Appears in the proceedings of the
315! Annual International Symposium on Computer Architecture (ISCA-31)
Munich, Germany, June 19-23, 2004

Adaptive Cache Compression for High-Performance Processors

Alaa R. Alameldeen and David A. Wood
Computer Sciences Department, University of Wisconsin-Madison
{alaa, david}@cs.wisc.edu

Abstract Cache memories have long been used to reduce average
Modern processors use two or more levels of Memory Ietency and bandwidth. C_:urrent Processors typ-
cache memories to bridge the rising disparity betweenIcally prewde tW.° levels of on-chip caches (e.g._,_sepa—

te L1 instruction and data caches and a unified L2

processor and memory speeds. Compression Cacache) h some recent architectures having three
improve cache performance by increasing effective » W Itectu vVing

cache capacity and eliminating misses. However,'evel cache hierarchies [39]. Effectively organizing the

decompressing cache lines also increases cache acce%?':ﬁgnon,;feh,'npofa?nrlinrssgli;rocsqsm';gzr'Cglﬁ{éégglt['gfl
latency, potentially degrading performance. y y- IV 1al wi :

In this paper, we develop an adaptive policy that Cache compression is one way to improve the effective-

dynamically adapts to the costs and benefits of cach8€SS of cache memories [9, 27, 29, 43, 44]. Storing com-
compression. We propose a two-level cache hierarchPressed lines in the cache increases the effective cache
where the L1 cache holds uncompressed data and the L82Pacity. For example, Yang, et al. propose a com-
cache dynamically selects between compressed anffessed L1 cache design where each set can store either
uncompressed storage. The L2 cache is 8-way set-assgN€ Uncompressed line or two compressed lines [43].
ciative with LRU replacement, where each set can storancreasing the effective cache size can eliminate misses
up to eight compressed lines but has space for only foupnd thereby reduce the time lost to long off-chip miss
uncompressed lines. On each L2 reference, the L RpeNalties. However, compression increases the cache hit
stack depth and compressed size determine whethdime, since the decompres_;sion overhead lies on the criti-
compression (could have) eliminated a miss or incurs arf@! @ccess path. Depending upon the balance between
unnecessary decompression overhead. Based on thggts and misses, cache compression has the potential to
outcome, the adaptive policy updates a single globafither greatly help or greatly hurt performance.
saturating counter, which predicts whether to allocate In this paper, we develop an adaptive cache compression
lines in compressed or uncompressed form. scheme to dynamically optimize on-chip cache perfor-

We evaluate adaptive cache compression usinghance (Section 2). Our design has two major parts.
full-system simulation and a range of benchmarks. Wi irst, we use a two-level cache hierarchy where the L1
show that compression can improve performance focache holds uncompressed data and the L2 cache
memory-intensive commercial workloads by up to 17%dynamically selects between compressed and uncom-
However, always using compression hurts performancdressed storage. We use a simple, significance-based
for low-miss-rate benchmarks—due to unnecessargompression algorithm, Frequent Pattern Compression
decompression overhead—degrading performance bi#l to compress L2 lines. The L2 cache is 8-way set-
up to 18%. By dynamically monitoring workload behav- associative Wlth LRU replacement, where each set can
ior, the adaptive policy achieves comparable benefitsStore up to eight compressed lines but has space for only
from compression, while never degrading performancefour uncompressed lines. Thus compression can poten-

by more than 0.4%. tially double the effective capacity of the cache. Simula-
) tion results show that memory-intensive commercial
1 Introduction workloads achieve average effective capacities of 5-

Semiconductor technology trends and microarchitec-7 MB for a 4 MB uncompressed L2 cache.

tural innovations continue to exacerbate the perfor-Second, our adaptive compression policy (Section 3)
mance gap between processors and memory. The ITR$ses the L2 cache’'s LRU replacement state to track
Roadmap [16]—the semiconductor industry’s detailedwhether compression would help, hurt, or make no dif-

projection of Moore’s Law [34]—predicts that transistor ference to a given reference. The key insight is that the
performance will improve at nearly 21% per year until LRU stack depth and compressed size determines
2007 while DRAM latency will improve at only 10% whether a given reference hits because of compression,
per year. Coupled with the trend toward increasinglywould have missed without compression, or would have

deep pipelines [22, 23], main memory latency is hit or missed regardless. The controller updates a single,
expected to grow to hundreds of cycles. global saturating counter on each reference, increment-

ing by the L2 miss penalty when compression coul

have or did eliminate a miss and decrementing it by the nsuction Logﬂfutgre
decompression latency when a reference would have hjt ? ¢
a)

regardless. The controller uses the predictor when th

. . . . L1 I-Cache L1 D-Cache
L2 allocates a line: storing the line uncompressed if the (Uncompressed)| | (Uncompressed
counter is negative, and compressed otherwise. I

This paper makes four main contributions: Uncompress
Line Bypass

* |t shows that always compressing L2 cache lineg _ | L1 Victim Cache |
increases the effective cache capacity for commer} DeCFE’iB"epl{r?:S' v

cial benchmarks by 29-75%, which in turn reduces| \ Cog?ggﬁrfgo” /
L2 miss ratios by 9-24% and overall run-time as

much as 15% (i.e., a 17% speedup). However, th¢

increased L2 access latency (due to decompressiqn
overhead), degrades performance for workload$ L2 Cache (Compressed)
with low L2 miss rates by as much as 18%.
* It proposes a novel adaptive policy that dynamically Figure 1. Compressed Cache Hierarchy.

balances the benefit of compression (i.e., miss ratio L)
reduction) with the cost (i.e., increased L2 accesscontroller checks an uncompressed victim cache in par-
latency) ’ allel with the L2 access. On an L2 hit, the L2 line is
' . . . decompressed if stored in compressed form. Otherwise,
* |t presents full-system simulation results showing

that adaptiv h MDIession Can imorov rit bypasses the decompression pipeline. On an L2 miss,
at adaptive cache compression ca PTOvE el e requested line is fetched from main memory. We
formance of memory-intensive commercial work-

) . assume uncompressed memory, however, this is largely
0,
loads by up to 17%, while never degrading an orthogonal decision. The L1 and L2 caches maintain
performance by more than 0.4%.

