€s412: INTRODUCTION TO NUMERICAL ANALYSIS 10/19/10

Lecture 11: Interpolation by Cubic Splines

Instructor: Professor Amos Ron Scribes: Yunpeng Li, Mark Cowlishaw, Nathanael Fillmore

1 Review

Recall from last time the definition of a cubic spline.

DEFINITION 1.1 (Cubic Spline). Given the partition T = (xg,2z1,Z2,...,2N) of interval [a,b], a
cubic spline s : R — R is any function defined on [a,b] such that

1. Each component of s is cubic, that is:
S|[93i,9ﬂi+ﬂ SRIE (fOT’iZO,lj,.,,N—l)

2. The second derivative of s is continuous over [a, b]

s € C?a,b]

(The notation s € C¥[a,b] means that s is k-times differentiable in the interval [a,b] and the
kth derivative is continuous.) We call the interior points of the partition x,xo,...,xNy_1 knots.
Using this definition, we gave the following (incorrect) formulation for a cubic spline interpolation
problem.

PrROBLEM 1.1 (Interpolation Using Cubic Splines). Given interval [a,b], a set of points & =
(zo,21,...,2N) partitioning the interval, and function f : [a,b] — R, find a cubic spline s with
knots x1,...,xN_1 such that

s(z;) = f(x;) (fori=0,1,...,N)

For simplicity, we assume that ¥ is given in order (a = xg < x1 < --- < xy = b), and that each
partition [x;, x; + 1] has the same size, though these assumptions are not required.

As we showed in the last lecture, this problem is under-constrained. A spline over N intervals
has N + 3 degrees of freedom, while the problem above gives only N 4 1 constraints (one for each
interpolation point). There are two fundamental ways we can change the problem to make the
number of constraints match the number of degrees of freedom. We can either reduce the number
of degrees of freedom for the spline s (not-a-knot), or increase the number of constraints (complete
spline interpolation).

Not-a-Knot

Reduce the number of degrees of freedom by removing two knots. We remove the first knot
21 and the last knot z_1, so the vector of knots becomes

(.1’1,.1‘2, e ,Z'N_Q,xN_l) — (.%'2, e ,J:‘N_Q)

Figure 1: Not-a-Knot Interpolation over 5 Points

Note that the points (z1,xy—_1) are still used in determining the polynomials near the end-
points, but instead of finding two cubic polynomials over the two intervals [z, x1], [z1, z2],
we find a single polynomial over the interval [zg, x2]. We treat z,,_; similarly.

ExXAMPLE 1.1. As an example, consider the mot-a-knot formulation for a problem with 5
interpolation points as shown in Figure 1. We discard original knots x1 and x3, leaving xo
as the only knot. We use polynomial interpolation to find a polynomial py € 1ls for interval
[0, 2] using the points xo,x1,x2,x3. Similarly, we find a polynomial interpolant p; € Il3
over [x9,x4] using points x1,x2,x3,x4. Since both of these polynomials are cubic, they have
4 degrees of freedom, giving 8 degrees of freedom total. However, we add the additional
constraints at the knot xo:

po(z2) = pi(x2)
po(ze) = pilzo)
po(z2) = pi(x2)

These constraints remove three degrees of freedom, so that we are left with 8 — 3 = 5 degrees
of freedom, matching the original number of constraints.

Complete Spline Interpolation

Increase the number of constraints, by requiring that the spline s matches the derivative of
f at the endpoints.

s'(zo) = f'(wo)
s'zy) = fl(zn)
Unfortunately, the derivative of the function we are approximating is not always available.

Even though complete spline interpolation can produce slightly better results than the not-a-knot
formulation, it is not always possible to use it.

2 Using Splines

We will not discuss explicit algorithms for constructing cubic splines in this course. Instead, we
will rely on the Matlab functions spline and ppval.

s = spline(x, y)

Input

x - The vector of nodes for the interpolation.

y - The vector of function evaluations at the nodes z (i.e. y = f(x)).

Output

spline outputs an abstract entity that represents the spline matching the given inputs.
Examining the output value s directly is not useful, but you can use s as input to other
Matlab functions, such as ppval to evaluate the spline.

