

Improving Cache Lifetime Reliability at Ultra-low Voltages

Zeshan Chishti, Alaa R. Alameldeen, Chris Wilkerson, Wei Wu and Shih-Lien Lu
Oregon Microarchitecture Research, Intel Labs

ABSTRACT

Voltage scaling is one of the most effective mechanisms to

reduce microprocessor power consumption. However, the

increased severity of manufacturing-induced parameter variations

at lower voltages limits voltage scaling to a minimum voltage,

Vccmin, below which a processor cannot operate reliably.

Memory cell failures in large memory structures (e.g., caches)

typically determine the Vccmin for the whole processor. Memory

failures can be persistent (i.e., failures at time zero which cause

yield loss) or non-persistent (e.g., soft errors or erratic bit

failures). Both types of failures increase as supply voltage

decreases and both need to be addressed to achieve reliable

operation at low voltages.

In this paper, we propose a novel adaptive technique to

improve cache lifetime reliability and enable low voltage

operation. This technique, multi-bit segmented ECC (MS-ECC)

addresses both persistent and non-persistent failures. Like

previous work on mitigating persistent failures, MS-ECC trades

off cache capacity for lower voltages. However, unlike previous

schemes, MS-ECC does not rely on testing to identify and isolate

defective bits, and therefore enables error tolerance for non-

persistent failures like erratic bits and soft errors at low voltages.

Furthermore, MS-ECC’s design can allow the operating system to

adaptively change the cache size and ECC capability to adjust to

system operating conditions. Compared to current designs with

single-bit correction, the most aggressive implementation for MS-

ECC enables a 30% reduction in supply voltage, reducing power

by 71% and energy per instruction by 42%.

Categories and Subject Descriptors
B.3.4 [Memory Structures]: Reliability, Testing, and Fault-
Tolerance.

General Terms
Design, Reliability

1. INTRODUCTION

As semiconductor technology continues to scale, energy
efficiency is becoming the key design concern for computer
systems. Microprocessors often use multiple power modes to
exploit the power-performance tradeoff in order to improve
energy efficiency. Many processors (e.g., the Intel® Celeron®
processor [11]) have high-performance and low-power modes of
operation. In the high-performance mode, the processor uses a

high voltage and runs at a high frequency to achieve the best
performance. In the low-power mode(s), the processor runs at a
lower frequency and uses a lower voltage to conserve energy.
Such power saving features are becoming prevalent in current
processor designs.

Reducing supply voltage is one of the most effective
methods to reduce power consumption. However, as supply
voltage decreases, manufacturing-induced parameter variations
increase in severity, causing many circuits to fail. These variations
restrict voltage scaling to a minimum value, often called Vccmin
(or Vmin), which is the minimum supply voltage for a die to
operate reliably. Failures in memory cells typically determine the
Vccmin for a processor as a whole [31]. Reducing Vccmin in the
context of memory failures is important for enabling ultra-low
power modes that are more energy-efficient.

Prior work [21, 31] has previously proposed techniques to
enable ultra-low voltage cache operation in the context of high
memory cell failure rates. The proposed techniques trade off
cache capacity for reliable low voltage operation. In the high-
voltage mode of operation, cell failure rate is low and the entire
cache is available for use. During the low-power, low-voltage
mode, cache size is sacrificed to increase reliability. These
techniques enable a significant reduction in supply voltage.
However, they require conducting thorough memory tests at low
voltages to isolate defective bits. Memory tests must be performed
whenever the processor boots, and the location of defective bits
needs to be stored in the memory hierarchy. While these tests can
detect voltage-dependent, persistent bit failures, other non-
persistent sources of bit failures are dynamic in nature and cannot
be detected by testing. Examples of such non-persistent bit
failures include erratic bit failures [1] and soft errors. Non-
persistent failures also increase when supply voltage decreases as
we show in Section 3. Techniques like those proposed in [21, 31]
cannot mitigate non-persistent errors and therefore must rely on a
voltage guardband to enable reliable cache operation.

Other prior work addresses non-persistent, transient bit
failures at normal operating voltages. Examples of such work
include error-correcting schemes such as the two-dimensional
ECC proposal by Kim et al. [14]. These techniques effectively
tolerate multiple bit errors due to non-persistent faults. However,
prior work focused only on failure rates at normal operating
voltages, and did not address persistent failures at low voltages
which result in yield loss.

To enable a cache design that tolerates both non-persistent
and persistent failures at low voltages, we need a unified solution
that does not rely on testing. We propose using redundancy to
enable ultra-low voltage cache operation. Our solution, multi-bit
segmented ECC (MS-ECC) employs error correction codes to
tolerate both persistent and non-persistent bit failures at low
voltages. During low-voltage operation, some ways in each cache
set are used to store ECC check bits for the remaining ways,
thereby increasing reliability against high failure rates. The
number of ways used for storing ECC can be adaptively chosen

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
Micro’09, December 12–16, 2009, New York, NY, USA.
Copyright © 2009 ACM 978-1-60558-798-1/09/12…$10.00.

by the operating system on the basis of the desired reliability
level, which in turn depends on the target Vccmin. Increasing the
number of ECC ways increases the redundancy and thus the
reliability but decreases the cache capacity available during low-
voltage operation.

To simplify ECC implementation, MS-ECC divides a cache
line into multiple small segments and corrects errors on a per-
segment basis. Performing error correction at finer granularities
enables more errors to be fixed with lower latency and
complexity. To further reduce the logic complexity of error
correction, we leverage the previously proposed Orthogonal Latin
Square Codes (OLSC) [9]. OLSC enables faster encoding and
decoding than traditional ECC, at the cost of more check bits.
Furthermore, OLSC uses modular error correction hardware
which can be used, adaptively, to correct a varying numbers of
errors. This adaptive design can be used to trade off reliability for
performance in the low-voltage operating mode. If performance is
insensitive to cache size in the low-voltage operating mode as
shown in [31], then the design should target maximum reliability.
If some application-specific performance is sensitive to cache
size, then the error correction capability can be sacrificed to
increase cache size.

This paper makes the following main contributions:
1. To our knowledge, our paper is the first to quantify the

impact of both persistent and non-persistent (erratic, soft
errors) failures on cache yield loss and lifetime reliability.

2. We propose a novel error tolerance mechanism, multi-bit
segmented ECC (MS-ECC), which uses Orthogonal Latin
Square Codes to reduce Vccmin by supporting multi-bit error
correction for small cache line segments and cache tags.

3. We propose an adaptive mechanism that enables a variable
part of the cache to be used for error correction. This
mechanism can correct 1-4 errors for each 64-bit segment,
where a higher correction capability increases reliability at
the expense of sacrificing a bigger percentage of the cache
size.

4. We show that the most aggressive implementation of MS-
ECC can achieve reliable cache operation at 520 mV,
incurring minimal additional latency, while sacrificing half
of the cache capacity at low voltages. Compared to previous
schemes, our proposal addresses both persistent and non-
persistent failures, and reduces the overhead of thorough
testing at boot time.
In the remainder of this paper, we discuss the impact of bit

failures on Vccmin in Section 2. We describe two types of non-
persistent failures and their impact on lifetime reliability in
Section 3. We discuss our proposed technique in detail in Section
4. We introduce the experimental methodology in Section 5 and
evaluate our technique in Section 6. We conclude in Section 7.

