li, H. Lim, M. Machado, W. Wu, A. Akella,
D. Andersen, J. Byers, S. Seshan, and P. Steenkiste. XIA: An architecture
for an evolvable and trustworthy Internet. In Proc. ACM Hotnets-X, Nov.
2011.

[9] A. Anand, F. Dogar, D. Han, B. Li, H. Lim, M. Machado, W. Wu, A. Akella,
D. Andersen, J. Byers, S. Seshan, and P. Steenkiste. XIA: An architecture
for an evolvable and trustworthy Internet. Technical Report CMU-CS-11-
100, Carnegie Mellon University, Feb. 2011.

[10] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon,
and S. Shenker. Accountable Internet Protocol (AIP). In Proc. ACM SIG-
COMM, Aug. 2008.

[11] T. Anderson, L. Peterson, S. Shenker, and J. Turner. Overcoming the Inter-
net impasse through virtualization. IEEE Computer, 38, Apr. 2005.

[12] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S. Shenker, I. Sto-
ica, and M. Walfish. A layered naming architecture for the Internet. In Proc.
ACM SIGCOMM, pages 343–352, Aug. 2004.

[13] E. Blanton and M. Allman. On making TCP more robust to packet reorder-
ing. ACM SIGCOMM CCR, 32:20–30, Jan. 2002.

[14] R. Braden, T. Faber, and M. Handley. From protocol stack to protocol heap:
role-based architecture. ACM SIGCOMM CCR, 33, Jan. 2003.

[15] J. Charzinski. Traffic properties, client side cachability and CDN usage of
popular web sites. In Proc. MMB&DFT, pages 136–150, 2010.

[16] G. Chatzopoulou, C. Sheng, and M. Faloutsos. A first step towards under-
standing popularity in Youtube. In Proc. INFOCOM IEEE Conference on
Computer Communications Workshops, 2010.

[17] D. Clark, J. Wroclawski, K. Sollins, and B. Braden. Tussle in cyberspace:
Defining tomorrow’s Internet. In Proc. ACM SIGCOMM, Aug. 2002.

[18] M. de Kunder. The size of the World Wide Web. http://www.
worldwidewebsize.com/, Jan. 2011.

[19] S. E. Deering. Multicast Routing in a Datagram Internetwork. PhD thesis,
Stanford University, Dec. 1991.

[20] M. J. Freedman, M. Arye, P. Gopalan, S. Y. Ko, E. Nordstrom, J. Rexford,
and D. Shue. Serval: An end-host stack for service-centric networking. In
Proc. USENIX NSDI, Apr. 2012.

[21] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and J. Wilcox.
Intelligent design enables architectural evolution. In Proc. ACM Workshop
on Hot Topics in Networks, 2011.

[22] S. Govind, R. Govindarajan, and J. Kuri. Packet reordering in network
processors. In Proc. IEEE IPDPS 2007, Mar. 2007.

[23] M. Gritter and D. R. Cheriton. TRIAD: A new next-generation Internet ar-
chitecture. http://www-dsg.stanford.edu/triad/, July 2000.

[24] S. Han, K. Jang, K. Park, and S. Moon. PacketShader: a GPU-accelerated
software router. In Proc. ACM SIGCOMM, Aug. 2010.

[25] HIP. Host Identity Protocol (HIP) Architecture. Interent Engineering Task
Force, RFC 4423, May 2006.

[26] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and
R. L. Braynard. Networking named content. In Proc. ACM CoNEXT, Dec.
2009.

[27] C. Kim, M. Caesar, and J. Rexford. Floodless in SEATTLE: A scalable
ethernet architecture for large enterprises. In Proc. ACM SIGCOMM, Aug.
2008.

[28] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click
modular router. ACM ToCS, 18(3):263–297, Aug. 2000.

[29] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica. A data-oriented (and beyond) network archi-
tecture. In Proc. ACM SIGCOMM, Aug. 2007.

[30] J. Lilley, J. Yang, H. Balakrishnan, and S. Seshan. A unified header com-
pression framework for low-bandwidth links. In Proc. ACM Mobicom, Aug.
2000.

[31] R. Ludwig and R. H. Katz. The Eifel algorithm: making TCP robust against
spurious retransmissions. ACM SIGCOMM CCR, 30:30–36, Jan. 2000.

