€s412: INTRODUCTION TO NUMERICAL ANALYSIS 10/12/10

Lecture 10: Introduction to Splines

Instructor: Professor Amos Ron Scribes: Mark Cowlishaw, Nathanael Fillmore

1 Review of Chebyshev Points

Last time we talked briefly about using Chebyshev points for polynomial interpolation. The idea is
that our choice of interpolation points can have a large impact on the error of our interpolant. Recall
the expression for error in polynomial interpolation (Given f the function we are approximating,
interval [a, b], interpolation points & = (x¢, 21, ..., %), and interpolant p,):

f(n+1)(c) n
=0

(a)

If we know a great deal about the function f, then we may be able to choose points so as to
reduce the error. If we don’t have such information about the function, however, the best we can
do is to reduce the product (a). The Chebyshev points effectively minimize the maximum value of
the product (a).

0.9 q
0.8 q
0.7 —
0.6 —
05 —

0.4 R

0.3
0.2
0.1

Figure 1: Choosing Chebyshev Points
Recall the process for selecting Chebyshev points over an interval [a, b], as shown in Figure 1:
1. Draw the semicircle on [a, b] centered at the midpoint ((a + 0)/2).
2. To select N + 1 points, split the semicircle into N arcs of equal length.
3. Project the arcs onto the x-axis, giving the following formula for each Chebyshev point x;

a+b b—a cos jem
N

=yt

> (for j=0,1,...,N)

Note that this is not exactly the process for choosing Chebyshev points, but it is a close ap-
proximation.

2 Interpolation Using Piecewise Polynomials

Recall that last time we discussed interpolation over an interval [a, b] by splitting the interval into
N equal partitions and using a fixed degree polynomial to interpolate each partition separately.
We discussed two specific ideas for approximating the function over each partition, using linear
polynomials and using cubic polynomials.

2.1 Piecewise Linear Functions

Given an interval [a,b], and a function f, we split the interval into N equal subintervals of size
h = (b — a)/N with endpoints: (zo,z1,x2,...,2n). We can then interpolate each subinterval
[;, zi11] using a line. Last time we proved an upper bound on the error of the resulting interpolant
for any t € [a, b]:

1" oo, ap)
B) = 17(6) - plt)] <~

The error is reduced in proportion to the square of the size of the subintervals - if the size is
halved, the error will be reduced by a factor of four.

The cost of doing interpolation this way is the cost of performing N + 1 function evaluations
and N interpolations. Note that the error is inversely proportional to the square of the number
of intervals (E(t) = O(1/N?)), this is generally not considered good enough to make this a viable
interpolation method, the methods in general use have E(t) = O(h*) = O(1/N*%).

-h? (2)

2.2 Piecewise Cubic Functions

As we saw briefly last time, a simple idea for improving the error bound is to use higher degree
polynomials to interpolate each subinterval. Given a function f and an interval [a, b], we partition
the interval into N subintervals with endpoints & = (xg,z1,...,znN). If we take four consecutive
points from Z, (x;—1, x;, Ti+1, Ti+2), we can use these points to find a cubic polynomial p; € I3 that
interpolates f. We will use p; only on the middle interval [z;,z;11], as shown in Figure 2.

Figure 2: The Cubic Interpolant for Interval [z;, z;41]

By simple substitution into equation 1, the error over the subinterval [x;, z;41] is:

F9(e)
4l

£ () —pi(t)] = |

. (t - :L'Z'fl)(t - l‘z)(t — l’i+1)(t — ZE'L'JFQ)‘ (fOl” some c € [:L’i, :L‘Z'Jrﬂ) (3)

‘ ‘ ‘ ‘

T T T T T

Xi-1 Xiot Xit1 Xit+2
L |

Figure 3: A Point ¢ in the Interval [z;, x;41]

Here p; refers to the polynomial interpolant for the ith subinterval, and not a polynomial of
degree < i. Recall that each interval has length h, and let u = t — z;. As shown in Figure 3 we can
transform equation 3 into

c
f(t) —pilt) = - (h+u)(u)(h —u)(2h —u) (4)
(*)
Simple calculus shows that the maximum of the expression (*) over u € [0, h] occurs at the
midpoint, u = h/2. Thus, we can bound the error on [z;, z;t1]:

