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ABSTRACT 

Voltage scaling is one of the most effective mechanisms to 

reduce microprocessor power consumption. However, the 

increased severity of manufacturing-induced parameter variations 

at lower voltages limits voltage scaling to a minimum voltage, 

Vccmin, below which a processor cannot operate reliably. 

Memory cell failures in large memory structures (e.g., caches) 

typically determine the Vccmin for the whole processor. Memory 

failures can be persistent (i.e., failures at time zero which cause 

yield loss) or non-persistent (e.g., soft errors or erratic bit 

failures). Both types of failures increase as supply voltage 

decreases and both need to be addressed to achieve reliable 

operation at low voltages. 

In this paper, we propose a novel adaptive technique to 

improve cache lifetime reliability and enable low voltage 

operation. This technique, multi-bit segmented ECC (MS-ECC) 

addresses both persistent and non-persistent failures. Like 

previous work on mitigating persistent failures, MS-ECC trades 

off cache capacity for lower voltages. However, unlike previous 

schemes, MS-ECC does not rely on testing to identify and isolate 

defective bits, and therefore enables error tolerance for non-

persistent failures like erratic bits and soft errors at low voltages. 

Furthermore, MS-ECC’s design can allow the operating system to 

adaptively change the cache size and ECC capability to adjust to 

system operating conditions. Compared to current designs with 

single-bit correction, the most aggressive implementation for MS-

ECC enables a 30% reduction in supply voltage, reducing power 

by 71% and energy per instruction by 42%. 

Categories and Subject Descriptors 
B.3.4 [Memory Structures]: Reliability, Testing, and Fault-
Tolerance. 

General Terms 
Design, Reliability 

1. INTRODUCTION 

As semiconductor technology continues to scale, energy 
efficiency is becoming the key design concern for computer 
systems. Microprocessors often use multiple power modes to 
exploit the power-performance tradeoff in order to improve 
energy efficiency. Many processors (e.g., the Intel® Celeron® 
processor [11]) have high-performance and low-power modes of 
operation. In the high-performance mode, the processor uses a 

high voltage and runs at a high frequency to achieve the best 
performance. In the low-power mode(s), the processor runs at a 
lower frequency and uses a lower voltage to conserve energy. 
Such power saving features are becoming prevalent in current 
processor designs. 

Reducing supply voltage is one of the most effective 
methods to reduce power consumption. However, as supply 
voltage decreases, manufacturing-induced parameter variations 
increase in severity, causing many circuits to fail. These variations 
restrict voltage scaling to a minimum value, often called Vccmin 
(or Vmin), which is the minimum supply voltage for a die to 
operate reliably. Failures in memory cells typically determine the 
Vccmin for a processor as a whole [31]. Reducing Vccmin in the 
context of memory failures is important for enabling ultra-low 
power modes that are more energy-efficient. 

Prior work [21, 31] has previously proposed techniques to 
enable ultra-low voltage cache operation in the context of high 
memory cell failure rates. The proposed techniques trade off 
cache capacity for reliable low voltage operation. In the high-
voltage mode of operation, cell failure rate is low and the entire 
cache is available for use. During the low-power, low-voltage 
mode, cache size is sacrificed to increase reliability. These 
techniques enable a significant reduction in supply voltage. 
However, they require conducting thorough memory tests at low 
voltages to isolate defective bits. Memory tests must be performed 
whenever the processor boots, and the location of defective bits 
needs to be stored in the memory hierarchy. While these tests can 
detect voltage-dependent, persistent bit failures, other non-
persistent sources of bit failures are dynamic in nature and cannot 
be detected by testing. Examples of such non-persistent bit 
failures include erratic bit failures [1] and soft errors. Non-
persistent failures also increase when supply voltage decreases as 
we show in Section 3. Techniques like those proposed in [21, 31] 
cannot mitigate non-persistent errors and therefore must rely on a 
voltage guardband to enable reliable cache operation. 

Other prior work addresses non-persistent, transient bit 
failures at normal operating voltages. Examples of such work 
include error-correcting schemes such as the two-dimensional 
ECC proposal by Kim et al. [14]. These techniques effectively 
tolerate multiple bit errors due to non-persistent faults. However, 
prior work focused only on failure rates at normal operating 
voltages, and did not address persistent failures at low voltages 
which result in yield loss.  

To enable a cache design that tolerates both non-persistent 
and persistent failures at low voltages, we need a unified solution 
that does not rely on testing. We propose using redundancy to 
enable ultra-low voltage cache operation. Our solution, multi-bit 
segmented ECC (MS-ECC) employs error correction codes to 
tolerate both persistent and non-persistent bit failures at low 
voltages. During low-voltage operation, some ways in each cache 
set are used to store ECC check bits for the remaining ways, 
thereby increasing reliability against high failure rates. The 
number of ways used for storing ECC can be adaptively chosen 
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by the operating system on the basis of the desired reliability 
level, which in turn depends on the target Vccmin. Increasing the 
number of ECC ways increases the redundancy and thus the 
reliability but decreases the cache capacity available during low- 
voltage operation.  

To simplify ECC implementation, MS-ECC divides a cache 
line into multiple small segments and corrects errors on a per-
segment basis. Performing error correction at finer granularities 
enables more errors to be fixed with lower latency and 
complexity. To further reduce the logic complexity of error 
correction, we leverage the previously proposed Orthogonal Latin 
Square Codes (OLSC) [9]. OLSC enables faster encoding and 
decoding than traditional ECC, at the cost of more check bits. 
Furthermore, OLSC uses modular error correction hardware 
which can be used, adaptively, to correct a varying numbers of 
errors. This adaptive design can be used to trade off reliability for 
performance in the low-voltage operating mode. If performance is 
insensitive to cache size in the low-voltage operating mode as 
shown in [31], then the design should target maximum reliability. 
If some application-specific performance is sensitive to cache 
size, then the error correction capability can be sacrificed to 
increase cache size. 

This paper makes the following main contributions: 
1. To our knowledge, our paper is the first to quantify the 

impact of both persistent and non-persistent (erratic, soft 
errors) failures on cache yield loss and lifetime reliability.  