) i ~exclusion and lines are allocated in the L2 only when

* To our knowledge, it presents the first quantitative rgpjaced from the L1. In addition to its normal function,
evaluation of L2 cache compression for commercialihg victim cache acts as a rate-matching buffer between
workloads. the L1s and the compression pipeline [29]. For design

2 Compressed Cache Hierarchy simplicity, we assume a single line size for all caches.

We propose a two-level cache hierarchy consisting o2-2 Decoupled Variable-Segment Cache

uncompressed L1 instruction and data caches, and af exploit compression, the L2 cache must be able to
optionally compressed L2 unified cache. While many ofjack more compressed cache lines than uncompressed
the mechanisms and policies we develop could bgines into the same space. One approach is to decouple
adapted to other cache configurations (e.g., three-levehe cache access, adding a level of indirection between
hierarchies), we do not consider them in this study. the address tag and the data storage. Seznec’s decoupled
The goals of this design include: sector cache does this on a per-set basis to improve the
: . . : utilization of sector (or sub-block) caches [36]. Hallnor
. Usmg_co_mpressmn to increase _effectlve L2 cacheanol Reinhardt’s Indirect-Index Cache decouples
C?p.aC'ty |.n order to reduce L2 mlsses.. accesses across the whole cache, allowing fully-associa-
* Limit the impact of cache decompression overhead;e placement, a software managed replacement policy,
by providing a bypass path for uncompressed lines.ang (recently) compressed lines [20, 21]. Lee, et als
* Enable an adaptive policy to dynamically control selective compressed caches use this technique to allow
compression based on workload demands. two compressed cache lines to occupy the space
¢ Limit impact on the cache design complexity. required for one uncompressed line [29, 27, 28]. Decou-
: pled access is simpler if we serially access the cache
2.1 Overview tags before the data. Fortunately, this is becoming
Figure 1 illustrates the proposed cache hierarchy. Llincreasingly necessary to limit power dissipation [25].

g?;:;ﬂg;ﬁ]n ?r?g dde?g;arcehsiiso;tg;ee:rﬁgg?jn;gastsﬁg cl'r?{?%ur decoupled variable-segment cache builds on these
9 P earlier concepts. As illustrated in Figure 2, each set is 8-

C?(Lé;s:grp?;?é -][rrg;]C:EZ'%gnilsfeggirgﬁIﬁ;erglv\z(:éat_?ﬁethf ay set-associative, with a compression information tag
P P ' tored with each address tag. The data array is broken

d_ata _cache uses a wntel_aack, v_vnte allocatg policy tolnto eight-byte segments, with 32 segments statically
simplify the L2 compression logic. On L1 misses, the

allocated to each cache set. Thus, each set can hold no

Tag Area Data Area

LRU TagQ Tagl| *=* =** **® """ **"Tag7 segment_offset(k) = Sum (actual_size(i))
State 1.k-1
2 1 3 segment_offset] 16 Even segment_offse 16 Odd
Segments Segments
Permissiong Cstatus | CSize |Address segment_offset+1 segment_offset+]
(Compression Tag)| Tag - 8-byte - 8-byte

. -)) segment segment
Permissions: States M (modified), S (shared), | (invalid), NP (not present) + +

CsStatus: 1 if line is compressed, 0 otherwise
CSize: Size of compressed line (in segments) if compressed 16-byte-wide 2-input multiplexor

CStatus and CSize are used to determine the actual size
(in segments) of the cache line :

CStatus| CSizg Actual Size
0 S 8
1 S s

16 bytes

Figure 2. A single set of the decoupled variable-segment cache.

more than four uncompressed 64-byte lines, and comback is trivial. However, if the address tag is not found,
pression can at most double the effective capacity. Eacbr the compressed size has changed, the cache controller
line is compressed into between one and eight segmentsjust allocate space in the set. This may entail replacing
with eight segments being the uncompressed form. Thene or more L2 lines or compacting invalid/not present
compression tag indicates i) the compressed size of thknes to make space. More than one line may have to be
line (CSize) and ii) whether or not the line is stored in replaced if the newly allocated line is larger than the
compressed form (CStatus). A separate cache state indiRU line plus the unused segments. In this case, we
cates the line’s coherence state, which can be M (modireplace at most two lines by replacing the LRU line and
fied), S (shared), | (invalid), or NP (not present). The NPsearching the LRU list to find the least-recently-used
state differentiates between a line invalidated by aline that ensures we have enough space.

coherence event and one invalidated due_ to exc[usion O(Eompacting a set requires moving tags and data seg-
L2. replacement, NOt? that the compression tag IS MalNents to maintain the contiguous storage invariant. This
tameq even .for NP lines for use by the adaptive Com'operation can be quite expensive, because it may require
pression policy. reading and writing all the set’s data segments. For this
Data segments are stored contiguously in address tagason, compaction is deferred as long as possible and is
order. That is, the offset for the first data segment of linenever needed on aread (e.qg., L1 fill) access. With a large
kis: L1 victim cache and sufficient L2 cache banks, compac-

k-1 tion will have negligible impact on performance.
segment_offs¢k) = z actual_sizéi)] . .

S A decoupled variable-segment cache adds relatively lit-
) o) . tle storage overhead. For example, consider a 4-way,
A line’s actual size is determined by the compressiong \g uncompressed cache with 64-byte lines. Each set
tag (Figure 2) and the eight segment offsets are cOMpa5 2048 data bits, in addition to four tags. Each tag
puted in parallel with the address tag match using a 5-bif,q|udes a 24-bit address tag, a 2-bit LRU state, and a 2-
parallel-prefix adder. On an address tag match, the seg;; permission, for a total of 4*(24+2+2)=112 bits per
ment offset and actual length are used to access the cOkgt Our scheme adds four extra tags, increases the LRU
responding segments in the data array. The array is Spli{tate to three bits and adds a 4-bit compression tag per
into banks for even and odd segments, allowing two Segfne This adds 112+8*1+8*4=152 bits per set, which

ments (16 bytes) to be fetched per cycle regardless Qfycreases the total cache storage by approximately 7%.
the alignment [19].

Because the L1 and L2 caches maintain exclusion, ar%3 Frequent Pattern Compressmn (FPC)

L1 replacement writes back both clean and dirty lines toL2 cache compression requires a low-latency hardware
the L2 cache. In many cases, the writeback finds aompression algorithm. We implemented a significance-
matching address tag, with space allocated, in state NlRased scheme called Frequent Pattern Compression
If the compressed size is the same as before, this writeFPC) [4]. Compared to the dominant dictionary-based

approaches [17, 26], FPC has a lower decompression
latency and comparable compression ratios. FPC
decompresses a 64-byte line in five cycles, assuming 12
FO4 gate delays per cycle. The 64-byte L2 cache lines

are compressed into one to eight 8-byte segments. Simu-

lation results show compression ratios (i.e., original size

divided by compressed size) of 1.3-2.4 for selected SPE-
Cint benchmarks and commercial workloads, but only

1.0-1.3 for selected SPECfp benchmarks.

3 Adaptive Cache Compression

While compression helps eliminate long-latency L2
misses, it increases the latency of the (usually more fre-
guent) L2 hits. Thus, some benchmarks (or benchmark

since the data is stored uncompressed, the reference
incurs no decompression penalty. We call this case
anunpenalized hit

A reference to Address C hits at stack depth 3.