2. BACKGROUND

2.1 Bit Failures and Vccmin

Large SRAM caches make up a significant percentage of
transistors in a microprocessor die. Parameter variations, induced
by imperfections in the semiconductor process, limit the minimum
operational supply voltage to Vccmin, below which an SRAM cell
fails to operate reliably. For each of the SRAM caches, the bit
with the highest Vccmin determines the Vccmin of the cache as a
whole [31].
 Bit failures can be classified into two broad categories:
persistent and non-persistent. The first category contains the

majority of bit failures, where bits exhibit persistent failing
behavior. Several papers [2, 15, 31] have analyzed persistent
failures in detail and have shown that intra-die random dopant
fluctuations (or RDF) play a primary role in these failures. Prior
work has also demonstrated that persistent failures exhibit a
strong dependence on supply voltage. For example, Kulkarni et al.
[15] show that the bit failure rate increases exponentially with a
decrease in voltage. Since these types of failures can be reliably
identified using standard memory testing methodologies, we refer
to them as testable failures. Memory tests are performed on each
die before it is shipped to a customer, and dies with irreparable
failures identified by the memory tests are disposed of. As a
result, persistent failures typically contribute to yield loss but do
not play a direct role in determining the lifetime reliability of a
microprocessor. The lifetime reliability of a processor is usually
represented by FIT (Failures In Time), the number of failures that
occur in a billion hours for a particular unit.

The second category of failures consists of non-persistent bit
failures, where bits exhibit sporadic failing behavior. Failures
resulting from particle strikes (soft errors) as well as erratic bit
failures, both discussed in greater detail in Section 3, are examples
of this category. Since these failures are non-persistent and occur
randomly, they can’t be identified with memory tests. As a result,
these failures don’t directly contribute to yield loss, instead
contributing directly to a unit’s FIT rate. We classify failures of
this type as non-testable failures.

2.2 Related Work

One solution to improve cache reliability is to implement
true column and/or row redundancy by adding multiple spare
rows and/or columns to the cache array [24]. This solution is able
to tolerate errors that cause a few rows or columns to become
defective. However, it cannot deal with thousands of randomly
distributed cache bits in large caches which would become
defective in the low voltage mode due to high cell failure rates.

Kim et al. [14] propose a scheme to use two-dimensional
ECC to correct multi-bit errors. This scheme is tailored to deal
with clustered multi-bit failures that cause contiguous bits across
multiple rows and columns to fail concurrently. The ability of this
scheme to correct errors is strongly dependent upon the location
of defective bits. While this scheme is able to tolerate correlated
failures that affect several contiguous bits, it cannot tolerate
failures in multiple randomly distributed bits in each cache line
that become defective at low voltages due to random dopant
fluctuations.

Another solution to improve cache reliability at low voltages
is to change the SRAM cell design. The designer can upsize the
transistors or use cell design variants such as the 8T, 10T, and ST
SRAM cells [15]. However, the resulting Vccmin reduction
comes at the cost of significant increases in area (e.g., 100% area
increase for the ST cell). Furthermore, larger SRAM cells result in
increased leakage power in both high-performance and low-power
modes.

A recent paper [31] proposed two architectural schemes to
enable cache operation at ultra-low voltages. The first scheme,
word-disable, disables 32-bit words that contain one or more
defective bits. Physical lines in two consecutive ways combine to
form one logical line, where only non-failing words are used. A
similar scheme was proposed by [21]. The second scheme, bit-fix,
uses a quarter of the cache ways to store the location of defective
bits in other cache ways, as well as the correct value of these bits.
That work focused on testable, voltage dependent, persistent
failures, and evaluated Vccmin in the context of yield loss.

Vccmin was defined as the voltage at which the cache is
functional in 999 of every 1000 dies. However, the paper did not
evaluate the impact of FIT rate on Vccmin, although the authors
acknowledged that additional ECC and supply voltage guardbands
might be required. In comparison, our work addresses both
persistent failures and non-persistent failures, and extends the
previously proposed failure probability model to account for the
impact of FIT rates on Vccmin.

Because several previous papers [2, 15, 31] have discussed
the causes of persistent cell failures in detail and attributed them
to random intra-die dopant fluctuations (RDF), we omit the
discussion of persistent failures and instead focus on non-
persistent bit failures in the next section.

3. NON-PERSISTENT BIT FAILURES

3.1 Soft Errors

Soft errors have increased in significance in recent years due
to the increasing number of devices per die while the soft error
rate per device remained constant or slightly decreased across
technology generations [8, 16, 25]. This increase, as well as future
expected increases in soft error rates (SER), triggered research to
mitigate the impact of soft errors on the correctness of a program
execution. Computer architecture research has recently focused on
providing architecture-level solutions to mitigate soft errors [2,
19, 26, 30, 32].

Our target of running a processor in a low-power mode at
low voltages further exacerbates the soft error problem. Previous
measurement studies have shown that reducing supply voltage
increases the soft error rate exponentially [12, 13, 22, 29]. These
measurements for SRAM cells and flip-flop designs from multiple
vendors all confirm that soft error rates will increase at lower
voltages. This increase is caused primarily by the exponential
relationship between the soft error rate and the charge stored at a
particular node, which in turn changes linearly with supply
voltage [29].

In our studies, we used the data measured by Ünlü, et al. [29]
to estimate the soft error rate per SRAM bit. We extrapolated this
data to lower voltages. However, since this data was measured by
inducing neutrons from a nuclear reactor, we scaled the soft error
rates by a factor of one billion to estimate the soft error rate under
normal conditions at sea-level [33].

While previous measurements show that soft error rates
increase exponentially with reduction in supply voltage, the rate
of increase is limited to 2.5x-3x for every 500mV decrease in
supply voltage. This soft error rate increase is much lower than
the increase in persistent failures, where a similar decrease in
supply voltage leads to an increase in failure probability of more
than a billion times [15, 31]. Figure 1 compares the probability of
different types of cell failures as a function of supply voltage. The
persistent failure probabilities in Figure 1 are based on results
reported in [15] which were obtained with circuit simulations
validated against measured data. Compared to voltage-dependent,
persistent failures, Figure 1 shows that soft errors are more
significant at higher voltages. At low voltages, however,
persistent and erratic failures significantly overshadow soft errors.

3.2 Erratic Bit Failures

Erratic bit failures have played a key role in setting Vccmin
in the past, and they are likely to re-emerge as a reliability
concern in the future [1, 6]. Erratic behavior in the Vccmin of an
SRAM cell can occur when an NMOS pull down device in an
SRAM cell experiences soft breakdown. In soft breakdown,
random telegraph signal noise in the gate oxide leakage of the
NMOS device can cause the SRAM cell Vccmin to erratically
fluctuate by as much as 200mV [1]. Due to their random nature,
erratic cells may escape standard testing and appear as normal
cells, but may cause bit failures later. Erratic behavior in SRAM
cells depends strongly on process parameters. Agostinelli et al.
[1] report discovering erraticism on the 90nm process technology
node, but were able to mitigate it successfully. However, the
authors point out that continued device scaling is likely to re-
introduce erraticism in future process technologies.