2. We propose a novel error tolerance mechanism, multi-bit 
segmented ECC (MS-ECC), which uses Orthogonal Latin 
Square Codes to reduce Vccmin by supporting multi-bit error 
correction for small cache line segments and cache tags.  

3. We propose an adaptive mechanism that enables a variable 
part of the cache to be used for error correction. This 
mechanism can correct 1-4 errors for each 64-bit segment, 
where a higher correction capability increases reliability at 
the expense of sacrificing a bigger percentage of the cache 
size. 

4. We show that the most aggressive implementation of MS-
ECC can achieve reliable cache operation at 520 mV, 
incurring minimal additional latency, while sacrificing half 
of the cache capacity at low voltages. Compared to previous 
schemes, our proposal addresses both persistent and non-
persistent failures, and reduces the overhead of thorough 
testing at boot time. 
In the remainder of this paper, we discuss the impact of bit 

failures on Vccmin in Section 2. We describe two types of non-
persistent failures and their impact on lifetime reliability in 
Section 3. We discuss our proposed technique in detail in Section 
4. We introduce the experimental methodology in Section 5 and 
evaluate our technique in Section 6. We conclude in Section 7. 

2. BACKGROUND 

2.1 Bit Failures and Vccmin 

Large SRAM caches make up a significant percentage of 
transistors in a microprocessor die. Parameter variations, induced 
by imperfections in the semiconductor process, limit the minimum 
operational supply voltage to Vccmin, below which an SRAM cell 
fails to operate reliably. For each of the SRAM caches, the bit 
with the highest Vccmin determines the Vccmin of the cache as a 
whole [31]. 
 Bit failures can be classified into two broad categories: 
persistent and non-persistent. The first category contains the 

majority of bit failures, where bits exhibit persistent failing 
behavior. Several papers [2, 15, 31] have analyzed persistent 
failures in detail and have shown that intra-die random dopant 
fluctuations (or RDF) play a primary role in these failures. Prior 
work has also demonstrated that persistent failures exhibit a 
strong dependence on supply voltage. For example, Kulkarni et al. 
[15] show that the bit failure rate increases exponentially with a 
decrease in voltage. Since these types of failures can be reliably 
identified using standard memory testing methodologies, we refer 
to them as testable failures. Memory tests are performed on each 
die before it is shipped to a customer, and dies with irreparable 
failures identified by the memory tests are disposed of. As a 
result, persistent failures typically contribute to yield loss but do 
not play a direct role in determining the lifetime reliability of a 
microprocessor. The lifetime reliability of a processor is usually 
represented by FIT (Failures In Time), the number of failures that 
occur in a billion hours for a particular unit. 

The second category of failures consists of non-persistent bit 
failures, where bits exhibit sporadic failing behavior. Failures 
resulting from particle strikes (soft errors) as well as erratic bit 
failures, both discussed in greater detail in Section 3, are examples 
of this category. Since these failures are non-persistent and occur 
randomly, they can’t be identified with memory tests. As a result, 
these failures don’t directly contribute to yield loss, instead 
contributing directly to a unit’s FIT rate. We classify failures of 
this type as non-testable failures. 

2.2 Related Work 

One solution to improve cache reliability is to implement 
true column and/or row redundancy by adding multiple spare 
rows and/or columns to the cache array [24]. This solution is able 
to tolerate errors that cause a few rows or columns to become 
defective. However, it cannot deal with thousands of randomly 
distributed cache bits in large caches which would become 
defective in the low voltage mode due to high cell failure rates. 

Kim et al. [14] propose a scheme to use two-dimensional 
ECC to correct multi-bit errors. This scheme is tailored to deal 
with clustered multi-bit failures that cause contiguous bits across 
multiple rows and columns to fail concurrently. The ability of this 
scheme to correct errors is strongly dependent upon the location 
of defective bits. While this scheme is able to tolerate correlated 
failures that affect several contiguous bits, it cannot tolerate 
failures in multiple randomly distributed bits in each cache line 
that become defective at low voltages due to random dopant 
fluctuations.  

Another solution to improve cache reliability at low voltages 
is to change the SRAM cell design. The designer can upsize the 
transistors or use cell design variants such as the 8T, 10T, and ST 
SRAM cells [15]. However, the resulting Vccmin reduction 
comes at the cost of significant increases in area (e.g., 100% area 
increase for the ST cell). Furthermore, larger SRAM cells result in 
increased leakage power in both high-performance and low-power 
modes. 

A recent paper [31] proposed two architectural schemes to 
enable cache operation at ultra-low voltages. The first scheme, 
word-disable, disables 32-bit words that contain one or more 
defective bits. Physical lines in two consecutive ways combine to 
form one logical line, where only non-failing words are used. A 
similar scheme was proposed by [21]. The second scheme, bit-fix, 
uses a quarter of the cache ways to store the location of defective 
bits in other cache ways, as well as the correct value of these bits. 
That work focused on testable, voltage dependent, persistent 
failures, and evaluated Vccmin in the context of yield loss. 



 

 

Vccmin was defined as the voltage at which the cache is 
functional in 999 of every 1000 dies. However, the paper did not 
evaluate the impact of FIT rate on Vccmin, although the authors 
acknowledged that additional ECC and supply voltage guardbands 
might be required. In comparison, our work addresses both 
persistent failures and non-persistent failures, and extends the 
previously proposed failure probability model to account for the 
impact of FIT rates on Vccmin. 

Because several previous papers [2, 15, 31] have discussed 
the causes of persistent cell failures in detail and attributed them 
to random intra-die dopant fluctuations (RDF), we omit the 
discussion of persistent failures and instead focus on non-
persistent bit failures in the next section. 