()
O -p) =5 e - u)2h - w)
< Hf(4)Hoo,[xi,xi+1]
(h+ hJ2)(h/2)(h — h/2)(2h — h/2)

- 24

B Hf(4)Hoo,[xl,xz+1] % ? ﬁ 2
- 24 2 2

_ Hf(4)Hoo,[xi,xi+1] . %

24 16
9 Hf(4)Hoo[:r:r+1] 4
- 384 h

Since the error over the entire interval [a, b] is bounded by the maximum of any of the errors
over a particular subinterval, this yields the following error bound for ¢ € [z1,xN_1]

B = 1) = 501 < 5779, 2t 5)
~N — (c)

Where s(t) is the piecewise cubic function we have created. We do not include the first and last
subintervals, since we have not defined the interpolant there similarly. (On the first subinterval,
we use Tg,T1,T2,x3 to find a curve between zg and z1, while on the last subinterval, we use
TN-3,TN—2,TN—1,ZN to find a curve between zy_1 and zy.) Error equation 5 has three important
components

9

(a) 357
This is a small constant, so that, unless the fourth derivative is very large over the interval,
we will have a small error without having to shrink h too much.

4
() [1F] o o
The error bound depends on the fourth derivative, so f must have the fourth derivative defined
everywhere on the interval [a, b] for this analysis to apply. Even if the fourth derivative is

large over the interval, this value is only a constant, so that it will be dominated by a small
enough h.

(c) h*
The error is O(h*), meaning that the error decreases very rapidly as h gets smaller. For
example, if we halve h, the error will be divided by sixteen. It is possible to invent methods
that decrease the error by higher powers of h (for example, by using quartic or quintic

polynomials), but the improvement in convergence is marginal, and generally considered not
worth the extra cost of a single iteration.

Figure 4: A Piecewise Cubic Function s

Unfortunately, while this method will efficiently produce functions s with a very small error,
there are some problems with the results. It is easy to see that the function s produced by this
method will be continuous, since the polynomials p; over [z, xj41] and pj1 over [z;41,xj42] both
match f exactly at x;41. However, as shown in Figure 4, it is quite likely that the derivative at
the endpoints of each subinterval will not exist, since p(2;+1) may not match pj, (z;4+1). This
creates problems with the graph of s, which will not appear smooth. Additionally, we cannot use
s to estimate the derivative of f, which may cause problems depending on our intended use for s.
As we shall see, splines seek to solve these problems.

Note that the error bound given in Equation 5 is a uniform bound of the error over the whole
interval [a,b]. Of course, the error in any subinterval may be even less than this. For example
consider the function f(t) = e’ on [0,10]. Here f(¥) = f = ¢!, and € is increasing everywhere, so
the maximum of f over any interval is always attained at the right endpoint of the interval. In
particular,

Hf(4)Hoo,[:Jc¢,:ri+1] =e"i+t i=0,...,N—1
so on the interval [x;, z;1+1] the error is bounded by

9 T; 4
i+1
3846 U

3 Cubic Splines

The idea behind cubic splines is to piece together cubic polynomials so as to make the result
differentiable as many times as possible.

Py

Y P

Figure 5: Cubic Functions at a Point a

This begs the question - for how many derivatives can two different cubic functions agree at a
point a? Consider two functions p; and po at a point a as shown in Figure 5. Assume, for simplicity,
that p; is identically 0.

Clearly, we can create a different cubic function py with pa(a) = 0, for example, po(t) =
c1-(t—a)®+eca-(t—a)®+cs- (t—a) works. Similarly, we can create a py with ph(a) = 0, for
example pa(t) = c1 - (t — a)® + c2 - (t — a)?. We can also create a py with p”(a) = 0, but it must
be of the form po(t) = ¢ (t — a)3. However, if we try to match the third derivative, the only cubic
function with a third derivative 0 is p2(t) = 0, which is the same function as p;.

As this simple example illustrates, we can only hope to match the first two derivatives of two
different cubic functions at any particular point, and thus we can only hope to make our function
s twice differentiable over [a, b]. This requires us to restrict the piecewise cubic functions. Once we
find a cubic polynomial p;, and we wish to find a cubic polynomial ps with

pi(a) =po(a
pila) =pya
P a) pg(a

then po must have the form:
p2(t) =pi(t) +¢- (t —a)’

This representation has only one degree of freedom (the value of ¢). In general, each time we restrict
a function to match one of the derivatives of another function at a particular point, we remove one
degree of freedom. This discussion of matching derivatives leads to the following definition of a
cubic spline.