[32] D. Mazières, M. Kaminsky, M. F. Kaashoek, and E. Witchel. Separating
key management from file system security. In Proc. ACM SOSP, Dec. 1999.

[33] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Radhakr-
ishnan, V. Subramanya, and A. Vahdat. Portland: A scalable fault-tolerant
layer2 data center network fabric. In Proc. ACM SIGCOMM, Aug. 2009.

[34] G. T. K. Nguyen, R. Agarwal, J. Liu, M. Caesar, B. Godfrey, and S. Shenker.
Slick packets. In Proc. SIGMETRICS, 2011.

[35] U. of Oregon. RouteViews. http://www.routeviews.org/, 2012.
[36] L. Popa, A. Ghodsi, and I. Stoica. HTTP as the narrow waist of the future

Internet. In Proc. ACM Hotnets-IX, Oct. 2010.
[37] S. Ratnasamy, S. Shenker, and S. McCanne. Towards an evolvable Internet

architecture. In Proc. ACM SIGCOMM, Aug. 2005.
[38] U. Saif and J. Mazzola Paluska. Service-oriented network sockets. In Proc.

ACM MobiSys, May 2003.
[39] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McKe-

own, and G. Parulkar. Can the production network be the testbed? In Proc.
9th USENIX OSDI, Oct. 2010.

[40] A. C. Snoeren and H. Balakrishnan. An end-to-end approach to host mobil-
ity. In Proc. ACM Mobicom, pages 155–166, Aug. 2000.

[41] M. Soliman and G. Abozaid. Performance evaluation of a high throughput
crypto coprocessor using VHDL. In Proc. ICCES, Dec. 2010.

[42] I. Stoica, D. Adkins, S. Zhaung, S. Shenker, and S. Surana. Internet indi-
rection infrastructure. In Proc. ACM SIGCOMM, pages 73–86, Aug. 2002.

[43] D. L. Tennenhouse and D. J. Wetherall. Towards an active network archi-
tecture. ACM SIGCOMM CCR, 26(2):5–18, Apr. 1996.

[44] D. Trossen, M. Sarela, and K. Sollins. Arguments for an information-
centric internetworking architecture. ACM SIGCOMM CCR, 40:26–33,
Apr. 2010.

[45] G. Watson, N. McKeown, and M. Casado. NetFPGA: A tool for network
research and education. In 2nd workshop on Architectural Research using
FPGA Platforms (WARFP), 2006.

[46] W. Wu, P. Demar, and M. Crawford. Sorting reordered packets with inter-
rupt coalescing. Computer Networks, 53:2646–2662, Oct. 2009.

[47] M. Yu, A. Fabrikant, and J. Rexford. BUFFALO: bloom filter forwarding
architecture for large organizations. In Proc. ACM CoNEXT, 2009.

[48] S. Q. Zhuang, K. Lai, I. Stoica, R. H. Katz, and S. Shenker. Host mobility
using an Internet indirection infrastructure. In Proc. ACM MobiSys, May
2003.

14

http://www.comcast.com/corporate/about/pressroom/corporateoverview/corporateoverview.html
http://www.comcast.com/corporate/about/pressroom/corporateoverview/corporateoverview.html
http://www.comcast.com/corporate/about/pressroom/corporateoverview/corporateoverview.html
http://www.pandia.com/sew/481-gartner.html
http://www.pandia.com/sew/481-gartner.html
http://www.linux-kvm.org/page/Main_Page
http://mobilityfirst.winlab.rutgers.edu/
http://mobilityfirst.winlab.rutgers.edu/
http://datatracker.ietf.org/wg/trill/charter/
http://www.worldwidewebsize.com/
http://www.worldwidewebsize.com/
http://www-dsg.stanford.edu/triad/
http://www.routeviews.org/

	Introduction
	Foundational Ideas of XIA
	XIP
	Principals
	XIP Addressing
	Core concepts in addressing
	Addressing mechanisms
	Addressing style examples

	XIP Header and Per-Hop Processing
	Header format
	Per-hop processing
	Optimizations for high performance

	XIA Addresses in Action
	Bootstrapping Addresses
	Simple Application Scenarios
	Support for Richer Scenarios

	Evaluation
	Router Design and Performance
	Application Design and Performance
	Scalability

	Related Work
	Conclusion