3. NON-PERSISTENT BIT FAILURES 

3.1 Soft Errors 

Soft errors have increased in significance in recent years due 
to the increasing number of devices per die while the soft error 
rate per device remained constant or slightly decreased across 
technology generations [8, 16, 25]. This increase, as well as future 
expected increases in soft error rates (SER), triggered research to 
mitigate the impact of soft errors on the correctness of a program 
execution. Computer architecture research has recently focused on 
providing architecture-level solutions to mitigate soft errors [2, 
19, 26, 30, 32]. 

Our target of running a processor in a low-power mode at 
low voltages further exacerbates the soft error problem. Previous 
measurement studies have shown that reducing supply voltage 
increases the soft error rate exponentially [12, 13, 22, 29]. These 
measurements for SRAM cells and flip-flop designs from multiple 
vendors all confirm that soft error rates will increase at lower 
voltages. This increase is caused primarily by the exponential 
relationship between the soft error rate and the charge stored at a 
particular node, which in turn changes linearly with supply 
voltage [29].  

In our studies, we used the data measured by Ünlü, et al. [29] 
to estimate the soft error rate per SRAM bit. We extrapolated this 
data to lower voltages. However, since this data was measured by 
inducing neutrons from a nuclear reactor, we scaled the soft error 
rates by a factor of one billion to estimate the soft error rate under 
normal conditions at sea-level [33].  

While previous measurements show that soft error rates 
increase exponentially with reduction in supply voltage, the rate 
of increase is limited to 2.5x-3x for every 500mV decrease in 
supply voltage. This soft error rate increase is much lower than 
the increase in persistent failures, where a similar decrease in 
supply voltage leads to an increase in failure probability of more 
than a billion times [15, 31]. Figure 1 compares the probability of 
different types of cell failures as a function of supply voltage. The 
persistent failure probabilities in Figure 1 are based on results 
reported in [15] which were obtained with circuit simulations 
validated against measured data. Compared to voltage-dependent, 
persistent failures, Figure 1 shows that soft errors are more 
significant at higher voltages. At low voltages, however, 
persistent and erratic failures significantly overshadow soft errors. 

3.2 Erratic Bit Failures 

Erratic bit failures have played a key role in setting Vccmin 
in the past, and they are likely to re-emerge as a reliability 
concern in the future [1, 6]. Erratic behavior in the Vccmin of an 
SRAM cell can occur when an NMOS pull down device in an 
SRAM cell experiences soft breakdown.  In soft breakdown, 
random telegraph signal noise in the gate oxide leakage of the 
NMOS device can cause the SRAM cell Vccmin to erratically 
fluctuate by as much as 200mV [1].  Due to their random nature, 
erratic cells may escape standard testing and appear as normal 
cells, but may cause bit failures later. Erratic behavior in SRAM 
cells depends strongly on process parameters.  Agostinelli et al. 
[1] report discovering erraticism on the 90nm process technology 
node, but were able to mitigate it successfully.  However, the 
authors point out that continued device scaling is likely to re-
introduce erraticism in future process technologies.    

Detailed information on erratic bit failures is scarce and good 
physical models are non-existent.  Despite the lack of good 
physical models, it is important to consider erratic bit failures 
especially when considering operation at low voltages.  In our 
studies, we use a very simple model for erratic bit failures and 
address the sensitivity of erratic bit failures to process parameters 
by modeling two hypothetical processes with both high and low 
rates of erraticism.  Since cell stability and oxide strength play a 
role in both erratic bit failures and persistent failures, we expect 
that the probability of an erratic bit failure will be proportional to 
the probability of a voltage–dependent, persistent failure.  Our 
studies reflect this by setting the probability of an erratic bit 
failure as a fixed percentage of persistent failures.  Furthermore, 

Figure 1. Probability of Persistent Failures, Soft Errors and Erratic Failures per Hour vs. Vcc. 
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we expect that the frequency and severity of erratic bit failures 
will be highly process-dependent.  To reflect process sensitivity, 
we model both a high-erratic process with a high rate of erratic bit 
failures, and a low-erratic process with a low rate of erratic bit 
failures. Our high-erratic process produces one erratic bit failure 
for every ten persistent failures.  The probability of an erratic 
failure on our low-erratic process is 1000 times lower, or one 
erratic failure for every 10,000 persistent failures. We model the 
frequency and duration of erratic bit failures in the same way that 
we model soft error failures; the probability of an erratic bit 
failure reflects the probability of an erratic failure in an hour; and 
we assume that the erratic failure (or soft error) lasts an hour.   

Figure 1 shows the probability of different types of failures 
as a function of voltage.  We note that since we model erratic 
failures as a fixed proportion of persistent failures, the probability 
of erratic failures is sensitive to supply voltage. It is also worth 
noting that since Figure 1 shows different failure rates on the 
same Y-axis, the increase in SER (2.5x – 3x for 500 mV decrease 
in supply voltage) appears flat relative to the much larger increase 
in persistent errors (higher than one billion times for 500 mV 
decrease in supply voltage).  

3.3 Comprehensive Yield Loss/FIT Model for 

Cache Failures 

To account for the impact of FIT rate on Vccmin, we use a 
comprehensive model for cache failures that includes the impact 
of voltage–dependent, persistent failures on yield loss as well as 
the impact of soft error rates (SER) and erratic bits on FIT rate. 
Our model for yield loss is similar to the model evaluated in [31], 
but we extend the model with a time component to model failures 
in time. To calculate the FIT rate of our cache, we divide the 
cache lifetime into discrete 1-hour periods and compute the 
probability of a bit failing during each 1-hour period.  