Compression does not help, since the line would be
present even if all lines were uncompressed. Unfor-
tunately, since the block is stored in compressed
form, the reference incurs an unnecessary decom-
pression penalty. We call this caspemalized hit

A reference to Address E hits at stack depth 5. In

this case, compression has eliminated a miss that
would otherwise have occurred. We call this case an
avoided miss

phases) will benefit from compression, but others will Classification of misses:

suffer. For a simple, in-order blocking processor, L2
cache compression will help if:

(avoided L2 misses L2 miss penglty
> (penalized L2 hitsx decompression penglty

Where penalized L2 hits are those that unnecessarily
incur the decompression penalty. Rearranging terms
yields:

(avoided L2 misses penalized L2 hits
> (decompression penalty L2 miss penglty

For a 5 cycle decompression penalty and 400 cycle L2
miss penalty, compression wins if it eliminates at least
one L2 miss for every 400/5=80 penalized L2 hits.

While this may be easily achieved for memory-intensive
commercial workloads, smaller workloads—that fit in a

large L2 cache—may suffer degraded performance.

* A reference to Address G misses in the cache, but
matches the address tag at LRU stack depth 7. The
sum of the compressed sizes at stack depths 1
through 7 totals 29. Because this is less than 32 (the
number of data segments per set), this reference
missesonly because one or more lines at stack
depths less than 7 are stored uncompressed (i.e.,
Address A could have been stored in two seg-
ments). We call this case axoidable miss

A reference to Address H misses in the cache, but
matches the address tag at LRU stack depth 8.
However, this miss cannot be avoided because the
sum of compressed sizes exceeds the total number
of segments (i.e., 35 > 32). Similarly, a reference to
Address | does not match any tag in the stack. We
call each of these caseswamavoidable miss

Ideally, a compression scheme should compress datphe cache controller uses the LRU state and compres-
when the benefit (i.e., avoided misses) outweighs thejon tags to determine the class of each L2 reference.
cost (i.e., penalized L2 hits). This section describes therhe avoidable miss calculation is implemented using a
central innovation in this paper: an adaptive predictorfive-bit parallel-prefix adder with 8:1 multiplexors on

that monitors the actual effectiveness of compressionhe inputs to select compressed sizes in LRU order. Note
and uses this feedback to dynamically determine

whether to store a line in a compressed or uncompressegd Stack | Address CStatus CSize Perm
form. Simulation results (Section 5) show that this adap{ Depth Tag (Segments) '
tive policy obtains most of the benefit of compression 1 A Uncompr. 2 M
when it helps,' while never performing much worse than 2 B Uncompr. 8 M
not compressing.

L 3 c Compr. 4 M
3.1 Classification of Cache References 4 D Compr. 3 M
The key insight underlying our adaptive compression| 5 E Compr. 2 M
policy is that the LRU stack de;pth and compressed siz¢ & F Compr. 7 M
determine whether compression helps or hurts a given
reference. The example in Figure 3 illustrates the differ-{ / G Uncompr. 5 NP
ent cases using the LRU stack of a single cache set. 8 H Uncompr. 6 NP

Classification of hits: Figure 3. A cache set example.

* A reference to Address A hits at stack depth 1.Address tags are shown in LRU order (Address A is the most
Because the set can hold four uncompressed linegecent). The first six tags corresponds to lines in the cache,
and the LRU stack depth is less than or equal towhile the last two correspond to evicted lines (Permissions =
four, compression provides no benefit. Conversely,NP)- Addresses C, D, E and F are stored in compressed form.

that this parallel-prefix add uses the compressed size
whereas the parallel-prefix add discussed in Section 2.

S,

2 Table 1. Simulation Parameters

uses the actual sizes. To save hardware, a single parall
prefix adder can be time-multiplexed, since gathering
compression information is not time critical, and the
data array access takes longer than the tag access.

elt 1 Cache
Configuration

Split | & D, each 64 KB (unless other-
wise specified) 2-way set associative
with LRU replacement, 64-byte line, 2
cycle access time

3.2 Global Compression Predictor

Like many predictors, the adaptive compression policy

L2 Cache
Configuration

Unified 4 MB (unless otherwise speci-
fied), 8-way set associative with LRU
replacement, 64-byte line

uses past behavior to predict the future. Specifically, th
controller uses the classification above to update a gl

h L2 Cache Hit
_Latency

Uncompressed: 20 cycles, Compressed:

25 cycles (20 + 5 decompression cycles)

bal saturating counter—called the Global Compressio
Predictor (GCP)—to estimate the recent cost or benef

h Memory
tConfiguration

S

4 GB of DRAM, 400 cycles access tim¢

(unless otherwise specified) with infinit
chip-to-memory bandwidth

D

of compression. On a penalized hit, the controller biase
against compression by subtracting the decompressia
penalty. On an avoided or avoidable miss, the controlle
increments the counter by the (unloaded) L2 miss pen

rProcessor
’ Pipeline

4-wide superscalar, 11-stage pipeline-|
Pipeline stages: fetch (3), decode (3),
schedule (1), execute (1 or more), reti

3

D

alty. To reduce the counter size, we normalize these va
ues to the decompression latency, subtracting one ar

adding the miss penalty divided by decompressiof

latency (e.g., 400 cycles /5 cycles = 80).
The controller uses the GCP when allocating a line i

Cgeorder
uffer

64-entry ROB

Branch
Predictors

1 KB YAGS direct branch predictor
[14], a 64-entry cascaded indirect brang
predictor [13], and a 64-entry return
address stack predictor [24]

the L2 cache. Positive values mean compression has
been helping eliminate misses, so we store the line in

compressed form. Negative values mean compressiop 1 System Configuration

has been penalizing hits, so we store the line uncom-

pressed. All allocated lines—even those stored uncom¥Ve evaluated the performance of our compressed cache
pressed—must run through the compression pipeline t§€signs on a dynamically-scheduled SPARC V9 unipro-

calculate their compressed size, which is used to detefc€Ssor using the Simics full-system simulator [30],
mine avoidable misses. extended with a detailed processor simulator (TFSim

.) . [33]), and a detailed memory system timing simulator
The size of the saturating counter determines howsq] oyr target system is a superscalar processor with
quickly the predictor adapts to workload phase changes, t_of-order execution. Table 1 presents our basic simu-
The results in this paper use a single global 19-bitj;4q parameters

counter that saturates at 262,143 or -262,144 (approxi-
mately 3300 avoided or avoidable misses). Using a largé-2 Workloads

counter means the predictor adapts slowly to phasgg eyajuate our design against alternative schemes, we
changes, preventing short bursts from degrading 10ngyge several multi-threaded commercial workloads from
run behavior. Sect.|0n 6.4 examines the impact of work+he \Wisconsin Commercial Workload Suite [2]. We also
load phase behavior on compression. used eight of the SPECcpu2000 [38] benchmarks: four
While we assume LRU replacement in this paper, anyfrom the integer suite and four from the floating point
stack algorithm—including random [32]—will suffice. suite. All of these workloads run under the Solaris 9
Moreover, the stack property only needs to hold for linesoperating system. These workloads are briefly described
that either do or might have fit due to compression (e.g.in Table 2. We selected these workloads to cover a wide
LRU stack depths 5-8 in our design). We can use anyange of compressibility properties, miss rates and
arbitrary replacement policy for the top four elements inworking set sizes. For each data point in our results, we
the “stack.” present the average and the 95% confidence interval of

. multiple simulations to account for space or time vari-
4 Evaluation Methodology ability [3]. Our runtime results for commercial work-
We present an evaluation of adaptive compression on lpads represent the average number of cycles per
dynamically-scheduled out-of-order processor usingransaction (or request), whereas runtime results for
full-system simulation of commercial workloads and a SPEC benchmarks represent the average number of
subset of the SPECcpu2000 benchmarks. cycles per instruction (CPI).