Detailed information on erratic bit failures is scarce and good
physical models are non-existent. Despite the lack of good
physical models, it is important to consider erratic bit failures
especially when considering operation at low voltages. In our
studies, we use a very simple model for erratic bit failures and
address the sensitivity of erratic bit failures to process parameters
by modeling two hypothetical processes with both high and low
rates of erraticism. Since cell stability and oxide strength play a
role in both erratic bit failures and persistent failures, we expect
that the probability of an erratic bit failure will be proportional to
the probability of a voltage–dependent, persistent failure. Our
studies reflect this by setting the probability of an erratic bit
failure as a fixed percentage of persistent failures. Furthermore,

Figure 1. Probability of Persistent Failures, Soft Errors and Erratic Failures per Hour vs. Vcc.

1.00E-15

1.00E-12

1.00E-09

1.00E-06

1.00E-03

1.00E+00

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

Vcc (V)

P
fa

il
 (
p
ro

b
a
b
il
it
y
 o

f
fa

il
u
re

)

persistent

SER

low-erratic

hi-erratic

low-erratic process

high-erratic process

SER

persistent failures

we expect that the frequency and severity of erratic bit failures
will be highly process-dependent. To reflect process sensitivity,
we model both a high-erratic process with a high rate of erratic bit
failures, and a low-erratic process with a low rate of erratic bit
failures. Our high-erratic process produces one erratic bit failure
for every ten persistent failures. The probability of an erratic
failure on our low-erratic process is 1000 times lower, or one
erratic failure for every 10,000 persistent failures. We model the
frequency and duration of erratic bit failures in the same way that
we model soft error failures; the probability of an erratic bit
failure reflects the probability of an erratic failure in an hour; and
we assume that the erratic failure (or soft error) lasts an hour.

Figure 1 shows the probability of different types of failures
as a function of voltage. We note that since we model erratic
failures as a fixed proportion of persistent failures, the probability
of erratic failures is sensitive to supply voltage. It is also worth
noting that since Figure 1 shows different failure rates on the
same Y-axis, the increase in SER (2.5x – 3x for 500 mV decrease
in supply voltage) appears flat relative to the much larger increase
in persistent errors (higher than one billion times for 500 mV
decrease in supply voltage).

3.3 Comprehensive Yield Loss/FIT Model for

Cache Failures

To account for the impact of FIT rate on Vccmin, we use a
comprehensive model for cache failures that includes the impact
of voltage–dependent, persistent failures on yield loss as well as
the impact of soft error rates (SER) and erratic bits on FIT rate.
Our model for yield loss is similar to the model evaluated in [31],
but we extend the model with a time component to model failures
in time. To calculate the FIT rate of our cache, we divide the
cache lifetime into discrete 1-hour periods and compute the
probability of a bit failing during each 1-hour period.

We conservatively assume that SER failures in the cache will
last an hour before the bit is either rewritten or scrubbed. We
assume the same duration for erratic bit failures. Figure 1 shows
the probability of SER and erratic failures per hour, and the
probability that a bit suffers from a voltage dependent persistent
failure. Using these three probabilities, we can determine the
overall probability that a bit will fail for one of these three reasons
in a 1-hour period. For longer periods (e.g., 250 hours), we
combine the probabilities of failure for each hour to get the

overall probability of failure. The probability of failure for the
entire cache is (1 – probability of success), where the probability
of success is the probability that each bit in the cache stays
failure-free for every hour in the period. Figure 2 shows the pfail
of a base 2MB cache as derived from our model. There are two
pfail curves for each cache type: without ECC (BASE-YL, BASE-
FIT) and with ECC (1-ECC_YL, 1-ECC-FIT). The line marked
BASE-YL refers to pfail of the cache due solely to persistent
failures. A pfail of 10-3 corresponds to a yield loss of 0.1%. A
separate line, marked BASE-FIT, indicates the probability that the
cache will fail during a 250 hour period. A pfail of 10-3 on that
line corresponds to one failure every 250,000 hours, or a FIT rate
of 4000 failures in a 109 hour period. In the remainder of our
paper, we target a yield loss of 0.1% as suggested in [31] and a
FIT rate of 4000 as suggested in [26]. To meet these requirements
both FIT and YL pfails must be less than or equal to 10-3.

Data in Figure 2 shows that although the simple 2MB cache
(BASE) meets yield loss requirements at 830mV, FIT
requirements are not met. Adding 1-bit ECC to the cache enables
it to meet yield loss requirements at 670mV and FIT requirements
at 725mV. Since both FIT requirements and yield loss
requirements must be met, Vccmin for this cache would be set at
725mV. In the next section, we propose a technique to reduce
Vccmin further.

4. MULTI-BIT ERROR CORRECTION FOR

VCCMIN REDUCTION

Redundancy is the most widely used approach to increase
reliability. There are several options to implement redundancy.
Employing error detection and correction codes is one of the
methods that improve the reliability of a system through
information redundancy. Single Error Correction, Double Error
Detection (SECDED) codes such as the Hamming code [17] are
well known and have been used in memory chips and on-chip
caches due to their simplicity. With continued transistor scaling,
multi-bit error correcting codes are becoming more important for
large on-chip memory arrays. For example, a Double Error
Correction Triple Error Detection (DECTED) code can be
designed based on a binary BCH code [4]. While SECDED and
DECTED codes provide sufficient redundancy to deal with bit
failures at normal operating voltages, neither technique provides
enough redundancy to allow cache operation at an ultra-low

1.00E-15

1.00E-12

1.00E-09

1.00E-06

1.00E-03

1.00E+00

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Vcc (V)

P
fa

il
 (

p
ro

b
a
b

il
it

y
 o

f
fa

il
u
re

)

BASE-YL BASE-FIT

1-ECC-YL 1-ECC-FIT

Arrow indicates guardband shift due to low

e rratic and SER.

BASE Cache mee ts YL require ments but not FIT

require ments.

Figure 2. FIT Rate and Yield Loss (YL) for a Baseline 2 MB Cache, and a Cache with SECDED ECC.

voltage level (e.g., 500 mV). Wilkerson et al. [31] showed that
enabling 500mV operation in a 2MB cache requires 10-bit error
correction for each 512-bit cache line. Extending conventional
ECC to correct 10-bit errors over an entire 512-bit cache line
requires significant area, latency, and power overheads [5, 14],
which we briefly describe later in this section. We next propose
our multi-bit segmented ECC that achieves the same purpose with
lower overhead.