We conservatively assume that SER failures in the cache will 
last an hour before the bit is either rewritten or scrubbed.  We 
assume the same duration for erratic bit failures.  Figure 1 shows 
the probability of SER and erratic failures per hour, and the 
probability that a bit suffers from a voltage dependent persistent 
failure. Using these three probabilities, we can determine the 
overall probability that a bit will fail for one of these three reasons 
in a 1-hour period. For longer periods (e.g., 250 hours), we 
combine the probabilities of failure for each hour to get the 

overall probability of failure. The probability of failure for the 
entire cache is (1 – probability of success), where the probability 
of success is the probability that each bit in the cache stays 
failure-free for every hour in the period.  Figure 2 shows the pfail 
of a base 2MB cache as derived from our model.  There are two 
pfail curves for each cache type: without ECC (BASE-YL, BASE-
FIT) and with ECC (1-ECC_YL, 1-ECC-FIT).  The line marked 
BASE-YL refers to pfail of the cache due solely to persistent 
failures.  A pfail of 10-3 corresponds to a yield loss of 0.1%.  A 
separate line, marked BASE-FIT, indicates the probability that the 
cache will fail during a 250 hour period.  A pfail of 10-3 on that 
line corresponds to one failure every 250,000 hours, or a FIT rate 
of 4000 failures in a 109 hour period. In the remainder of our 
paper, we target a yield loss of 0.1% as suggested in [31] and a 
FIT rate of 4000 as suggested in [26]. To meet these requirements 
both FIT and YL pfails must be less than or equal to 10-3. 

Data in Figure 2 shows that although the simple 2MB cache 
(BASE) meets yield loss requirements at 830mV, FIT 
requirements are not met.  Adding 1-bit ECC to the cache enables 
it to meet yield loss requirements at 670mV and FIT requirements 
at 725mV.  Since both FIT requirements and yield loss 
requirements must be met, Vccmin for this cache would be set at 
725mV.  In the next section, we propose a technique to reduce 
Vccmin further. 

4. MULTI-BIT ERROR CORRECTION FOR 

VCCMIN REDUCTION 

Redundancy is the most widely used approach to increase 
reliability. There are several options to implement redundancy. 
Employing error detection and correction codes is one of the 
methods that improve the reliability of a system through 
information redundancy. Single Error Correction, Double Error 
Detection (SECDED) codes such as the Hamming code [17] are 
well known and have been used in memory chips and on-chip 
caches due to their simplicity. With continued transistor scaling, 
multi-bit error correcting codes are becoming more important for 
large on-chip memory arrays. For example, a Double Error 
Correction Triple Error Detection (DECTED) code can be 
designed based on a binary BCH code [4]. While SECDED and 
DECTED codes provide sufficient redundancy to deal with bit 
failures at normal operating voltages, neither technique provides 
enough redundancy to allow cache operation at an ultra-low 
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voltage level (e.g., 500 mV). Wilkerson et al. [31] showed that 
enabling 500mV operation in a 2MB cache requires 10-bit error 
correction for each 512-bit cache line. Extending conventional 
ECC to correct 10-bit errors over an entire 512-bit cache line 
requires significant area, latency, and power overheads [5, 14], 
which we briefly describe later in this section. We next propose 
our multi-bit segmented ECC that achieves the same purpose with 
lower overhead. 

4.1 Multi-bit Segmented ECC 

 To enable correcting a large number of bits with manageable 
complexity and latency overhead, we propose multi-bit segmented 
ECC (MS-ECC). In this technique, we trade off cache capacity for 
reliability at low voltage. The main idea behind MS-ECC is to 
correct multi-bit errors by implementing error correction at finer 
granularity segments within a cache line. In the high-voltage, 
high- performance operating mode, the entire cache capacity is 
available for use by the processor, and conventional ECC is used. 
In the low voltage, low power operating mode, a portion of the 
cache is used to store additional ECC information on granularities 
finer than a cache line, thereby enabling more errors to be fixed 
on a per-line basis. Because the size of each segment is smaller 
than the entire cache line, the latency and complexity for MS-
ECC is significantly less than conventional (un-segmented) ECC.  

Example:   Consider a 2MB 8-way L2 cache with 64-byte 
lines. In the low voltage mode, we divide the eight physical ways 
in each set amongst (i) data ways and (ii) ECC ways. The ratio of 
data ways to ECC ways depends on the desired reliability level, 
which in turn depends on the target Vccmin. If the operating 
system decides to operate at a higher reliability level, this ratio 
would be adaptively increased to increase the redundancy and 
decrease the cache capacity available during low voltage 
operation. We analyze the impact of this ratio on Vccmin and 
performance in Section 6.2. For this example, assume that there is 
one ECC way for every data way (50% cache capacity available 
in low voltage mode). We use a fixed mapping to associate data 

ways with their corresponding ECC ways (Figure 3(a)): physical 
way 1 stores the ECC for physical way 0, physical way 3 stores 
the ECC for physical way 2, and so on. Thus, in the low-voltage 
mode, the cache effectively becomes a 1MB 4-way set-associative 
cache.  

We divide each data way into multiple segments and store 
the ECC for each segment in the corresponding ECC way.  Figure 
3 shows an example of multi-bit segmented ECC with eight 64-bit 
segments in each 512-bit line. On a read hit (Figure 3(b)), we 
fetch both the data line and the corresponding ECC line. There are 
separate ECC decoders for each of the eight segments that decode 
segments in parallel by using information from both the data and 
ECC ways. The decoded segments are then concatenated to obtain 
the entire 512-bit line. On a write hit to the L2 cache (Figure 
3(c)), we first use the ECC encoders to obtain the ECC for the 
data line. Like the ECC decoders, there are separate encoders for 
each segment that perform ECC encoding in parallel. We then 
write the new data to the data line and the new ECC to the 
corresponding ECC line. A similar encoding is performed when a 
new line is brought into the L2 cache upon a cache miss. We note 
that each cache access in the low-voltage mode requires access to 
both the data way and the ECC way. To avoid increasing cache 
latency, we assume double-width buses for concurrent transfer of 
the data and ECC ways to the ECC encoder/decoder. 
Alternatively, one could also read the two cache lines 
sequentially, thereby incurring additional latency overhead in the 
low-voltage mode. 

4.2 Orthogonal Latin Square Codes (OLSC) 

Performing error correction at finer granularities helps in 
decreasing the complexity of multi-bit error correction. However, 
our evaluation shows that enabling ultra-low voltage operation 
requires three or more errors to be fixed per segment, even for 
small segment sizes. Conventional error correction codes based on 
BCH codes usually fix one (SECDED) or two errors (DECTED). 
These codes have been optimized for storage overhead (i.e., 

Figure 3. Example of Multi-Bit Segmented ECC with Eight 64-bit Segments. 