Table 2. Workload Descriptions

Online Transaction Processing (OLTP): DB2 with a TPC-C-like workload. The TPC-C benchmark models the datab(fse

activity of a wholesale supplier, with many concurrent users performing transactions. Our OLTP workload is base
TPC-C v3.0 benchmark using IBM’'s DB2 v7.2 EEE database management system. We use a 5 GB database wi
warehouses stored on eight raw disks and an additional dedicated database log disk. We reduced the number of d
warehouse, items per warehouse, and customers per district to allow more concurrency provided by a larger n

on the
h 25,000
stricts per
umber of

warehouses. There are 16 simulated users, and the database is warmed up for 100,000 transactions before taking measurements

for 300 transactions.

Java Server Workload: SPECjbb. SPECjbb2000 is a server-side java benchmark that models a 3-tier system, focusing on the

middleware server business logic. We use Sun’s HotSpot 1.4.0 Server JVM. Our experiments use two threads

and two

warehouses, a data size of ~44 MB, a warmup interval of 200,000 transactions, and a measurement interval gf 20,000

transactions.

Static Web Serving: Apache We use Apache 2.0.43 for SPARC/Solaris 9, configured to use pthread locks and minim
ging as the web server. We use SURGE [5] to generate web requests. We use a repository of 20,000 files (totalling ~
and disable Apache logging for high performance. We simulate 400 clients, each with 25 ms think time between requ
warm up for 50,000 requests before taking measurements for 3000 requests.

al log-
500 MB),
ests, and

Static Web Serving: Zeus.Zeus is another static web serving workload driven by SURGE. Zeus uses an event-driving

server

model. Each processor of the system is bound by a Zeus process, which is waiting for web serving event (e.g., open socket,
read file, send file, close socket, etc.). The rest of the configuration is the same as Apache (20,000 files of ~500 MB total size,

400 clients, 25 ms think time, 50,000 requests for warmup, 3000 requests for measurements).

SPEC.We use four integer benchmarks (bzip, gcc, mcf and twolf) and four floating point benchmarks (ammp, applu,

equake,

and swim) from the SPECcpu2000 set to cover a wide range of compressibility properties and working set sizes. We use the

first reference input for each benchmark. We fast forward each benchmark for 1 billion instructions, and simulate the n
lion instructions.

ext 1 bil-

5 Evaluation of Adaptive Compression confidence intervals). Effective cache capacity is

com-

puted by counting the valid cache lines in samples taken

To understand the utility of adaptive compression, we
compare it with two extreme policiesNever and
Always Nevermodels a standard 8-way set associative, pmg unified L2 cache.
L2 cache design, where data is never stored compressed.

every 100 million cycles. These benchmark runs use the
baseline configuration of a 128 KB split L1 cache and a

Always models a decoupled variable-segment cachéVithout compression, the maximum cache size is 4 MB.
(Section 2.2), but always stores compressible data ifYnder theNeverpolicy, most workloads approach this

compressed form. Thudlever strives to reduce hit Maximum, although maintaining exclusion betwee

nLl1l

compression only when it predicts that the benefits outfully utilize large L2 caches, and hence are unlike

ly to

weigh the overheads. benefit much from cache compression. Hieaysand
Adaptiveresults show that many workloads can poten-

5.1 Effective Cache Capacity tially benefit significantly from cache compression.

The

This section examines the compression ratio achieved if?@mory-intensive commercial workloads achieve effec-
the decoupled variable-segment L2 cache. Figure 4 preive cache capacities of 5-7 MB, a 25-75% increase.

sents the average effective cache capacity (and 95%

8
56 ML
= h
< B Never
.(7'\‘5 4 - _ — DAlways
2 @ Adaptive
8
(@)

" bzip gce mcf twolf ammp applu equake swim apache zeus oltp jbb

Figure 4. Average cache capacity during benchmark runs (4 MB uncompressed size).

1.0 _ M M —
[0} M _ _
ol _
14 _
g 1 ® Never
B 05 L O Always
= . @ Adaptive
£
[=}
Z -4
0'0_0.49_3 2521 12277 0.005 0.086 15.637 10.751 41.535 14.38 13907 1.787 3.006
bzip gcc mcf twolf ammp applu equake swim apache zeus oltp jbb
Figure 5. L2 cache miss rate for the three compression alternatives (128K/4MB configuration),
normalized to the “Never” miss rate, shown at the bottom.
g 1.0—: = — — = —
= - _
& m Never
B 1 O Always
E 0.5 T @ Adaptive
5]
z
0.0~ bzip gcc mcf twolf ammp applu equake swim apache zeus oltp jbb
Figure 6. Runtime for the three compression alternatives, normalized to the “Never” runtime.
5.2 Miss Rates for Compressed Caches 5.3 Performance

Using compression to increase effective cache capacitfhe ultimate objective of adaptive cache compression is
should tend to decrease the L2 miss rate. Figure 5 preo achieve performance comparable to the best of
sents the average miss rates for our benchmarks. Th&lways or Never Reducing the cache miss rate, as

results are normalized tdeverto focus on the benefit of Alwaysdoes for some benchmarks, may be outweighed
compression, but the absolute misses per 1000 instrudy the increase in hit latency. Figure 6 presents the sim-
tions forNeverare included at the bottom. Bofkiways ulated runtime of our twelve benchmarks, normalized to

andAdaptivehave lower or equal miss rates when com-the Nevercase. Most of the benchmarks that have sub-
pared toNever with two exceptions. The slight increase stantial miss rate reductions undélivaysalso improve

in the miss rate foAdaptivewhen compared tbleverin runtime performance (e.g., a speedup of 17% for
twolf and ammp is due to the difference in associativity.apache, 7% for zeus, and 35% for mcf). However, the
Since we predict no compression in both of these benchmagnitude of this improvement depends upon the abso-
marks, the L2 caches are 4MB, 8-way fdeverand Ilute frequency of misses. For example, jbb and zeus
4 MB, 4-way forAdaptive. have similar relative miss rate improvements, but since

