
cs412: introduction to numerical analysis 09/21/10

Lecture 4: Solving Equations: Newton’s Method, Bisection, and the Secant Method

Instructor: Professor Amos Ron Scribes: Yunpeng Li, Mark Cowlishaw, Nathanael Fillmore

1 Review of Fixed Point Iterations

In our last lecture we discussed solving equations in one variable. Such an equation can always be
written in the form:

f(x) = 0 (1)

To find numerically a solution r for equation (1), we discussed the method of fixed point iterations.
In this method, we rewrite (1) in the form:

x = g(x) (2)

and use equation (2) to define a sequence x0, x1, x2, . . . , with x0 an initial approximation of the
solution, and the rest of the sequence generated using:

xn+1 := g(xn). (3)

If we choose a good transformation to equation (2), then the sequence x0, x1, x2, . . . will converge
to the actual solution, r. At the end of the last lecture, we discussed methods to test whether a
particular function g will produce a sequence x0, x1, x2, . . . that converges to r. The test hinges
on the value of the derivative of g in the area close to the solution r. Specifically, if we define an
interval I around the initial value x0

I = [x0 − δ, x0 + δ], (4)

and we know that the actual solution r ∈ I, then the sequence x0, x1, x2, . . . will converge to r if
for all values c ∈ I |g′(c)| ≤ λ < 1 and if all entries of the sequence x0, x1, x2, . . . remain in the
interval I. We can make the following two claims, for positive and negative values of the derivative
of g:

Claim 1.1 (Convergence for Positive Slope). If 0 ≤ g′(c) ≤ λ < 1, ∀c ∈ I, and if r ∈ I, then
(xj)

∞

j=0 converges to r.

Claim 1.2 (Convergence for Negative Slope). If we only know that |g′(c)| ≤ λ < 1, ∀c ∈ I, and
that r ∈ I, then it is possible that the approximations xj will not stay in the interval, invalidating
thereby our error analysis. However, if we require that the condition |g′(c)| ≤ λ < 1 occurs in the
larger interval I ′ := [x0 − 2δ, x0 + 2δ] (and retain the assumption that r lies in the smaller interval
I), then convergence is guaranteed.

Furthermore, we can distinguish a bad choice of function g:

1

g(x)0

x0x − a0 x + a0
x1r

r

fixed point for g g(x)

y = x

Convergence, Positive Slope

x0x − a0 x + a0

g(x)0

x1

x − a0 x + a00x − 2a 0x + 2a
x0

g(x)0

x1 r

r

fixed point for g

g(x)

Non−convergence

y = x

fixed point for g

y = x

r

r

g(x)

slope = −1

Convergence, Negative Slope

Figure 1: Examples of Convergence and Non-convergence to Fixed Point r

Claim 1.3 (Non-convergence). If |g′(r)| > 1 then the sequence x0, x1, x2, . . . will never converge to
r.

Examples of each of these possibilities for the slope of g are shown in Figure 1
This analysis leads to the following general procedure for using fixed point iterations:

1. Find an interval I that you know to contain the solution r to the equation.

2. Transform the equation to the form x = g(x). Estimate g′(x) over the interval I.

3. If g′(x) is small (≪ 1) and is non-negative over the interval, then use g. Take x0 to be the
center of I.

4. If |g′(x)| is small (≪ 1) over the interval, but negative somewhere on the interval, define a
new interval Ĩ that is double the size of the original interval/ If |g′(x)| is small (≪ 1) over
this new interval, then use g.

5. Otherwise, choose a new transformation x = g(x) and begin again.

Thus, if we try to solve x2 − 5 = 0, and know that
√

5 ∈ [2.2, 2.3], then, with x0 := 2.25, we
need the condition |g′| < λ < 1 to hold on the interval [2.15, 2.35]. You can reduce the size of the
latter interval when: (1) g′ is positive, (2) you improve your knowledge on sqrt5.

Note that it is sometimes impossible to identify an interval that contains the solution to the
equation. In these cases, you may choose an interval where you know that your g has a small slope,
and hope that the sequence x0, x1, x2, . . . converges to a solution. This may work in some cases,
but there are no guarantees.

2

2 Newton’s Method

Recall that at the end of the last class, we discussed conditions for quadratic convergence of fixed
point iterations. The sequence x0, x1, x2, . . . defined using

xn+1 = g(xn)

converges quadratically to r if g′(r) = 0, where r is a fixed point of g (that is, g(r) = r). Recall
that the error of an iteration en is defined as:

en = xn − r (5)

and quadratic convergence occurs when the error of each iteration is bounded by the square of the
error in the previous iteration:

|en+1| ≤ λne2
n (6)

where λn is defined using the Taylor series remainder:

λn =
g′′(cn)

2
(7)

and cn is some value between xn and r. Note that, unlike the case of linear convergence, λn does not
have to be small to ensure fast convergence, the square of the previous error will usually dominate.
We have previously seen an example of quadratic convergence in our method for finding numerical
solutions to quadratic equations.