 

 

number of check bits) at the cost of logic complexity. The 
complexity and latency of these codes grow rapidly with the 
increase in the number of error corrections [14]. To enable ultra-
low voltage operation, MS-ECC needs to use an error correction 
code whose complexity scales well with the number of error 
corrections. Hsiao et al. [9] proposed a coding methodology called 
Orthogonal Latin Square Codes (OLSC) to correct multi-bit 
errors. While OLSC requires more check bits than traditional 
ECC, it has modular correction hardware, lower logic complexity 
and can be encoded and decoded faster than traditional ECC [9]. 
Compared to traditional ECC techniques, OLSC-based MS-ECC 
has a lower latency and offers the operating system flexibility in 
sacrificing a varying percentage of cache capacity based on the 
desired Vccmin and reliability levels in the low-power mode.  

OLSC uses the general principle of a redundant system based 
on majority voting. A simple example of a majority voting 
redundancy-based design is triple modular redundancy (TMR). 
TMR “votes out” any incorrect behavior by having three copies of 
the design and adopting the results from two out of the three 
modules as the correct one. Instead of duplicating each data bit 
three times, OLSC encodes “orthogonal” groups of bits to form 
check bits. At decoding time, each data bit generates the final 
value through a voting process from a group of orthogonally 
coded data and check bits. Thus, OLSC does not need to generate 
a syndrome but can “correct” errors directly from majority voting. 

Figure 4 shows a high-level block diagram of the error 
correcting technique based on OLSC. As indicated in the figure, 
there are N=m

2 data bits (d0, d1,…, dN-1). To perform t error 
corrections, OLSC requires 2tm check bits. The OLSC circuitry 
contains two parts, the check bits generation (Encoder) and error 
correction (Decoder). The orthogonal property of OLSC allows 

the encoder and decoder to be constructed modularly. Each added 
module provides extra correction ability without disturbing 
existing modules. 
 Encoder: The Encoder computes check bits from the input 
data. The encoder circuits are derived from the binary form of the 
H-matrix. Each check bit Ci is computed as the XOR over data 
bits corresponding to columns of H-matrix that have a ‘1’. As an 
example, Figure 5 shows the H-matrix and the logic equations for 
generating check bits for 16-bit data with 2 error corrections. Each 
row in the H-matrix has exactly m bits of ‘1’s. Thus the 
calculation for each check bit requires an m-input XOR operation. 
If we only correct one error, then we only need the first 2m=8 
check bits and we can disable the rest of the encoder circuit. The 
logic complexity is proportional to the square root (m) of the 
number of check bits (m2), with the critical path being 
ceil(log2(m)) levels of 2-input XOR gates. 
 Decoder: The decoder for each data bit involves one (2t+1)-
input majority voter. One input of the voter is the received di’ 
itself, the other 2t are derived from check bits that contain di as its 
encoding variable, each is an m-input XOR tree. Figure 5 shows 
the decoding logic needed for data bit d0 in 16-bit data with t=2 
correction. If we are correcting for only one error (t=1), then the 
last two inputs to each majority function are set to 0 and 1, 
respectively, so that they offset each other and not affect the 
outcome of the majority of other bits. This can be achieved with 
an additional level of multiplexing, selected by whether we 
correct two bits, where each input can be either the XOR in the 
figure or a fixed 0 or 1 value. The critical path for the decoder is 
ceil(log2(m)) levels of 2-input XOR, one level of 2:1 MUX, plus 
(2t+1)-input majority function. This modular design allows us the 
flexibility in choosing different levels of error correction.  

4.3 Logic/Delay Analysis and Optimizations  

 In this subsection, we discuss the logic and delay analysis for 
MS-ECC using OLSC. To keep the analysis simple, we assume 
that the lowest ratio of data bits to ECC bits is 1:1, similar to the 
example in Section 4.1. We use the following terminology in our 
analysis. S represents the segment size in bits. The maximum 
segment size is 512 bits for a whole 64-byte cache line. t denotes 
the maximum number of correctible bits per segment. To build 
OLSC for each single segment, we need mutually orthogonal 

Latin Squares with side length m, where m is equal to ceil( S ). 

For a t-error correction code, we need 2*t*m check bits. Since our 
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Figure 4. OLSC-based Error Correcting Technique. 

Figure 5. An Example for a 16-bit OLSC. 



 

 

most aggressive proposal has the same number of data and ECC 
bits (2*t*m = S), the storage overhead for OLSC is 50% in the 
worst case.  
 We showed in Section 4.2 that the encoding latency is the 
delay due to ceil(log2(m)) levels of 2-input XOR gates, while 
decoding has the same latency plus (2t+1)-input majority function 
and a 2:1 MUX. Conventional majority voter usually involves a 
counter or a full adder to calculate the sum of the inputs. The 
number of logic gates and delay for this voter increases with an 
increase in number of inputs. Alternatively, one could use 
majority voter implementation based on a voltage sense amplifier 
(SA) [10, 20]. A voltage SA evaluates the voltage difference 
between a pair of bitlines which are discharged by two groups of 
complemented logic. The dominant logic value discharges one of 
the bitlines more than the other and leads to a voltage difference. 
Schinkel et al. [23] propose a 90nm technology voltage SA for 
memory bitlines with a setup plus hold time of 18 ps, well within 
one XOR gate delay [28]. The majority voter used by MS-ECC 
has no more than 23 inputs (for 11-bit error correction assuming 
the largest segment size of 512 bits), far fewer than the number of 
gate inputs associated with regular memory bitlines. Therefore, to 
account for the 2:1 MUX and the majority voter, we assume the 
MS-ECC decoder delay to be approximately two levels of XOR 
gates higher than the encoder delay. 