4.1 Multi-bit Segmented ECC

 To enable correcting a large number of bits with manageable
complexity and latency overhead, we propose multi-bit segmented
ECC (MS-ECC). In this technique, we trade off cache capacity for
reliability at low voltage. The main idea behind MS-ECC is to
correct multi-bit errors by implementing error correction at finer
granularity segments within a cache line. In the high-voltage,
high- performance operating mode, the entire cache capacity is
available for use by the processor, and conventional ECC is used.
In the low voltage, low power operating mode, a portion of the
cache is used to store additional ECC information on granularities
finer than a cache line, thereby enabling more errors to be fixed
on a per-line basis. Because the size of each segment is smaller
than the entire cache line, the latency and complexity for MS-
ECC is significantly less than conventional (un-segmented) ECC.

Example: Consider a 2MB 8-way L2 cache with 64-byte
lines. In the low voltage mode, we divide the eight physical ways
in each set amongst (i) data ways and (ii) ECC ways. The ratio of
data ways to ECC ways depends on the desired reliability level,
which in turn depends on the target Vccmin. If the operating
system decides to operate at a higher reliability level, this ratio
would be adaptively increased to increase the redundancy and
decrease the cache capacity available during low voltage
operation. We analyze the impact of this ratio on Vccmin and
performance in Section 6.2. For this example, assume that there is
one ECC way for every data way (50% cache capacity available
in low voltage mode). We use a fixed mapping to associate data

ways with their corresponding ECC ways (Figure 3(a)): physical
way 1 stores the ECC for physical way 0, physical way 3 stores
the ECC for physical way 2, and so on. Thus, in the low-voltage
mode, the cache effectively becomes a 1MB 4-way set-associative
cache.

We divide each data way into multiple segments and store
the ECC for each segment in the corresponding ECC way. Figure
3 shows an example of multi-bit segmented ECC with eight 64-bit
segments in each 512-bit line. On a read hit (Figure 3(b)), we
fetch both the data line and the corresponding ECC line. There are
separate ECC decoders for each of the eight segments that decode
segments in parallel by using information from both the data and
ECC ways. The decoded segments are then concatenated to obtain
the entire 512-bit line. On a write hit to the L2 cache (Figure
3(c)), we first use the ECC encoders to obtain the ECC for the
data line. Like the ECC decoders, there are separate encoders for
each segment that perform ECC encoding in parallel. We then
write the new data to the data line and the new ECC to the
corresponding ECC line. A similar encoding is performed when a
new line is brought into the L2 cache upon a cache miss. We note
that each cache access in the low-voltage mode requires access to
both the data way and the ECC way. To avoid increasing cache
latency, we assume double-width buses for concurrent transfer of
the data and ECC ways to the ECC encoder/decoder.
Alternatively, one could also read the two cache lines
sequentially, thereby incurring additional latency overhead in the
low-voltage mode.

4.2 Orthogonal Latin Square Codes (OLSC)

Performing error correction at finer granularities helps in
decreasing the complexity of multi-bit error correction. However,
our evaluation shows that enabling ultra-low voltage operation
requires three or more errors to be fixed per segment, even for
small segment sizes. Conventional error correction codes based on
BCH codes usually fix one (SECDED) or two errors (DECTED).
These codes have been optimized for storage overhead (i.e.,

Figure 3. Example of Multi-Bit Segmented ECC with Eight 64-bit Segments.

number of check bits) at the cost of logic complexity. The
complexity and latency of these codes grow rapidly with the
increase in the number of error corrections [14]. To enable ultra-
low voltage operation, MS-ECC needs to use an error correction
code whose complexity scales well with the number of error
corrections. Hsiao et al. [9] proposed a coding methodology called
Orthogonal Latin Square Codes (OLSC) to correct multi-bit
errors. While OLSC requires more check bits than traditional
ECC, it has modular correction hardware, lower logic complexity
and can be encoded and decoded faster than traditional ECC [9].
Compared to traditional ECC techniques, OLSC-based MS-ECC
has a lower latency and offers the operating system flexibility in
sacrificing a varying percentage of cache capacity based on the
desired Vccmin and reliability levels in the low-power mode.

OLSC uses the general principle of a redundant system based
on majority voting. A simple example of a majority voting
redundancy-based design is triple modular redundancy (TMR).
TMR “votes out” any incorrect behavior by having three copies of
the design and adopting the results from two out of the three
modules as the correct one. Instead of duplicating each data bit
three times, OLSC encodes “orthogonal” groups of bits to form
check bits. At decoding time, each data bit generates the final
value through a voting process from a group of orthogonally
coded data and check bits. Thus, OLSC does not need to generate
a syndrome but can “correct” errors directly from majority voting.

Figure 4 shows a high-level block diagram of the error
correcting technique based on OLSC. As indicated in the figure,
there are N=m

2 data bits (d0, d1,…, dN-1). To perform t error
corrections, OLSC requires 2tm check bits. The OLSC circuitry
contains two parts, the check bits generation (Encoder) and error
correction (Decoder). The orthogonal property of OLSC allows

the encoder and decoder to be constructed modularly. Each added
module provides extra correction ability without disturbing
existing modules.
 Encoder: The Encoder computes check bits from the input
data. The encoder circuits are derived from the binary form of the
H-matrix. Each check bit Ci is computed as the XOR over data
bits corresponding to columns of H-matrix that have a ‘1’. As an
example, Figure 5 shows the H-matrix and the logic equations for
generating check bits for 16-bit data with 2 error corrections. Each
row in the H-matrix has exactly m bits of ‘1’s. Thus the
calculation for each check bit requires an m-input XOR operation.
If we only correct one error, then we only need the first 2m=8
check bits and we can disable the rest of the encoder circuit. The
logic complexity is proportional to the square root (m) of the
number of check bits (m2), with the critical path being
ceil(log2(m)) levels of 2-input XOR gates.
 Decoder: The decoder for each data bit involves one (2t+1)-
input majority voter. One input of the voter is the received di’
itself, the other 2t are derived from check bits that contain di as its
encoding variable, each is an m-input XOR tree. Figure 5 shows
the decoding logic needed for data bit d0 in 16-bit data with t=2
correction. If we are correcting for only one error (t=1), then the
last two inputs to each majority function are set to 0 and 1,
respectively, so that they offset each other and not affect the
outcome of the majority of other bits. This can be achieved with
an additional level of multiplexing, selected by whether we
correct two bits, where each input can be either the XOR in the
figure or a fixed 0 or 1 value. The critical path for the decoder is
ceil(log2(m)) levels of 2-input XOR, one level of 2:1 MUX, plus
(2t+1)-input majority function. This modular design allows us the
flexibility in choosing different levels of error correction.

4.3 Logic/Delay Analysis and Optimizations

 In this subsection, we discuss the logic and delay analysis for
MS-ECC using OLSC. To keep the analysis simple, we assume
that the lowest ratio of data bits to ECC bits is 1:1, similar to the
example in Section 4.1. We use the following terminology in our
analysis. S represents the segment size in bits. The maximum
segment size is 512 bits for a whole 64-byte cache line. t denotes
the maximum number of correctible bits per segment. To build
OLSC for each single segment, we need mutually orthogonal

Latin Squares with side length m, where m is equal to ceil(S).

For a t-error correction code, we need 2*t*m check bits. Since our

m e m o r y a rr a y

c he c k b i ts

d a ta b it s

2 tm da ta in m 2

m 2

m 2+ 2 tm

e n c o d e
(log m
le v e l)

m 2

d e c o d e
(lo g m +
 m a jo ri ty)

d a ta o ut

Figure 4. OLSC-based Error Correcting Technique.