Not surprisingly, the commercial benchmarks achieve?®YS has more than four times as many misses per

substantial benefits from compression, reducing thé'ns'[ruction, its performance improvement is greater. On

miss rates by 9-24%. More striking are the results forthe other hand, benchmarks with smaller working sets

mcf. Alwaysreduces the miss rate by over half, despite(e'g" gcee, tV\.IOIf’ ammp) do not benefit from grgater
increasing the effective capacity by only 25%. This sug-CaChe capacity. Ammp is the extreme example In-our
gests that compression increases effective cache Si%enchmark set, withhlwayss performance degrading
sufficiently for a critical working set to fit in the L2 y roughly 18% compared tdever

cache. Benchmarks with small working sets (e.g., twolf)Figure 6 also shows th#daptiveachieves most of the
get little or no miss rate reduction from compression.benefit ofAlwaysfor benchmarks that benefit from com-
The four floating-point benchmarks, despite very largepression. In addition, for benchmarks that do not benefit
working sets, do not benefit from compression (excepfrom compression, it degrades performance by less than
for ~4% for equake) due to the poor compression ratio$).4% compared tdNever Mcf is the one benchmark
our compression algorithm achieves for floating-pointwhere Adaptive performs substantially less well than
data.

o N © o § © 0 o «Hd o o W

5 < o M ~ uw o N9 a 9@ <9 o
) 3\ i —l (a0} — — < - N~ © ™
g 104 . = _ =
§])
x B Never
g] o Always
=z 05 N @ Adaptive
S
S
Z -4

0.0 256K 1M 4M 16M 256K 1M 4M 16M 256K 1M 4M 16M 256K 1M 4M 16M
ammp gce mcf apache
Figure 7. Sensitivity of four benchmarks to L2 cache size changes (all with 32 KB L1).
Runtime (in cycles per instruction) is normalized toNever.
® I | i
£ 1.0] —— T
Ind _ B Never
kol 1 0 Always
% 05] 0 Adaptive
£ |
S]
Z -4
0.0 = fH_SU I S I —
ammp gce mcf apache

Figure 8. Sensitivity of four benchmarks to L1 cache size changes (all with 4 MB L2).
Runtime is normalized to 32KNever.

Always (26% vs. 35%) due to the benchmark's phase6.1 Sensitivity to L2 Cache Size

behavior, as explained in Section 6.4. . . .
Cache compression works best when it can increase the

5.4 Summary effective L2 size enough to hold a workload’s critical

The results in this section show that while some mem_working set. Conversely, compression provides little or

ory-intensive benchmarks benefit significantly from no benefit when the working set is either much larger, or

compression, other benchmarks receive little benefit ofnutCh tshmatl)ler, than tt_he L2 caflhedsme.t_ F'gl]fre ! |[Ius-
even degrade significantly. For our benchmavkdap- rates this by presenting normalized runtime for various

tive achieves the best of both worlds, improving perfor- L2 cache sizes, assuming a fixed L2 access latency. For

mance by using compression when it helps, while noMmP and gcc, compression helps performance for

hurting performance when compression does not help. smaller cache sizes, since compression allqws the L2
cache to hold more data (e.g., compression allows

6 Sensitivity of Adaptive Compression ammp to hold an average of ~1.2 MB in a 1 MB L2,

g 0)
The effectiveness of cache compression depends up rﬁasultmg in a 49% speedup). However, compression

. .) . - hurts performance for larger cache sizes, since compres-
the interaction between a workload’s working-set size P 9 P

sion increases the hit latency but doesn't significantly

and the caches’ sizes and latencies. Adaptive CaChf%crease the effective cache size. At the other extreme,

compression is designed to dynamically adjust its com- . i
: - mcf and apache only benefit from compression for
pression decisions to approach the performance of th

better of the two static policie&lwaysandNever In this ﬁa\rger cache.s.(4 and 16 MB), since the workmg setls
. too large to fit in the smaller cache sizes, even with com-
section, we investigate how weRdaptive adjusts to

changes in L1 and L2 cache sizes, decompressioRreSSlon' For all casegdaptiveadapts its behavior to

latency, and benchmark phases. We focus on fouFnatCh the better oliwaysandNever

benchmarks that represent opposite sides of the spe6.2 Sensitivity to L1 Cache Size
trum; mcf and apache that are helped by compressionT'.

. he effectiveness of L2 cache compression depends on
and ammp and gcc that are hurt by compression.

the overhead incurred decompressing lines on L2 hits.
Since the L1 filters requests to the L2, the L1 size

gcc mct

.---0 1.0
o) -0
£ j 0-00 7 ° £ .Oo----0
E 1.0 100002 £ 08 ,upfb50----0
T Never Z = N
x X 064 ever
'@l --0-- Alwa)(s '§ ---0-- Always
5 05 Adaptive = 0.4 Adaptive
£ E 024
g s
O-O I LI I TTrTT I TTrTT I TTrTT I T T I Z 0.0 LI I LI I LI I LI I LI I
0 5 10 15 20 25 0 5 10 15 20 25
Decompression Latency (Cycles) Decompression Latency (Cycles)
ammp o 10 apache
o) SeT o V7
.-O" NN (e (D o e B —m = { SO
g 15 o g 08 l!v,r,,v"\ o o @ &
S o © -0° N 2 N
X ~00C ever X 06 ever
B 10 --0-- Always 3 --0-- Always
N ; N 04 ;
3 Adaptive 3 Adaptive
£ 05 £ 02
2 2
0.0 Fr—r 0.0
0 5 10 15 20 25 0 5 10 15 20 25
Decompression Latency (Cycles) Decompression Latency (Cycles)

Figure 9. Sensitivity of adaptive compression to decompression latendydaptiveperforms the same as the
better of Neverand Always except for mcf.

impacts this overhead. As the L1 cache size increasegven an ideal predictor—one which instantaneously

references that would have hit in the L2 are now satis-detects phase changes and accurately predicts future
fied in the L1. Thus the decompression overhead tendbehavior—cannot adapt immediately. This is because

to decrease. Conversely, as the L1 size decreases, the & cache state (i.e., which lines are currently com-

incurs more penalized hits due to the increased numbegrressed) depends upon the predictions made during the
of L1 misses. Figure 8 illustrates this tradeoff for a previous phase. Thus the adaptive policy may incur

4 MB L2 cache, assuming a fixed L1 access latency. Fomany avoidable misses or penalized hits before it adapts
these benchmarks and parameters, increasing L1 size the new phase.

has very little impact on the relative benefit of compres-

sion Figure 10 illustrates the phase behavior exhibited during

our simulation runs. The top graphs show changes in the
6.3 Adapting to Decompression Latency global predictor (GCP) value over time, while the lower
raphs show the effective cache size over time. Two

All cache compression schemes are highly sensitive t‘%enchmarks ammp and apache, exhibit no phase

the decompression latency. Larger decompression Iater&hanges during these relatively short simulation runs.