Example 2.1. To solve equations of the form

x2 + bx = c

we used the formula

xnew =
x2

old + c

2xold + b

We can now recognize that this is simply an application of fixed point iterations, with:

f(x) = x2 + bx − c = 0 (8)

Which has been simply transformed into:

x = g(x) =
x2 + c

2x + b

If we take the derivative of g, we see that:

g′(x) =
(2x + b)(2x) − 2(x2 + c)

(2x + b)2

=
2x2 + 2bx − 2c

(2x + b)2

=
2f(x)

[f ′(x)]2
.

3

Since f(r) = 0, g′(r) = 0, too. Note that, without any particular knowledge about the locations of
the roots of f , g was nevertheless carefully constructed to have derivative 0 at the roots of f :

f(r) = 0 =⇒ g′(r) = 0.

This function was constructed using a technique called Newton’s Method. In Newton’s method,
given a function

f(x) = 0,

we construct the function g as follows:

g(x) = x − f(x)

f ′(x)
. (9)

For example, remember our method for finding the square root of 5.

Example 2.2. To find the square root of 5, we use the quadratic equation x2 = 5, or:

f(x) = x2 − 5 = 0

Using Newton’s method, we construct a function g(x):

x = g(x) = x − f(x)

f ′(x)
= x − x2 − 5

2x
=

x2 + 5

2x

Recall that the sequence x0, x1, x2, . . . defined by g converged very quickly to the square root.

2.1 Details of Newton’s Method

We must show that Newton’s Method produces a valid transformation of f(x) = 0 and exhibits
quadratic convergence (for most functions) to the solution.

1. The equation x = g(x) defined by Newton’s method is equivalent to the original equation
f(x) = 0:

This is elementary algebra, since the equation

x = x − f(x)

f ′(x)

can be easily transformed into f(x) = 0, by simply subtracting x from both sides, then
multiplying both sides by f ′(x).

2. Newton’s Method converges quadratically to the solution r of f(x) = 0:

To show this, simply compute g′:

g′(x) =
d

dx

(

x − f(x)

f ′(x)

)

= 1 − f ′(x) · f ′(x) − f(x) · f ′′(x)

[f ′(x)]2

= 1 − 1 +
f(x) · f ′′(x)

[f ′(x)]2

= f(x) · f ′′(x)

[f ′(x)]2

4

and, since f(r) = 0, g′(r) = 0, which, as we have shown, produces quadratic convergence,
provided that f ′(r) 6= 0.

It is important to note that the above analysis requires g to be twice differentiable (otherwise,
our Taylor series expansion, which led to us to quadratic convergence is not valid). Indeed, g′′ is
not only necessary for our error analysis: it also appears explicitly in the error formula:

en+1 =
g′′(cn)

2
e2
n (10)

Note that f ′ appears in g, hence f ′′′ will appear in g′′. So, we require the function f to be
three times differentiable for the quadratic convergence of Newton’s method. Since g is constructed
using the derivative of f , this analysis requires f to be 3 times differentiable in the region near the
analytic solution r.

2.2 Geometric Interpretation of Newton’s Method

Newton’s method uses a simple idea to provide a powerful tool for fixed point analysis. The idea
is that we can use tangent lines to approximate the behavior of f near a root. The method goes as
follows. We start with a point x0, close to a root of f . The line tangent to f at x0 will intersect
the x-axis at some point (x1, 0). The x-coordinate of this intersection should be closer to the root
of f than x0 was. The process is shown in Figure 2.2.

f(x)1

f(x)0

tangent to f(x)0

tangent to f(x)1

x1 x0

r

Figure 2: Geometric Interpretation of Newton’s Method

This ends our discussion of fixed point iterations. We will now explore some other methods for
finding numeric solutions for equations.

3 Bisection

Bisection is a simple method for finding roots that relies on the principle of divide and conquer.
The idea is to find an interval containing the root and to split the interval into smaller and smaller
sections - in the end, we will have a tiny interval that contains the root, and we may take the
midpoint of the interval as our approximation.

5

To begin, we need to find an interval [a, b] in which the sign of f(a) and f(b) differ. If f is
continuous, we know that f must be zero at least once on the interval. An example of this situation
is shown in Figure 3.

In+1

In

a

f(a)

f(b)

c

f(c)

b

Figure 3: Intervals in the Bisection Method

On each iteration, we calculate the midpoint c of the interval, and examine the sign of f(c).
We will then form a new interval with c as an endpoint. If f(a) and f(c) have differing signs, then
[a, c] is the new interval, otherwise [c, b] is the new interval. Note that, if f(c) = 0, we have just
found the root. More formally, the process proceeds as follows:

3.1 The Bisection Process

Given a continuous function f , we will find a root of f (f(x) = 0). At the beginning, we need to
find an initial interval I0 = [a0, b0] in which f(a0) and f(b0) have opposite signs (f(a0) · f(b0) < 0).
Then we repeat the following steps for each iteration :

1. Calculate the midpoint cn:

cn =
an + bn

2

2. Define the new interval In+1 as:

In+1 =

{

[an, cn] , if f(an) · f(cn) < 0,
[cn, bn] , otherwise.