Figure 5. An Example for a 16-bit OLSC.

most aggressive proposal has the same number of data and ECC
bits (2*t*m = S), the storage overhead for OLSC is 50% in the
worst case.
 We showed in Section 4.2 that the encoding latency is the
delay due to ceil(log2(m)) levels of 2-input XOR gates, while
decoding has the same latency plus (2t+1)-input majority function
and a 2:1 MUX. Conventional majority voter usually involves a
counter or a full adder to calculate the sum of the inputs. The
number of logic gates and delay for this voter increases with an
increase in number of inputs. Alternatively, one could use
majority voter implementation based on a voltage sense amplifier
(SA) [10, 20]. A voltage SA evaluates the voltage difference
between a pair of bitlines which are discharged by two groups of
complemented logic. The dominant logic value discharges one of
the bitlines more than the other and leads to a voltage difference.
Schinkel et al. [23] propose a 90nm technology voltage SA for
memory bitlines with a setup plus hold time of 18 ps, well within
one XOR gate delay [28]. The majority voter used by MS-ECC
has no more than 23 inputs (for 11-bit error correction assuming
the largest segment size of 512 bits), far fewer than the number of
gate inputs associated with regular memory bitlines. Therefore, to
account for the 2:1 MUX and the majority voter, we assume the
MS-ECC decoder delay to be approximately two levels of XOR
gates higher than the encoder delay.

In Figure 6, we show the critical path delay for different
segment sizes and number of correctible bits per segment. It has to
be noted that the number of bit corrections is different for
different segment sizes and is determined by keeping the check
bits overhead fixed at 50% similar to our worst case. The delay is
measured in terms of XOR gate levels. For the encoder, the delay

approximates to log2(S). For a 4-bit segment, the delay is one

level. For a 512-bit segment, which is 128 times larger, the delay
only increases to five levels. We note that the numbers here only
show the gate delay; and do not include any interconnect or
wiring delay, which can be significant for large segments.

The OLSC scheme has a much smaller delay compared to
other error correcting codes (e.g. Hamming or BCH [18]),
especially when the segment size is large. Conventional ECC
schemes usually depend on a global parity bit for error detection,
which requires log2(512)=9 levels of XOR gates and extra wiring
overhead, in addition to the complexity of the error correction
phase.

Figure 7 shows the number of gates for MS-ECC under
different configurations. For each configuration, we show the total
number of gates in the MS-ECC logic for the entire cache, and not
the number of gates per segment. “Encoder” has a gate count

proportional to S , which is m. However, the “Decoder” size

grows much faster as segment size increases. The size is directly
proportional to S, since there is a 2*t m-input XOR tree for the
majority voter of each single data bit. “Decoder” for a 4-bit
segment requires 1K gates. For a 512-bit segment, the number
increases to 247K. To decrease the decoder logic overhead, we
investigated a simplified implementation called “decoder with
sharing”, which trades off logic complexity for a small increase in
latency. This implementation shares the decoder XOR tree logic
between majority voter inputs for different data bits. For example
in Figure 5, the XOR operation for second majority input in the
decoder equations for D0 and D1 differ in only one bit. By
sharing the XOR trees across multiple majority inputs, we
decrease the logic overhead considerably. Figure 7(b) shows the
gate overhead for the decoder with sharing design. The number of
XOR gates for this design is proportional to t, which is close

to S , as opposed to being proportional to S for the original

decoder. This decrease in logic overhead comes at the expense of
adding one XOR gate delay to the decoding latency.

4.4 Tag Error Correction

Failures in cache tags can have serious consequences on the
correctness of program execution. A failure in a tag bit can cause
a false positive, where a cache miss erroneously becomes a cache
hit to a different line. This can cause reading or writing to the
wrong address, thereby corrupting program data. A tag bit failure
can also cause a false negative, where a cache hit to a line in the

0

2

4

6

8

10

4/
1

8/1
16

/2
32 /2

64
/4

128/5

256/
8

512/1
1

Segment Size / # of Error-bit Correction

L
e

v
e

ls
 o

f
X

O
R

 g
a

te
s

Encoder Decoder

Figure 6. Critical Path Delays.

0

10

20

30

40

50

4/
1

8/
1

16
/2

32
/2

64
/4

12
8/
5

25
6/
8

51
2/
1
1

Segment Size Vs. # of Error-bit Correction

N
u
m

b
e
r
o
f
g
a
te

s
 (
1
e
3
)

Encoder Decoder w/ sharing

0

50

100

150

200

250

300

4/
1

8/
1

16
/2

32
/2

64
/4

12
8/

5

25
6/
8

51
2/
1
1

Segm ent Size / # of Error-bit Correction

N
u
m

b
e
r
o
f
g
a
te

s
 (
1
e
3
)

Encoder Decoder

(a) Original Encoder/Decoder Designs

(b) Encoder and Decoder with Sharing

Figure 7. Gate Counts.

cache erroneously becomes a cache miss. This can be harmless in
a write-through cache, but can cause loss of updated data in a
writeback cache (if the line was modified in the cache). To avoid
these correctness problems, error-correcting code (ECC) can be
used to protect tag bits.

A simple implementation for tag error correction adds
standard n-bit ECC to the tag. On a cache access, both the tag and
the ECC bits are read from the tag array. The ECC bits are used to
correct any erroneous address tag bits. The correct tag bits are
then used to determine whether the incoming address hits or
misses in the cache. However, this simple implementation
increases the length of the critical path of a cache hit/miss
determination. This can cause a significant slowdown, especially
in the high-performance mode.

Our proposal to address this issue is to address these errors
differently in the high-performance and the low-power modes. In
the high-performance mode, a single parity bit is used in addition
to a standard SECDED ECC mechanism. The parity bit is used to
detect errors, which adds a relatively small additional latency to
the critical path. However, when the parity test fails on an address
tag, SECDED is used to correct the failure, which can be done
using an interrupt service routine. In the case of a double error
when the error is detectable but cannot be corrected, the cache line
is invalidated if it is clean, and a failure signal is issued if the line
was modified.

In the low-voltage mode, failures are more frequent, and
cache access time is not as critical. Furthermore, some of the data
lines are used as ECC lines, so their tags are not used. We propose
using the unused tags, corresponding to ECC lines, to store the
Orthogonal Latin Square Codes (OLSC) of the used tags. Each tag
that corresponds to a data line contains actual tag bits, and each
tag that corresponds to ECC lines contains OLSC for one or more
associated actual tags. While OLSC requires more check bits, it
can be encoded and decoded faster than traditional ECC. This
technique is only used in the low-power mode, so it does not add
to the critical path in the high-performance mode. In addition, this
technique does not require significant additional die area.