cles de_:crease the _appeal of cache compression bi"hus, the global predictor and cache size remain
increasing the effective access latency. Figure 9 presen}%ughly constant. For ammp, GCP is negative and the
normalized runtime for four benchmarks as the decom'eﬁective cache sizes holds s'Eeady at 4 MB. For apache

pression latency varies fr_om 0 to 25 cyc.Ies. TheseGCP stays positive and the effective cache size fluctu-
results show thadaptiveadjusts to changes in decom- ates around 7 MB

pression latency, and usually achieves performance

comparable to the better 8fwaysandNever Mcfisthe ~ The other two benchmarks exhibit distinct working set
notable exception, wheredaptivedegrades tdleverfor ~ phases. Gce's working set changes slowly from a size
large decompression latencies. This behavior is due t¢ghat fits in less than 4 MB for the first 1.5 billion cycles
rapid phase changes in the benchmark and their impad® @ size that benefits from compression for the remain-
on the global predictor. We examine this further in theder of the run. Adaptive compression adjusts to this

next section. change and compresses lines to increase the effective
. cache size. For mcf, however, the phase changes are
6.4 Adapting to Benchmark Phases much more frequent. In this case, the adaptive policy

Many benchmarks exhibit phase behavior [37], and &dlternates between predicting for and against compres-
benchmark’s working set size may change between difsion. Thus Adaptiveonly compresses some cache lines,
ferent phases. These changes can disrupftheptive resulting in worse performance than thevayspolicy
po|icy, since the past (the previous phase) may not be é’iS shown in Section 53) Using a Iarger counter as our

good predictor of the future (the next phase)_ Howeverpredictor reduces this effect by increasing the hysteresis,
thus increasing the fraction of compressed lines. How-

ammp apache yuw mct

250 250 250 250
g 200 200 200 200
S 150 150 150 150
X
5 100 100 100 100
8 50 50 50 50
03 04 0—1 04
||||||||||||||||| +I‘I‘I'I‘I‘I'I‘I‘ITI‘I‘I'I‘I‘I‘I'I‘I‘I’| :"I'ITI'I'I'I'I'I'I'I'I'I'I'I'I'I'I'I'I'I'I'I11111T|'ITITI11
00 05 10 15 0 1 2 0 1 2 0 1 2 3
8 8 — 8 8 —
= |
= 64 6 — 6 6 —
= "] |
& 47 4 4 4
n] |
-é 2 2 2 2
O - N A -
0 LA LI L LN B I 0_—|-|-|-|-|-|-|-|-|T|-|-|-|-|-|-|-|-|-|—| O—'n'rrrrrnTn'rrn'rnTn'rn'n 0—.|.|.|.|.|.|.|.|.|.I.|.|.|.|.|.|.|.|.|.I.|.|.|.|.|.|.|.|.|.I.|.|.|.|.|.|.I
00 05 10 15 0 1 2 0 1 2 o 1 2 3
Billion Cycles Billion Cycles Billion Cycles Billion Cycles

Figure 10. Sensitivity of adaptive compression to benchmark phase changes. This figure shows temporal
changes in global compression predictor values (top) and effective cache size (bottom).

ever, a larger predictor also delays the response to mor€ache Compression and Related Designkee, et al.
well-behaved phase changes, such as the change exhil27, 28, 29] propose a compressed memory hierarchy
ited by gcc. model that selectively compresses L2 cache and mem-
ory blocks that can be reduced to half their original size.
7 Related Work Their Selective Compressed Memory System (SCMS)
Hardware-based compression has been used to increaggees a hardware implementation of the X-RL compres-
effective memory size, reduce memory address and datsion algorithm [26], a variant of the X-Match algorithm
bandwidth, and increase effective cache size. Althougtihat gives a special treatment for runs of zeros. Ahn, et
adaptive compression has been previously applied i@l. [1] propose several improvements on the X-RL tech-
software to virtual memory systems, this paper presentgique that capture common values. Chen, et al. [9] pro-
the first adaptive scheme for hardware caches. pose a scheme that dynamically partitions the cache into
sections of different compressibility. Hallnor and Rein-

;ig?:crﬁngf:mo[%] Ce(r)nmIrgessrgaﬂ-ti?neeSI%g?ﬁ!i'\eAnS]or hardt [21] modify their indirect-index cache design to
9y ploy Y allocate variable amounts of storage to different cache

compression that can effectively d_ouble the main MeMiines based on their compressibility. Pomerene, et al.

g135] use a shadow directory scheme with more address

a parallel algorithm, Parallel Block-Referential Com- tags than data lines to improve upon LRU replacement.

pression with Directory Sharing, which divides each
input data block into sub-blocks, and constructs a dictio-Yang and Gupta show that a small number of distinct
nary while compressing all sub-blocks in parallel [17]. values occupy a large fraction of memory access values

. i _in the SPECIint95 benchmarks [42]. This value locality
Kjelso, et al. [26] use the X-Match hardware compres motivates their “Compression Cache” design [43].

sion algorithm that maintains a dictionary and replaceth(,ing et al., design a value-centric data cache design
each input data element with a shorter code in case of & ' N

X . . _Called the frequent value cache (FVC) [44], which is a
total or partial match with a dictionary entry. Such com small direct-mapped cache dedicated to holding fre-

pression reduces communication bandwidth by com- .
: uent benchmark values. They show that augmenting a
pacting cache-to-memory address streams [15] or dat .
irect mapped cache with a small FVC can greatly

streams [10]. Benini, et al. [8] propose a data compres- .
: . .~ reduce the cache miss rate.

sion/decompression scheme to reduce memory traffic in

general-purpose processor systems. They store uncordaptive Compression in Virtual Memory Systems.
pressed data in the cache, and compress/decompress Adaptive compression has been used in virtual memory
the fly when data is transferred to/from memory. Theymanagement schemes to compress portions of main
use a differential compression scheme based on theemory (called compression caches) to avoid I/O oper-
assumption that it is likely for data words in the sameations caused by page faults. Douglis observes that dif-
cache line to have some bits in common [7]. ferent programs need compressed caches of different

10

sizes [12]. He implements a simple adaptive scheme thatystems. Prof. Wood has a significant financial interest
dynamically split main memory pages between uncom-n Sun Microsystems, Inc.

pressed and compressed portions. Both portions corrheferences

pete for the LRU page in memory, and allocating a new
page is biased towards the compression cache. Cortes,[@f Edward Ahn, Seung-Moon Yoo, and Sung-Mo Steve
al. [11] classify reads to the compression cache accord- Kang. Effective Algorithms for Cache-level Compres-
ing to whether they were caused by swapping or sion. In Proceedings of the 2001 Conference on Great

fetchi d imized hani Lakes Symposium on VI.ghges 89-92, 2001.
prefetching, and propose optimized mechanisms t 2] Alaa R. Alameldeen, Milo M. K. Martin, Carl J. Mauer,

swap pages in/out. Wilson, et al. [41] propose dynami- ~ Kevin E. Moore, Min Xu, Daniel J. Sorin, Mark D. Hill,
cally adjusting the compressed cache size using a and David A. Wood. Simulating a $2M Commercial Serv-
cost/benefit analysis that compares various target sizes, er on a $2K PCIEEE Computer36(2):50-57, February
and takes into account the compression cost vs. the be?é] i?::h Alameldeen and David A. Wood. Variability in
efit of avoiding I/Os. Their system uses LRU Statlstlcs of Architectural Simulations of Multi-threaded Worklo)z;ds.
touched pages to compare the costs and benefits of tar- |, Proceedings of the Ninth IEEE Symposium on High-
get sizes, and adjusts the compression cache size on sub- performance Computer Architectyngages 7—18, Febru-
sequent page accesses. Freedman [18] optimizes the ary 2003.