In Figure 6, we show the critical path delay for different 
segment sizes and number of correctible bits per segment. It has to 
be noted that the number of bit corrections is different for 
different segment sizes and is determined by keeping the check 
bits overhead fixed at 50% similar to our worst case. The delay is 
measured in terms of XOR gate levels.  For the encoder, the delay 

approximates to log2( S ). For a 4-bit segment, the delay is one 

level. For a 512-bit segment, which is 128 times larger, the delay 
only increases to five levels. We note that the numbers here only 
show the gate delay; and do not include any interconnect or 
wiring delay, which can be significant for large segments. 

The OLSC scheme has a much smaller delay compared to 
other error correcting codes (e.g. Hamming or BCH [18]), 
especially when the segment size is large. Conventional ECC 
schemes usually depend on a global parity bit for error detection, 
which requires log2(512)=9 levels of XOR gates and extra wiring 
overhead, in addition to the complexity of the error correction 
phase. 

Figure 7 shows the number of gates for MS-ECC under 
different configurations. For each configuration, we show the total 
number of gates in the MS-ECC logic for the entire cache, and not 
the number of gates per segment. “Encoder” has a gate count 

proportional to S , which is m. However, the “Decoder” size 

grows much faster as segment size increases. The size is directly 
proportional to S, since there is a 2*t m-input XOR tree for the 
majority voter of each single data bit. “Decoder” for a 4-bit 
segment requires 1K gates. For a 512-bit segment, the number 
increases to 247K. To decrease the decoder logic overhead, we 
investigated a simplified implementation called “decoder with 
sharing”, which trades off logic complexity for a small increase in 
latency. This implementation shares the decoder XOR tree logic 
between majority voter inputs for different data bits. For example 
in Figure 5, the XOR operation for second majority input in the 
decoder equations for D0 and D1 differ in only one bit. By 
sharing the XOR trees across multiple majority inputs, we 
decrease the logic overhead considerably. Figure 7(b) shows the 
gate overhead for the decoder with sharing design. The number of 
XOR gates for this design is proportional to t, which is close 

to S , as opposed to being proportional to S for the original 

decoder. This decrease in logic overhead comes at the expense of 
adding one XOR gate delay to the decoding latency. 

4.4 Tag Error Correction 

Failures in cache tags can have serious consequences on the 
correctness of program execution. A failure in a tag bit can cause 
a false positive, where a cache miss erroneously becomes a cache 
hit to a different line. This can cause reading or writing to the 
wrong address, thereby corrupting program data. A tag bit failure 
can also cause a false negative, where a cache hit to a line in the 
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cache erroneously becomes a cache miss. This can be harmless in 
a write-through cache, but can cause loss of updated data in a 
writeback cache (if the line was modified in the cache). To avoid 
these correctness problems, error-correcting code (ECC) can be 
used to protect tag bits.  

A simple implementation for tag error correction adds 
standard n-bit ECC to the tag.  On a cache access, both the tag and 
the ECC bits are read from the tag array. The ECC bits are used to 
correct any erroneous address tag bits. The correct tag bits are 
then used to determine whether the incoming address hits or 
misses in the cache. However, this simple implementation 
increases the length of the critical path of a cache hit/miss 
determination. This can cause a significant slowdown, especially 
in the high-performance mode. 

Our proposal to address this issue is to address these errors 
differently in the high-performance and the low-power modes.  In 
the high-performance mode, a single parity bit is used in addition 
to a standard SECDED ECC mechanism. The parity bit is used to 
detect errors, which adds a relatively small additional latency to 
the critical path. However, when the parity test fails on an address 
tag, SECDED is used to correct the failure, which can be done 
using an interrupt service routine. In the case of a double error 
when the error is detectable but cannot be corrected, the cache line 
is invalidated if it is clean, and a failure signal is issued if the line 
was modified. 

In the low-voltage mode, failures are more frequent, and 
cache access time is not as critical. Furthermore, some of  the data 
lines are used as ECC lines, so their tags are not used. We propose 
using the unused tags, corresponding to ECC lines, to store the 
Orthogonal Latin Square Codes (OLSC) of the used tags. Each tag 
that corresponds to a data line contains actual tag bits, and each 
tag that corresponds to ECC lines contains OLSC for one or more 
associated actual tags. While OLSC requires more check bits, it 
can be encoded and decoded faster than traditional ECC. This 
technique is only used in the low-power mode, so it does not add 
to the critical path in the high-performance mode. In addition, this 
technique does not require significant additional die area. 

4.5 Implementation Issues and Overheads 

Cache lines used to store ECC in low-power mode behave 
similar to data lines in the high-performance mode. In a write-
back cache, these lines may contain dirty data at the time of 
switching from high-performance to low-power mode. The mode 
switching mechanism needs to write back all the dirty lines from 
the ECC ways to memory in a similar fashion to how current 
caches disable cache ways to save power. The number of lines 
written back depends on the size of cache, the number of ECC 
ways, and the percentage of dirty lines. For the example in Figure 
3, we need to write back half of the cache in the worst case. While 
we can decrease the number of written-back lines by either 
controlling the placement of dirty lines or choosing ECC ways 
dynamically, we leave such optimizations to future work. In 
addition to writing back dirty lines, switching to low-power mode 
requires ECC encoding of all the data ways and storing the codes 
in the ECC ways. This encoding can be overlapped with writing 
back dirty lines. 

During the switch from high-voltage to low-voltage 
operating modes, the operating system can adaptively choose the 
number of correctible bits per segment which affects the voltage 
and reliability levels. This choice can only be done during the 
power mode switch, and afterwards the ECC ways and the data 
ways will be fixed (until the next power mode switch). The 
operating system can decide on the voltage and reliability levels 

based on previous measurements of failures as well as application 

performance requirements in the low-voltage mode. This 
adaptability feature needs OS support, but we do not focus on 
evaluating OS trade-offs in this paper. 

The encoding and decoding logic in MS-ECC increases the 
cache area. The area overhead depends on the segment size and 
the number of error corrections. In our evaluation, we chose 64-bit 
segments with a maximum of 4 corrections per segment, so the 
total number of gates for MS-ECC logic is less than 15K (Figure 
7(b)). This overhead is insignificant in comparison with the total 
cache size. For example, the data arrays alone for 32 KB and 2 
MB caches have 256K and 16M 6-transistor cells respectively, not 
counting the additional transistors for tag arrays and decoder 
circuitry. 