4.5 Implementation Issues and Overheads

Cache lines used to store ECC in low-power mode behave
similar to data lines in the high-performance mode. In a write-
back cache, these lines may contain dirty data at the time of
switching from high-performance to low-power mode. The mode
switching mechanism needs to write back all the dirty lines from
the ECC ways to memory in a similar fashion to how current
caches disable cache ways to save power. The number of lines
written back depends on the size of cache, the number of ECC
ways, and the percentage of dirty lines. For the example in Figure
3, we need to write back half of the cache in the worst case. While
we can decrease the number of written-back lines by either
controlling the placement of dirty lines or choosing ECC ways
dynamically, we leave such optimizations to future work. In
addition to writing back dirty lines, switching to low-power mode
requires ECC encoding of all the data ways and storing the codes
in the ECC ways. This encoding can be overlapped with writing
back dirty lines.

During the switch from high-voltage to low-voltage
operating modes, the operating system can adaptively choose the
number of correctible bits per segment which affects the voltage
and reliability levels. This choice can only be done during the
power mode switch, and afterwards the ECC ways and the data
ways will be fixed (until the next power mode switch). The
operating system can decide on the voltage and reliability levels

based on previous measurements of failures as well as application

performance requirements in the low-voltage mode. This
adaptability feature needs OS support, but we do not focus on
evaluating OS trade-offs in this paper.

The encoding and decoding logic in MS-ECC increases the
cache area. The area overhead depends on the segment size and
the number of error corrections. In our evaluation, we chose 64-bit
segments with a maximum of 4 corrections per segment, so the
total number of gates for MS-ECC logic is less than 15K (Figure
7(b)). This overhead is insignificant in comparison with the total
cache size. For example, the data arrays alone for 32 KB and 2
MB caches have 256K and 16M 6-transistor cells respectively, not
counting the additional transistors for tag arrays and decoder
circuitry.

The additional encoding/decoding and the fact that MS-
ECC drives two ways of the cache for each data access increase
the cache dynamic power. However, we use MS-ECC only in
the low-voltage mode (~500mV) where conventional caches
cannot operate reliably. Furthermore, cache dynamic power (in
particular for L2 cache) is a small component of the total system
power. Because of MS-ECC’s large supply voltage reduction
(from 750 mV to 500 mV), the resulting decrease in both
dynamic and static power would far outweigh the small increase
in dynamic power due to reading two cache ways for MS-ECC.

5. SIMULATION METHODOLOGY

We use a cycle-accurate, execution-driven simulator
running IA32 binaries. The simulator is micro-operation (uOp)
based, executes both user and kernel instructions, and models a
detailed memory subsystem. Table 1 shows the parameters of
our baseline out-of-order processor, which is similar to one core
of the Intel® Core™ 2 Duo processor on 65nm technology [7].
For the baseline processor, both the L1 and L2 caches use
SECDED ECC on a per-line granularity to tolerate persistent as
well as non-persistent bit failures.
To quantify the performance overhead of our technique due to
cache capacity and latency changes, we also simulate an ideal,
defect-free, low-voltage baseline that has reliable caches
without any latency overhead or capacity loss. Because
transistor switching delay decreases with an increase in supply

Voltage Dependent Parameters

 High Vol. Low Vol.

Processor frequency 3 GHz 500 MHz

Memory latency 300 cycles 50 cycles

Voltage 1.3v 0.5v

Voltage Independent Parameters

ROB size 256

Register file 256 fp, 256 int

Fetch/schedule/retire width 6/5/5

Scheduling window size 32 FP, 32 Int, 32 Mem

Load buffer size 32

Store buffer size 32

Cache line size 64 bytes

L1 Instruction cache 32k bytes, 8-way, 3 cycles

L1 Data cache 32k bytes, 8-way, 3 cycles

L2 Unified cache 2M bytes, 8-way, 20 cycles

Table 1. Baseline Processor Parameters.

voltage, we perform circuit simulations to predict the
frequencies at different voltages.

In our experiments, we simulate nine categories of
benchmarks. For each individual benchmark, we carefully select
multiple sample traces that well represent the benchmark
behavior. Table 2 lists the number of traces and example
benchmarks included in each category. We use instructions per
cycle (IPC) as the performance metric. The IPC of each category
is the geometric mean of IPC for all traces within that category.
We then normalize the IPC of each category to the baseline to
show performance.

6. RESULTS

In this section, we present the experimental results for our
proposed technique. Section 6.1 compares the FIT rate and
Vccmin of MS-ECC with previously proposed techniques for
reducing Vccmin. Section 6.2 evaluates the performance overhead
of MS-ECC in the low-voltage mode and also compares the
energy efficiency of MS-ECC with previous techniques.

6.1 Reliability

In this section, we compare the Vccmin of MS-ECC with the
previously proposed bit-fix scheme [31]. We do not compare
against the word-disable scheme from [31] because that paper
showed that bit-fix enabled lower Vccmin than word-disable. The
MS-ECC results in this section assume our most aggressive
implementation with a segment size of 64 bits and 4-bit error
corrections per segment. The bit-fix mechanism discussed in [31]
lacks mechanisms to tolerate non-persistent failures. As a result,
when soft errors and erratic failures are considered, the cache FIT
rate is unacceptable unless SECDED ECC is added to address the
high FIT rates. In light of this, we compare against a version of
bit-fix augmented with SECDED ECC, referred to as BFXECC.
Figure 8 shows the Vccmin of MS-ECC and BFXECC in the
context of both the yield loss and FIT. At a yield loss of 10-3,
without considering FIT, BFXECC and MS-ECC enable Vccmin
of 475mV, and 490mV, respectively. When considering FIT on a
low-erratic process, both mechanisms deliver a Vccmin of 520mV
and the difference between BFXECC and MS-ECC is negligible.
On a high erratic process, MS-ECC does significantly better than
BFXECC as the high frequency of erratic bit failures at low
voltages overwhelms the SECDED ECC that augments BFXECC,
thereby increasing its Vccmin to 630mV.

It is interesting to note that the Vccmin for the low and high

erratic processes are within 5 mV of each other for MS ECC.
Because of this, we only include a single curve, MS-ECC-FIT
(Hi/Low), to show the FIT pfail of MS-ECC for both process
types. The type of erratic process has little effect on the FIT for
MS-ECC because MS-ECC is a single repair mechanism being
used to address all sources of failures.

On a high erratic process, MS-ECC clearly outperforms
BFXECC. This is intuitive since BFXECC can only correct one
erratic bit or soft error in every 512 bits, while MS-ECC can
correct up to four such errors in each 64-bit segment if that
segment contains no persistent failures. Even with some persistent
failures in a 64-bit segment, it is likely that the 4-bit ECC can
cover more than one erratic bit or soft error.

6.2 Performance and Energy Efficiency

In this section, we evaluate the performance overhead of MS-
ECC. Like in Section 6.1, the default MS-ECC implementation in
this section uses a segment size of 64 bits and 4-bit error
corrections per segment. As failures are infrequent in the high
voltage mode, the logic required for MS-ECC can be bypassed,
resulting in no performance overhead in the performance-critical
high voltage mode. During the low voltage mode, MS-ECC has 1-
cycle latency overhead and sacrifices half of the cache, resulting
in performance degradation.