compression cache size for handheld devices according] Alaa R. Alameldeen and David A. Wood. Frequent Pat-

to the energy costs of decompression vs. disk accesses. €M Compression: A Significance-Based Compression
9y P Scheme for L2 Caches. Technical Report 1500, Computer

8 Conclusions Sciences Department, University of Wisconsin—Madison,
April 2004.

In this paper, we propose an adaptive compression pol5] Paul Barford and Mark Crovella. Generating Representa-

icy to improve the performance of high-performance tive Web Workloads for Network and Server Performance

processors running memory-intensive workloads. We Evaluation. InProceedings of the 1998 ACM Sigmetrics

use a two-level cache hierarchy where the L1 holds Conference on Measurement and Modeling of Computer

.) Systemgpages 151-160, June 1998.
uncompressed data while the L2 can optionally StOr8g] Luiz A. Barroso, Kourosh Gharachorloo, and Edouard

data in compressed form. Our adaptive policy dynami- = Bugnion. Memory System Characterization of Commer-
cally adjusts to the costs and benefits of compression. A cial Workloads. InProceedings of the 25th Annual Inter-
single global saturating counter predicts whether the L2 ~ national Symposium on Computer Architecfypages 3—
cache should store a line in compressed or uncom. L% June 1998,

1 Luca Benini, Davide Bruni, Alberto Macii, and Enrico
pressed form. The L2 controller updates the Counte; Macii. Hardware-Assisted Data Compression for Energy

based on whether compression could (or did) eliminate minimization in Systems with Embedded Processors. In
a (potential) miss or incurs an unnecessary decompres- Proceedings of the IEEE 2002 Design Automation and
sion overhead. Test in Europgepages 449-453, 2002.

. . . [8] Luca Benini, Davide Bruni, Bruno Ricco, Alberto Macii,
We show that compressiral compressible cache lines and Enrico Macii. An Adaptive Data Compression
can improve performance for some memory-intensive Scheme for Memory Traffic Minimization in Processor-
workloads, while hurting the performance of other Based Systems. Iﬁroqeedings of the IEEE International
applications that have low miss rates or low compress- gggf%gegncﬁ 0”283(')2“”3 and Systems, ICCAS{iges
ibility. Our adaptive scheme successfully predicts work- —90%, May .

. L P] David Chen, Enoch Peserico, and Larry Rudolph. A Dy-
load behavior, thus providing a performance speedup of * amically Partitionable Compressed CachePhoceed-

up to 26% over an uncompressed cache design for ings of the Singapore-MIT Alliance Symposjulanuary
benchmarks that benefit from compression, while limit- 2003.

ing the performance degradation of other benchmarks t6L0] Daniel Citron and Larry Rudolph. Creating a Wider Bus

0 Using Caching Techniques. IRroceedings of the First
less than 0.4%. IEEE Symposium on High-Performance Computer Archi-
Acknow|edgements tecture pages 90-99, February 1995.

. . [11] Toni Cortes, Yolanda Becerra, and Raul Cervera. Swap
We thank Brad Beckmann, Mark Hill, Kevin Moore, Compression: Resurrecting Old IdeSsftware - Practice
Min Xu, the Wisconsin computer architecture affiliates, and Experience Journal46(15):567-587, December

Virtutech AB, the Wisconsin Condor group and our 2000. . . _ .
anonymous reviewers for their feedback and supportl12] (F:red Douglls.tTEetCc:jn;)p;{e55|c1|nMCacheiqUsmgd_On-lme
R R H : . ompression 1o exten ysical viemoryHroceedaings
This wor_k is sypported in part by the National Science of 1993 Winter USENIX Conferengeages 519-529, Jan-

Foundation with grants CCR-0324878, EIA-0205286, uary 1993.
and EIA-9971256, a Wisconsin Romnes Fellowship[13] Karel Driesen and Urs Holzle. Accurate Indirect Branch

(Wood) and donations from IBM, Intel and Sun Micro- Prediction. InProceedings of the 25th Annual Interna-
tional Symposium on Computer Architectupages 167—
178, June 1998.

11

[14] Avinoam N. Eden and Trevor Mudge. The YAGS Branch [29] Jang-Soo Lee, Won-Kee Hong, and Shin-Dug Kim.

Prediction Scheme. IRroceedings of the 25th Annual In- Adaptive Methods to Minimize Decompression Overhead
ternational Symposium on Computer Architecfypages for Compressed On-chip CacHaternational Journal of
69-77, June 1998. Computers and Applicatior25(2), January 2003.

[15] Matthew Farrens and Arvin Park. Dynamic Base Register[30] Peter S. Magnusson et al. Simics: A Full System Simula-
Caching: A Technique for Reducing Address Bus Width. tion Platform. |EEE Computer 35(2):50-58, February
In Proceedings of the 18th Annual International Sympo- 2002.
sium on Computer Architecturgpages 128-137, May [31] Milo M. K. Martin, Daniel J. Sorin, Mark D. Hill, and
1991. David A. Wood. Bandwidth Adaptive Snooping. Rro-
[16] International Technology Roadmap for Semiconductors. ceedings of the Eighth IEEE Symposium on High-Perfor-
2002 Update. Semiconductor Industry Association, 2002. mance Computer Architecturpages 251-262, February

http://public.itrs.net/Files/2002Update/2002Update.pdf. 2002.

[17] Peter Franaszek, John Robinson, and Joy Thomas. PardB2] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger.
lel Compression with Cooperative Dictionary Construc- Evaluation Techniques for Storage Hierarchi&dl Sys-
tion. In Proceedings of the Data Compression Confer- tems Journgl9(2):78-117, 1970.
ence, DCC'96pages 200-209, March 1996. [33] Carl J. Mauer, Mark D. Hill, and David A. Wood. Full

[18] Michael J. Freedman. The Compression Cache: Virtual System Timing-First Simulation. IProceedings of the
Memory Compression for Handheld Computers. Techni- 2002 ACM Sigmetrics Conference on Measurement and

cal report, Parallel and Distributed Operating Systems Modeling of Computer Systempages 108-116, June
Group, MIT Lab for Computer Science, Cambridge, 2000. 2002.
[19] Gregory F. Grohoski. Machine Organization of the IBM [34] Gordon E. Moore. Cramming More Components onto In-

RISC System/6000 ProcesstBM Journal of Research tegrated CircuitsElectronics pages 114-117, April 1965.

and DevelopmenB4(1):37-58, January 1990. [35] J. Pomerene, T.Puzak, R. Rechtschaffen, and
[20] Erik G. Hallnor and Steven K. Reinhardt. A Fully Asso- F. Sparacio. Prefetching System for a Cache Having a

ciative Software-Managed Cache DesignPhoceedings Second Directory for Sequentially Accessed Blocks, Feb-

of the 27th Annual International Symposium on Computer ruary 1989. U.S. Patent 4,807,110.