(11)

We iterate until achieving a desired level of accuracy. Then we take the midpoint of the last interval
as our approximation to the root.

6

3.2 Order of Convergence

Note that, at each iteration, the size of the interval is halved:

|In+1| =
1

2
· |In|

Since we will eventually take the midpoint of the interval as our final approximation, the error at
any step is at most half the size of the f we define the error to be

en := |In|/2

(which is not the actual error, but a truly good way to assess the size of the error), we get:

en+1 =
1

2
· en

Thus, bisection has linear convergence. This error measure does not compare precisely to the
error measure we used for fixed point iterations, but it is close enough for comparison.

3.3 Cost

Bisection requires one evaluation of the function f at each iteration.

3.4 Robustness

What is the robustness of the bisection method? A drawback is that we need to find a “good”
initial interval I0 = [a, b], so that f(a)f(b) < 0 (we also require f to be continuous on [a, b], but
this is really mild). Good news: once we have such an interval, the algorithm is guaranteed to
converge - so it is extremely robust.

Note that we do need to assume that the function f is continuous, but we always need to make
this assumption, regardless of the root-finding algorithm. Our algorithms always require that the
behavior of the function f near a root is similar to its behavior at the root. If this assumption is
violated, then we really can’t say anything. For example, consider the discontinuous function

f(x) =











x x 6∈ {−1, 0}
0 x = −1

1 x = 0

No root-finding algorithm will be able to find the unique root at x = −1.

3.5 Comparison with Fixed Point Iterations

Bisection guarantees linear convergence at a rate of 1/2 for any continuous function and requires
only one function evaluation per iteration (we have to evaluate f(cn) each time, but f(an), f(bn)
should not be recomputed). Bisection doesn’t even require full function evaluations, it simply
requires that we can determine the sign of a function at a particular point.

Why would we use fixed point iterations instead of bisection for a particular function f?

• If f is triply differentiable near the root, we may be able to use Newton’s method, which
converges quadratically.

7

• If f is differentiable near the root, we may be able to find a function g(x) that converges
linearly at a rate faster than 1/2.

Thus, if we are dealing with functions that are not multiply differentiable, or for which we
don’t have much information, bisection may be a better method for finding roots than fixed point
iterations.

3.6 Comparison with Trisection

We might think that if the bisection method is good, the following trisection method will be even
better. Begin with an initial interval I0 = [a0, b0] such that f(a0)f(b0) < 0. Repeat:

1. Calculate the two 1/3-midpoints:

c(1)
n =

2an + bn

3
, c(2)

n =
an + 2bn)

3

2. Define the new interval In+1 as:

In+1 =











[an, c
(1)
n] if f(an) · f(c

(1)
n) < 0

[c
(1)
n , c

(2)
n] if f(c

(1)
n) · f(c

(2)
n) < 0

[c
(2)
n , bn] if f(c

(2)
n) · f(bn) < 0

[If more than one case holds, choose between them arbitrarily.]

Here |In+1| = 1
3 |In|, so en+1 = 1

3en. At first glance, this error bound looks better than the
error bound we get for bisection, where en+1 = 1

2en. However, trisection has twice as much cost
per iteration as bisection does: trisection requires two function evaluations per iteration, while
bisection requires only one. So for a cost of two function evaluations, bisection guarantees error
reduction of 1

4 , while trisection guarantees error reduction of only 1
3 .

This analysis shows that we need to consider both speed and cost when we evaluate numerical
algorithms.

4 Secant Method

The last method we will discuss for finding the roots of equations is the secant method. One can
think of the secant method as a poor man’s version of Newton’s method. Where Newton’s method
uses the derivative of the function, the secant method uses a numeric estimate of the derivative.

Recall that, in Newton’s method, we defined a sequence x0, x1, x2, . . . using an initial guess x0

and the formula for its successors:

xn+1 := xn − f(xn)

f ′(xn)
(12)

However, f may not be given in closed form, so that evaluating the derivative may be impossible.
Recall that we can estimate the derivative of f at xn using the familiar formula for the slope of
secant lines to a curve:

f ′(xn) ≈ f(xn + h) − f(xn)

h

8

where h is small. But what is a good value for h? In the secant method, we use the difference
between consecutive values of xn for h, so that the approximation of the derivative should improve
as the sequence x0, x1, x2, . . . converges to r.

f ′(xn) ≈
f(xn) − f(xn−1)

xn − xn−1
(13)

See figure 4 for an illustration. Substituting this estimate for the derivative into equation 12 yields:

Figure 4: Approximation of tangent by the secant.

xn+1 := xn − f(xn) · [xn − xn−1]

f(xn) − f(xn − 1)
(14)

Note that this is not a fixed point method, since xn+1 is based on the values of f at xn−1, while
fixed point algorithms do not need even to know the value of xn−1. Also note that only one new
function evaluation is required at each step (since previous function values can be stored). Since
Newton’s method requires an evaluation of the function and its derivative (which is likely at least
as difficult as the function evaluation), each iteration of the secant method has roughly half the
cost of an iteration of Newton’s method.

In the next lecture, we will discuss the convergence of the secant method.

9