DEFINITION 3.1 (Cubic Spline). Given the partition & = (xo,1,%2,...,2N) of interval [a,b], a
cubic spline s : R — R is any function defined on [a,b] such that

1. Each component of s is cubic, that is:

S| izs i € 113 (fori=0,1,...,N —1)

2. The second derivative of s is continuous over [a, b]

s € C?a,b]

Note that the points (zg,x1,...2zxN) that partition the interval [a,b] are known as knots.

It is important to note that, while discontinuities in the first and second derivative of a function
are visually detectable, this is not true of the third and higher derivatives. This is why cubic splines
are particularly appropriate for visual approximations of a function.

4 Interpolation Using Cubic Splines

How do we use cubic splines to approximate a function? The formulation of the problem we have
used before would go something like this.

PRrROBLEM 4.1 (Interpolation Using Cubic Splines). Given interval [a,b], & = (xo,x1,...,TN) par-
titioning the interval, and function f :[a,b] — R, find a cubic spline s with knots & such that

s(zi) = f(x;) (fori=0,1,...,N)

Unfortunately, this statement of the problem is incorrect. We would like, when we state a
problem, to have the number of constraints in the problem match the number of degrees of freedom
in the representation for the solution. For example, we know that a polynomial of degree k has k+1
degrees of freedom. If we consider the monomial form, there are k + 1 coefficients that uniquely
determine the polynomial (in IIx). Thus, when we stated the polynomial interpolation problem,
we constrained the degree k polynomial we were looking for with k£ + 1 points.

If the number of degrees of freedom match the number of independent constraints, we will have
a unique solution. If we have more constraints than degrees of freedom, then the problem will have
no solution, unless some of the constraints are not independent. If we have more degrees of freedom
than constraints, there will be many solutions.

The problem statement above has N + 1 constraints, one for each knot. How many degrees of
freedom does a cubic spline over N + 1 knots have?

Consider that, in choosing an initial polynomial (for the first partition [rg,x1]), we have four
degrees of freedom. As we’ve seen, we only have one degree of freedom for the cubic polynomial
in the next partition, and the same for each partition thereafter. Since we have N total partitions,
we have N + 3 degrees of freedom. Thus, the problem as stated is under-constrained.

We can address this in two fundamental ways, by increasing the number of constraints or
decreasing the number of degrees of freedom. These translate into the following two general methods
for forming a spline interpolation problem.

Not-a-Knot

Reduce the number of degrees of freedom by removing two knots from the list of knots. We
remove the second knot x1 and the next to last knot zpny_1

(900, 1,22, .. >$N—27$N—17$N) - (960,902, . 7IBN—2,$N)

Note that the points (1, zy—_1) are still used in determining the polynomials near the end-
points, but instead of finding two cubic polynomials over the two intervals [z, x1], [z1, z2],
we find a single polynomial over the interval [zg, x2]. We treat z,,_; similarly.

For example if we have the 7 interpolation points xg, ..., zg depicted below:

H
"
i
o
b
b
"

Instead of fitting polynomial pieces in every interval, i.e.,

| | | | | | |
I I [I I I I

we will combine the first two and the last two pieces:

| | | | |
[[I [I

Note that we still interpolated 1 and zx_1 - we just added constraints.

As another example, suppose we have just four interpolation points:

H
e
o
o

This gives the intervals

When we combine the first and second, and next-to-last and last intervals, we end up with a
simple polynomial interpolation problem over the whole interval:

| |
[I

Finally, if we have 5 interpolation points:

and we remove the first partition point and the next-to-last partition point, we get

- two pieces. So we interpolate this with two cubic polynomials.

Complete Spline Interpolation

Increase the number of constraints, by requiring that the cubic polynomial over [z, 21| match
the derivative of f at x¢ and placing a similar constraint at xp.

Of course, this can be difficult if you do not know the derivative of the function. (You can
estimate the derivative numerically in this case, but this has some subtleties and is outside
our scope.)

We will discuss these methods in more detail at the next lecture.