Architecture pages 107-116, June 2000. [36] Andre Seznec. Decoupled Sectored CacH&&E Trans-

[21] Erik G. Hallnor and Steven K. Reinhardt. A Compressed actions on Computerg6(2):210-215, February 1997.
Memory Hierarchy using an Indirect Index Cache. Tech-[37] Timothy Sherwood, Erez Perelman, Greg Hamerly, and

nical Report CSE-TR-488-04, University of Michigan, Brad Calder. Automatically Characterizing Large Scale

2004. Program Behavior. IProceedings of the Tenth Interna-
[22] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, tional Conference on Architectural Support for Program-

A. Kyker, and P. Roussel. The microarchitecture of the ming Languages and Operating Systemages 45-57,

Pentium 4 processomtel Technology JournaFebruary October 2002.

2001. [38] Systems Performance Evaluation Cooperation. SPEC

[23] M. S. Hrishikesh, Norman P. Jouppi, Keithl. Farkas, Benchmarks. http://www.spec.org.
Doug Burger, Stephen W. Keckler, and Premkishore Shi-[39] Joel M. Tendler, Steve Dodson, Steve Fields, Hung Le,
vakumar. The Optimal Logic Depth Per Pipeline Stage is and Balaram Sinharoy. POWER4 System Microarchitec-

6 to 8 Inverter Delays. IProceedings of the 29th Annual ture. IBM Journal of Research and Developme6(1),
International Symposium on Computer Architectiviay 2002.
2002. [40] R.B. Tremaine, P.A. Franaszek, J.T. Robinson, C.O.

[24] Stephan Jourdan, Tse-Hao Hsing, Jared Stark, and Schulz, T.B. Smith, M.E. Wazlowski, and P.M. Bland.
Yale N. Patt. The Effects of Mispredicted-Path Execution IBM Memory Expansion Technology (MXT)BM Jour-

on Branch Prediction Structures.Pnoceedings of the In- nal of Research and Developme#5(2):271-285, March

ternational Conference on Parallel Architectures and 2001.

Compilation Techniquepages 58-67, October 1996. [41] Paul R. Wilson, ScottF. Kaplan, and Yannis Sma-
[25] R. E. Kessler. The Alpha 21264 MicroprocessiitEE ragdakis. The Case for Compressed Caching in Virtual

Micro, 19(2):24-36, March/April 1999. Memory Systems. liProceedings of the USENIX Annual

[26] Morten Kjelso, Mark Gooch, and Simon Jones. Design Technical Conferenggages 101-116, June 1999.
and Performance of a Main Memory Hardware Data Com-[42] Jun Yang and Rajiv Gupta. Frequent Value Locality and
pressor. IrProceedings of the 22nd EUROMICRO Con- its Applications. ACM Transactions on Embedded Com-
ference 1996. puting Systemsdl(1):79-105, November 2002.

[27] Jang-Soo Lee, Won-Kee Hong, and Shin-Dug Kim. De-[43] Jun Yang, Youtao Zhang, and Rajiv Gupta. Frequent Val-
sign and Evaluation of a Selective Compressed Memory ue Compression in Data Caches.Pnoceedings of the

System. InProc_:eedings of Internationl Conference on 33rd Annual IEEE/ACM International Symposium on Mi-
Computer Design (ICCD’'99)pages 184-191, October croarchitecture pages 258—265, December 2000.
1999. [44] Youtao Zhang, Jun Yang, and Rajiv Gupta. Frequent Val-

[28] Jang-Soo Lee, Won-Kee Hong, and Shin-Dug Kim. An ue Locality and Value-centric Data Cache DesigrRto-
On-chip Cache Compression Technique to Reduce De- ceedings of the Ninth International Conference on Archi-
compression Overhead and Design Complexiburnal tectural Support for Programming Languages and Oper-
of Systems Architecture:the EUROMICRO Journal ating Systemgpages 150-159, November 2000.
46(15):1365-1382, December 2000.

12

	Adaptive Cache Compression for High-Performance Processors
	Alaa R. Alameldeen and David A. Wood Computer Sciences Department, University of Wisconsin-Madiso...
	Abstract
	1 Introduction
	2 Compressed Cache Hierarchy
	2.1 Overview
	Figure 1. Compressed Cache Hierarchy.

	2.2 Decoupled Variable-Segment Cache
	Figure 2. A single set of the decoupled variable-segment cache.

	2.3 Frequent Pattern Compression (FPC)

	3 Adaptive Cache Compression
	3.1 Classification of Cache References
	Figure 3. A cache set example.

	3.2 Global Compression Predictor

	4 Evaluation Methodology
	4.1 System Configuration
	Table 1. Simulation Parameters

	4.2 Workloads
	Table 2. Workload Descriptions
	Online Transaction Processing (OLTP): DB2 with a TPC-C-like workload. The TPC-C benchmark models ...
	Java Server Workload: SPECjbb. SPECjbb2000 is a server-side java benchmark that models a 3-tier s...
	Static Web Serving: Zeus. Zeus is another static web serving workload driven by SURGE. Zeus uses ...

	5 Evaluation of Adaptive Compression
	5.1 Effective Cache Capacity
	Figure 4. Average cache capacity during benchmark runs (4 MB uncompressed size).

	5.2 Miss Rates for Compressed Caches
	Figure 5. L2 cache miss rate for the three compression alternatives (128K/4MB configuration), nor...

	5.3 Performance
	Figure 6. Runtime for the three compression alternatives, normalized to the “Never” runtime.

	5.4 Summary

	6 Sensitivity of Adaptive Compression
	6.1 Sensitivity to L2 Cache Size
	Figure 7. Sensitivity of four benchmarks to L2 cache size changes (all with 32�KB L1). Runtime (i...
	Figure 8. Sensitivity of four benchmarks to L1 cache size changes (all with 4�MB L2). Runtime is ...

	6.2 Sensitivity to L1 Cache Size
	6.3 Adapting to Decompression Latency
	Figure 9. Sensitivity of adaptive compression to decompression latency. Adaptive performs the sam...

	6.4 Adapting to Benchmark Phases
	Figure 10. Sensitivity of adaptive compression to benchmark phase changes. This figure shows temp...

	7 Related Work
	8 Conclusions
	Acknowledgements
	References