The additional encoding/decoding and the fact that MS-
ECC drives two ways of the cache for each data access increase 
the cache dynamic power. However, we use MS-ECC only in 
the low-voltage mode (~500mV) where conventional caches 
cannot operate reliably. Furthermore, cache dynamic power (in 
particular for L2 cache) is a small component of the total system 
power. Because of MS-ECC’s large supply voltage reduction 
(from 750 mV to 500 mV), the resulting decrease in both 
dynamic and static power would far outweigh the small increase 
in dynamic power due to reading two cache ways for MS-ECC. 

 

5. SIMULATION METHODOLOGY 

We use a cycle-accurate, execution-driven simulator 
running IA32 binaries. The simulator is micro-operation (uOp) 
based, executes both user and kernel instructions, and models a 
detailed memory subsystem. Table 1 shows the parameters of 
our baseline out-of-order processor, which is similar to one core 
of the Intel® Core™ 2 Duo processor on 65nm technology [7]. 
For the baseline processor, both the L1 and L2 caches use 
SECDED ECC on a per-line granularity to tolerate persistent as 
well as non-persistent bit failures. 
To quantify the performance overhead of our technique due to 
cache capacity and latency changes, we also simulate an ideal, 
defect-free,  low-voltage baseline that has reliable caches 
without any latency overhead or capacity loss. Because 
transistor switching delay decreases with an increase in supply 

Voltage Dependent Parameters 

 High Vol. Low Vol. 

Processor frequency 3 GHz 500 MHz 

Memory latency 300 cycles 50 cycles 

Voltage 1.3v 0.5v 

Voltage Independent Parameters 

ROB size 256 

Register file 256 fp, 256 int 

Fetch/schedule/retire width 6/5/5 

Scheduling window size 32 FP, 32 Int, 32 Mem 

Load buffer size 32 

Store buffer size 32 

Cache line size 64 bytes 

L1 Instruction cache 32k bytes, 8-way, 3 cycles 

L1 Data cache 32k bytes, 8-way, 3 cycles 

L2 Unified cache 2M bytes, 8-way, 20 cycles 

Table 1. Baseline Processor Parameters. 



 

 

voltage, we perform circuit simulations to predict the 
frequencies at different voltages. 

In our experiments, we simulate nine categories of 
benchmarks. For each individual benchmark, we carefully select 
multiple sample traces that well represent the benchmark 
behavior. Table 2 lists the number of traces and example 
benchmarks included in each category. We use instructions per 
cycle (IPC) as the performance metric. The IPC of each category 
is the geometric mean of IPC for all traces within that category. 
We then normalize the IPC of each category to the baseline to 
show performance. 

6. RESULTS 

In this section, we present the experimental results for our 
proposed technique. Section 6.1 compares the FIT rate and 
Vccmin of MS-ECC with previously proposed techniques for 
reducing Vccmin. Section 6.2 evaluates the performance overhead 
of MS-ECC in the low-voltage mode and also compares the 
energy efficiency of MS-ECC with previous techniques. 

6.1 Reliability 

In this section, we compare the Vccmin of MS-ECC with the 
previously proposed bit-fix scheme [31]. We do not compare 
against the word-disable scheme from [31] because that paper 
showed that bit-fix enabled lower Vccmin than word-disable. The 
MS-ECC results in this section assume our most aggressive 
implementation with a segment size of 64 bits and 4-bit error 
corrections per segment. The bit-fix mechanism discussed in [31] 
lacks mechanisms to tolerate non-persistent failures. As a result, 
when soft errors and erratic failures are considered, the cache FIT 
rate is unacceptable unless SECDED ECC is added to address the 
high FIT rates. In light of this, we compare against a version of 
bit-fix augmented with SECDED ECC, referred to as BFXECC.  
Figure 8 shows the Vccmin of MS-ECC and BFXECC in the 
context of both the yield loss and FIT. At a yield loss of 10-3, 
without considering FIT, BFXECC and MS-ECC enable Vccmin 
of 475mV, and 490mV, respectively. When considering FIT on a 
low-erratic process, both mechanisms deliver a Vccmin of 520mV 
and the difference between BFXECC and MS-ECC is negligible.  
On a high erratic process, MS-ECC does significantly better than 
BFXECC as the high frequency of erratic bit failures at low 
voltages overwhelms the SECDED ECC that augments BFXECC, 
thereby increasing its Vccmin to 630mV.  

It is interesting to note that the Vccmin for the low and high 

erratic processes are within 5 mV of each other for MS ECC. 
Because of this, we only include a single curve, MS-ECC-FIT 
(Hi/Low), to show the FIT pfail of MS-ECC for both process 
types. The type of erratic process has little effect on the FIT for 
MS-ECC because MS-ECC is a single repair mechanism being 
used to address all sources of failures. 

On a high erratic process, MS-ECC clearly outperforms 
BFXECC. This is intuitive since BFXECC can only correct one 
erratic bit or soft error in every 512 bits, while MS-ECC can 
correct up to four such errors in each 64-bit segment if that 
segment contains no persistent failures. Even with some persistent 
failures in a 64-bit segment, it is likely that the 4-bit ECC can 
cover more than one erratic bit or soft error.     

6.2 Performance and Energy Efficiency 

In this section, we evaluate the performance overhead of MS-
ECC. Like in Section 6.1, the default MS-ECC implementation in 
this section uses a segment size of 64 bits and 4-bit error 
corrections per segment. As failures are infrequent in the high 
voltage mode, the logic required for MS-ECC can be bypassed, 
resulting in no performance overhead in the performance-critical 
high voltage mode. During the low voltage mode, MS-ECC has 1-
cycle latency overhead and sacrifices half of the cache, resulting 
in performance degradation. 