To quantify the performance overhead of using MS-ECC in
the low-voltage mode, Figure 9 shows normalized IPC relative to
the defect-free low-voltage baseline, when applying MS-ECC to
both the L1 and L2 caches. Note that the defect-free low voltage
baseline has no persistent or non-persistent bit failures in the low-

Category # of
traces

Example Benchmarks

Digital Home (DH) 60 H264 decode/encode, flash

FSPEC2K (FP2K) 25 www.spec.org

ISPEC2K (INT2K) 26 www.spec.org

Games (GM) 49 Doom, quake

Multimedia (MM) 77 Photoshop, raytracer

Office (OF) 52 Excel, outlook

Productivity
(PROD)

43 File compression,
Winstone Server (SERV) 48 SQL, TPCC

Workstation (WS) 82 CAD, bioinformatics

ALL 462

Table 2. Benchmarks

1.00E-15

1.00E-12

1.00E-09

1.00E-06

1.00E-03

1.00E+00

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Vcc (V)

P
fa

il
 (

p
ro

b
a
b

il
it
y
 o

f
fa

il
u

re
)

MS-ECC-YL
MS-ECC-FIT (Hi/Low)
BFXECC-YL
BFXECC-FIT
BFXECC-FIT (Hi)

yield loss

Figure 8. Yield Loss and FIT Rates for MS-ECC and BFXECC

voltage mode. Averaging across all the workloads, MS-ECC
results in 10% IPC degradation relative to the defect-free baseline.
However, it is worth noting that this performance overhead is
relative to an ideal configuration that has reliable caches with no
area or latency overhead at supply voltages as low as 500 mV.
Furthermore, the low-voltage mode is usually used when the
processor load is low and energy efficiency, rather than
performance, is the primary concern.

In Section 4, we proposed an adaptive mechanism where the
OS can change the ratio of data ways to ECC ways for MS-ECC
in order to trade off cache capacity for the desired Vccmin. Our
default implementation labeled as “MS-ECC” in Figure 9
sacrifices 50% of the cache capacity by correcting 4 errors in
every 64-bit segment. To demonstrate the cache capacity vs.
Vccmin trade-off which the OS can make, we also analyzed an
MS-ECC implementation, labeled as MS-ECC 64/1 in Figure 9,
which corrects one error for each 64-bit segment, and so only
needs one ECC way for each 4 data ways. Since our default
configuration is an 8-way cache, the closest approximation for
MS-ECC 64/1 uses two total ECC ways, thereby sacrificing 25%
of the cache capacity in the low voltage mode. Figure 9 shows
that MS-ECC 64/1 degrades IPC by only 6% on average over the
defect-free baseline (compared to a 10% average IPC degradation
for the default MS-ECC). Other implementations permitted by our
adaptive design, i.e., MS-ECC 64/2 and MS-ECC 64/3, have
performance and Vccmin characteristics between the two
extremes (MS-ECC 64/1 and MS-ECC 64/4).

Table 3 summarizes the achievable Vccmin and the
frequency, power consumption, and energy-per-instruction (EPI)
for different techniques during low-power mode operation. Note
that, in contrast to the defect-free baseline cache of Figure 9, we
use realistic caches as our baseline in Table 3. Also recall from
Section 5 that the baseline caches use only SECDED ECC to
tolerate both persistent and non-persistent bit failures. We
normalize the power and EPI results for each technique to the
corresponding results for the baseline, while showing absolute
results for Vccmin and frequency. As mentioned in Section 5, we
predict frequencies at different voltages by running circuit
simulations. Note that since EPI represents power per unit
performance, a lower value of EPI implies better energy
efficiency, For power calculations, we assume that dynamic
power scales quadratically with supply voltage and linearly with
frequency. We also assume that static power scales with the cube
of supply voltage [27]. The results for BFXECC in Table 3
assume a high erratic process. We omit the results for BFXECC in
a low erratic process because they exhibit a similar Vccmin to that
of MS-ECC.

 Compared to the baseline processor with SECDED ECC,
MS-ECC reduces Vccmin by 200mV while BFXECC reduces
Vccmin by only 90mV. MS-ECC’s lower Vccmin results in more
power savings than other schemes during the low-power mode.
Compared to the baseline configuration, the most aggressive MS-
ECC implementation (i.e., MS-ECC 64/4) achieves a 71%
reduction in power, significantly higher than BFXECC’s 43%
power reduction. As frequency decreases with supply voltage,
MS-ECC’s lower supply voltage results in longer execution time
as compared to other schemes. However, as the low-voltage mode
is normally used when the processor load is low, energy
efficiency, rather than performance is the primary concern. Thus,
even though MS-ECC 64/1 provides more cache capacity and
higher performance than MS-ECC during low-voltage operation,
MS-ECC 64/1’s higher Vccmin makes it less energy-efficient than
MS-ECC. While MS-ECC 64/1 and BFXECC decrease EPI by
12% and 20% respectively, MS-ECC’s lower Vccmin results in a
significantly better 42% decrease in EPI relative to the baseline
configuration.

7. CONCLUSIONS

In this paper, we proposed a novel error tolerance technique
called multi-bit segmented ECC (MS-ECC) to enable reliable
ultra-low voltage cache operation. MS-ECC leverages error
correction codes based on Orthogonal Latin Square Code (OLSC)
to tolerate both persistent and non-persistent bit failures. Unlike
previous proposals for reliable ultra-low voltage cache operation,
MS-ECC does not incur additional testing overhead to isolate
defective bits. MS-ECC uses a modular error correction
mechanism which allows the operating system flexibility in
deciding on the reliability and performance levels of the low-
voltage operating mode. We showed that MS-ECC enables
reliable cache operation at 520mV at the cost of 50% decrease in
cache capacity during low-voltage operation. Compared to current
designs with single-bit ECC correction, the most aggressive
implementation of MS-ECC enables a 30% supply voltage
reduction, which reduces power by 71% and energy per
instruction by 42%.

8. ACKNOWLEDGMENTS

 We would like to thank Dinesh Somasekhar and Muhammad
Khellah for their invaluable feedback and Hongliang Gao for his
contributions. We are also grateful to Prof. Kaushik Roy and
Jaydeep Kulkarni for helping us with the bit failure data. We
thank the anonymous reviewers for their comments and
suggestions.

Scheme Vccmin
(mV)

Frequency
(MHz)

Norm.
Power

Norm.
EPI

Baseline 725 1400 1 1

BFXECC 630 1000 0.57 0.8

MS-ECC 520 700 0.29 0.58

MS-ECC 64/1 670 1200 0.75 0.88

Table 3. Comparison between Bit-Fix with ECC and MS-

ECC (Cache with SECDED ECC is Used as Baseline)

0.75

0.8

0.85

0.9

0.95

1

D
H

F
P

2
K

IN
T

2
K

G
M

M
M C
F

P
R

O
D

S
E

R
V

W
S

G
M

E
A

N

N
o

rm
a

li
z

e
d

 I
P

C

Defect-Free Baseline

MS-ECC

MS-ECC 64/1

Figure 9. Performance Overhead of MS-ECC.