To quantify the performance overhead of using MS-ECC in 
the low-voltage mode, Figure 9 shows normalized IPC relative to 
the defect-free low-voltage baseline, when applying MS-ECC to 
both the L1 and L2 caches. Note that the defect-free low voltage 
baseline has no persistent or non-persistent bit failures in the low- 

Category # of 
traces 

Example Benchmarks 

Digital Home (DH) 60 H264 decode/encode, flash 

FSPEC2K (FP2K) 25 www.spec.org 

ISPEC2K (INT2K) 26 www.spec.org 

Games (GM) 49 Doom, quake 

Multimedia (MM) 77 Photoshop, raytracer 

Office (OF) 52 Excel, outlook 

Productivity 
(PROD) 

43 File compression, 
Winstone Server (SERV) 48 SQL, TPCC 

Workstation (WS) 82 CAD, bioinformatics 

ALL 462  

Table 2. Benchmarks 
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voltage mode. Averaging across all the workloads, MS-ECC 
results in 10% IPC degradation relative to the defect-free baseline. 
However, it is worth noting that this performance overhead is 
relative to an ideal configuration that has reliable caches with no 
area or latency overhead at supply voltages as low as 500 mV. 
Furthermore, the low-voltage mode is usually used when the 
processor load is low and energy efficiency, rather than 
performance, is the primary concern. 

In Section 4, we proposed an adaptive mechanism where the 
OS can change the ratio of data ways to ECC ways for MS-ECC 
in order to trade off cache capacity for the desired Vccmin. Our 
default implementation labeled as “MS-ECC” in Figure 9 
sacrifices 50% of the cache capacity by correcting 4 errors in 
every 64-bit segment. To demonstrate the cache capacity vs. 
Vccmin trade-off which the OS can make, we also analyzed an 
MS-ECC implementation, labeled as MS-ECC 64/1 in Figure 9, 
which corrects one error for each 64-bit segment, and so only 
needs one ECC way for each 4 data ways. Since our default 
configuration is an 8-way cache, the closest approximation for 
MS-ECC 64/1 uses two total ECC ways, thereby sacrificing 25% 
of the cache capacity in the low voltage mode. Figure 9 shows 
that MS-ECC 64/1 degrades IPC by only 6% on average over the 
defect-free baseline (compared to a 10% average IPC degradation 
for the default MS-ECC). Other implementations permitted by our 
adaptive design, i.e., MS-ECC 64/2 and MS-ECC 64/3, have 
performance and Vccmin characteristics between the two 
extremes (MS-ECC 64/1 and MS-ECC 64/4). 

Table 3 summarizes the achievable Vccmin and the 
frequency, power consumption, and energy-per-instruction (EPI) 
for different techniques during low-power mode operation. Note 
that, in contrast to the defect-free baseline cache of Figure 9, we 
use realistic caches as our baseline in Table 3. Also recall from 
Section 5 that the baseline caches use only SECDED ECC to 
tolerate both persistent and non-persistent bit failures. We 
normalize the power and EPI results for each technique to the 
corresponding results for the baseline, while showing absolute 
results for Vccmin and frequency. As mentioned in Section 5, we 
predict frequencies at different voltages by running circuit 
simulations. Note that since EPI represents power per unit 
performance, a lower value of EPI implies better energy 
efficiency, For power calculations, we assume that dynamic 
power scales quadratically with supply voltage and linearly with 
frequency. We also assume that static power scales with the cube 
of supply voltage  [27]. The results for BFXECC in Table 3 
assume a high erratic process. We omit the results for BFXECC in 
a low erratic process because they exhibit a similar Vccmin to that 
of MS-ECC.  

 Compared to the baseline processor with SECDED ECC, 
MS-ECC reduces Vccmin by 200mV while BFXECC reduces 
Vccmin by only 90mV. MS-ECC’s lower Vccmin results in more 
power savings than other schemes during the low-power mode. 
Compared to the baseline configuration, the most aggressive MS-
ECC implementation (i.e., MS-ECC 64/4) achieves a 71% 
reduction in power, significantly higher than BFXECC’s 43% 
power reduction. As frequency decreases with supply voltage, 
MS-ECC’s lower supply voltage results in longer execution time 
as compared to other schemes. However, as the low-voltage mode 
is normally used when the processor load is low, energy 
efficiency, rather than performance is the primary concern. Thus, 
even though MS-ECC 64/1 provides more cache capacity and 
higher performance than MS-ECC during low-voltage operation, 
MS-ECC 64/1’s higher Vccmin makes it less energy-efficient than 
MS-ECC. While MS-ECC 64/1 and BFXECC decrease EPI by 
12% and 20% respectively, MS-ECC’s lower Vccmin results in a 
significantly better 42% decrease in EPI relative to the baseline 
configuration. 

7. CONCLUSIONS 

In this paper, we proposed a novel error tolerance technique 
called multi-bit segmented ECC (MS-ECC) to enable reliable 
ultra-low voltage cache operation. MS-ECC leverages error 
correction codes based on Orthogonal Latin Square Code (OLSC) 
to tolerate both persistent and non-persistent bit failures. Unlike 
previous proposals for reliable ultra-low voltage cache operation, 
MS-ECC does not incur additional testing overhead to isolate 
defective bits. MS-ECC uses a modular error correction 
mechanism which allows the operating system flexibility in 
deciding on the reliability and performance levels of the low-
voltage operating mode. We showed that MS-ECC enables 
reliable cache operation at 520mV at the cost of 50% decrease in 
cache capacity during low-voltage operation. Compared to current 
designs with single-bit ECC correction, the most aggressive 
implementation of MS-ECC enables a 30% supply voltage 
reduction, which reduces power by 71% and energy per 
instruction by 42%. 
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Scheme Vccmin 
(mV) 

Frequency 
(MHz) 

Norm. 
Power 

Norm. 
EPI 

Baseline 725 1400 1 1 

BFXECC 630 1000 0.57 0.8 

MS-ECC 520 700 0.29 0.58 

MS-ECC 64/1 670 1200 0.75 0.88 

Table 3. Comparison between Bit-Fix with ECC and MS-

ECC (Cache with SECDED ECC is Used as Baseline) 
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