9. REFERENCES

[1] M. Agostinelli, et al., “Erratic Fluctuations of SRAM Cache
Vmin at the 90nm Process Technology Node,” IEDM Technical
Digest, pp. 655-658, Dec 2005.

[2] T. Austin, “DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design,” Proc. 32nd Annual Symposium on
Microarchitecture (MICRO-32), pp. 196-207, November 1999.

[3] A. Bhavnagarwala, et al., “The impact of intrinsic device
fluctuations on CMOS SRAM cell stability,” IEEE Journal of
Solid State Circuits, Vol. 36, No. 4, pp. 658-665, April 2001.
[4] R. C. Bose and R. K. Ray-Chaudhuri, “On a Class of Error-
Correcting Binary Group Codes,” Information and control, Vol. 3,
pp. 68-79, 1960.

[5] C. L. Chen and M. Y. Hsiao, "Error-correcting codes for
semiconductor memory applications: A state-of-the-art-review,"
IBM J. Research Development, vol. 28, no. 2, pp. 124-134, Mar.
1984.

[6] C. Constantinescu, “Impact of Intermittent Faults on
Nanocomputing Devices” DSN 2007 Workshop on Dependable
and Secure Nanocomputing, June, 2007.

[7] J. Doweck, “Inside the Core™ Microarchitecture,” Proc. 18th
IEEE Symposium on High-Performance Chips, August, 2006.

[8] S. Hareland, et al., “Impact of CMOS Scaling and SOI on Soft
Error Rates of Logic Processes,” VLSI Technology Digest of
Technical Papers, pp. 73-74, 2001.

[9] H. Y. Hsiao et al., “Orthogonal Latin Square Codes,” In IBM
Journal of Research and Development, Vol.. 14, Number 4, pp.
390-394, July 1970.

[10] J. Ihm, et al., "An 80nm 4Gb/s/pin 32b 512Mb GDDR4
Graphics DRAM with Low-Power and Low-Noise Data-Bus
Inversion." Proceedings of the 2007 IEEE International Solid
State Circuits Conference. pp.492-493.
[11] Intel Corporation, “Intel® Celeron® Processor – Low
Power/Ultra Low Power,” October 2001,
http://download.intel.com/design/intarch/datashts/27350901.pdf.

[12] T. Karnik, et al., “Impact of Body Bias on Alpha- and
Neutron-Induced Soft Error Rates of Flip_flops,” Symposium On
VLSI Circuits Digest of Technical Papers, pp. 324-325, 2004.

[13] Y. Kawakami, et al., “Investigation of Soft Error Rate
Including Multi-Bit Upsets in Advanced SRAM using Neutron
Irradiation Test and 3D Mixed-Mode Device Simulation,” IEEE
International Electron Devices Meeting, pp. 945-948, Dec. 2004.

[14] J. Kim, et al., “Multi-bit Error Tolerant Caches Using Two-
Dimensional Error Coding,” In 40th International Symposium on
Micro-architecture (Micro-40), December 2007.

[15] J. P. Kulkarni, K. Kim and K. Roy, “A 160 mV Robust
Schmitt Trigger Based Subthreshold SRAM,” IEEE Journal of
Solid-state Circuits, Vol. 42, no. 10, pp. 2303-2313, October,
2007.

[16] X. Li, et al., “Scaling of Architecture Level Soft Error Rates
for Superscalar Processors,” Proc. 1st Workshop on the System
Effects of Logic Soft Errors (SELSE), April 2005.

[17] S. Lin and D. J. Costello, “Error Control Coding,” Second
Edition. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2004.

[18] W. Liu, J. Rho, and W. Sung, "Low-Power High-Throughput
BCH Error Correction VLSI Design for Multi-Level Cell NAND
Flash Memories," in Proc. IEEE Workshop on Signal Processing
Systems (SIPS), Banff, 2006, pp. 248-253.

[19] S. Mukherjee, J. Emer, and S. Reinhardt, “The Soft Error
Problem: An Architectural Perspective,” Proc. 11th International
Symposium on High-Performance Computer Architecture
(HPCA-2005), pp. 243-247, February 2005.

[20] K. Nakamura, and M. Horowitz, “A 50% Noise Reduction
Interface Using Low-Weight Coding,” Symposium on VLSI
Circuits Digest of Technical Papers, pp. 144 –145, June 1996.

[21] D. Roberts, N. S. Kim, and T. Mudge, “On-chip Cache
Device Scaling Limits and Effective Fault Repair Techniques in
Future Nanoscale Technology,” Proc. 1oth Euromicro Conference
on Digital System Design (DSD 2007), pp. 570-578, 2007.

[22] F. Ruckerbauer and G. Georgakos, “Soft Error Rates in 65nm
SRAMs – Analysis of new Phenomena,” Proc. 13th IEEE
International On-Line Testing Symposium (IOLTS 2007), pp.
203-204, 2007.

[23] D. Schinkel, et al., "A Double-Tail Latch-Type Voltage
Sense Amplifier with 18ps Setup + Hold Time." Proceedings of
the 2007 IEEE International Solid State Circuits Conference, pp.
314-315.
[24] S. E. Schuster, “Multiple Word/Bit Line Redundancy for
Semiconductor Memories,” IEEE Journal of Solid-State Circuits,
Vol. SC-13, No. 5, pp. 698-703, October 1978.

[25] P. Shivakumar, et al., “Modeling the Effect of Technology
Trends on the Soft Error Rate of Combinational Logic,” Proc.
International Conference on Dependable Systems and Networks,
pp. 389-398, June 2002.

[26] J. Srinivasan, et al., “The Case for Lifetime Reliability-
Aware Microprocessors,” Proc. 31st International Symposium on
Computer Architecture (ISCA '04), pp. 276-287, June 2004.

[27] Y. Taur and T. H. Ning, “Fundamentals of Modern VLSI
Devices,” Cambridge University Press, 1998, pp . 144.

[28] TSMC standard cell libraries.
http://www.cadence.com/partners/tsmc/SC_Brochure_9.pdf

[29] K. Ünlü, et al., “Neutron-induced Soft Error Rate
Measurements in Semiconductor Memories,” Nuclear Instruments
and Methods in Physics Research Section A, Volume 579, Issue
1, pp. 252-255, 2007.

[30] C. Weaver, et al., “Techniques to Reduce the Soft Error Rate
of a High-Performance Microprocessor,” Proc. 31st International
Symposium on Computer Architecture (ISCA-31), pp. 264-275,
June 2004.

[31] C. Wilkerson, et al., “Trading off Cache Capacity for
Reliability to Enable Low Voltage Operation,” Proc. 35th
International Symposium on Computer Architecture (ISCA-35),
pp. 203-214, June 2008.

[32] K. Wu and D. Marculescu, "Soft Error Rate Reduction Using
Redundancy Addition and Removal," in Proc. IEEE/ACM Asian-
South Pacific Design Automation Conference (ASPDAC), Seoul,
Korea, Jan. 2008

[33] J.F. Ziegler, et al., “Accelerated Testing for Cosmic Soft-
Error Rate,” IBM Journal of Research and Development, Vol. 40,
No. 1, pp. 51-72, January 1996.