You can use spline to perform spline interpolation using both forms of the problem.

Not-a-Knot
If length(y) = length(x), then Matlab will use the not-a-knot formulation to create the
spline s.

Complete Spline Interpolation

If length(y) = length(x) + 2, then Matlab will use complete spline interpolation to create
the spline s. Matlab expects that the y vector is of the form

y = [f'(z0), f(x0), f(x1), ..., flen—1), f(xn), f'(xN)]

w = ppval(s, z)

ppval evaluates a given piecewise polynomial (the output of the spline function) over a
given vector of points.

Input
s - A spline, the value returned by spline(x, y).
z - A set of points over which to evaluate the spline.

Output
ppval outputs the vector of spline evaluations at the points in z (i.e. w = s(z)).

For example, to interpolate the function sin(¢) using 10 interpolation points over the interval
[0, 3.1] then evaluate the result over a dense mesh of points z from [0, 3.1], we could use the following
Matlab commands:

x = linspace(0, 3.1, 10)

y = sin(x)

% z is a dense mesh of points on [0, 3.1]
z = linspace(0, 3.1)

s = spline(x, y)

ppval(s, z)

=
]

Note that there is a shorthand version of the spline function using three parameters that will
create a spline and evaluate it over a given set of points. The above code can be rewritten as
follows:

x = linspace(0, 3.1, 10)

y = sin(x)

% z is a dense mesh of points on [0, 3.1]
z = linspace(0, 3.1)

w = spline(x, y, z)

3 Error Analysis

Recall from previous lectures that we calculate interpolation error as the maximum difference (in
absolute value) between the function we are trying to approximate and our approximation. When
we calculate the error of piecewise functions over an interval [zg, z], we express the error in terms
of the width h of each subinterval [x;, z; + 1], with h = (zny — x¢)/N, as shown in Figure 2. In this
way, we can correlate the error to the cost of performing the interpolation.

Figure 2: A Subinterval [x;, z;1+1] of the Interval [z¢, z]

Recall that the error of piecewise cubic functions was O(h%), so that if we double the cost of
interpolation (by halving the size of each subinterval), the error will be reduced by a factor of 16.
We would expect the error of cubic splines to be similar. The error for cubic spline interpolation
using the not-a-knot form of the interpolation problem is:

5

— ~ A @ . KA

HS f”oo,[:po,:pN]\ / 384 Hf HOO,[%(),wN] \h’ ; (1)
1) > ¢

(2 (3)
This error expression has several important features:

(1) ~

The expression is not an upper bound on the maximum error, but an approximation of the
maximum error. The error may be somewhat larger than this near the endpoints.

5

(2) 32
This is a small constant, so that, if the function is well-behaved, we should not have to make
the subintervals too small to get a small error.

ORI
The error depends on the fourth derivative of the function over the interval, so the function
must be four times differentiable on [z¢, z] for this formula to apply. A function with a large

00,[x0,ZN]

fourth derivative on the interval will require a fine partition of the interval. Note, however,
that this term is a constant so that, as long as the function is four times differentiable on the
interval, there is always some subinterval width A that will produce an acceptable error.

(4) 1
The error shrinks proportionally to the fourth power of the size of the subintervals. If we

double the amount of work, by shrinking the subinterval size by 1/2, the error will be reduced
by a factor of 16.

We can make several comparisons and remarks about this error formula:

e First, note that this error formula applies only to spline interpolation using not-a-knot, al-
though complete spline interpolation has a similar (though slightly smaller) error formula.

e Second, note that this error formula does not apply in the first and last subintervals in the
partition, since knots are removed here. The error in these subintervals could be bigger by
about 50%.

e Recall that for piecewise linear interpolation the error is bounded by %||f” ll00,[a,8] h%. Thus,
compared to cubic spline interpolation, piecewise linear interpolation requires less “fidelity”
from our function (only the second derivative f” must exist, not the fourth derivative f(*))
but has a slower rate (quadratic instead of quartic).

e For piecewise cubic interpolation we saw that the error is bounded by 3%4” f(4)||oo,[a7b}h4,
which only differs from the error for cubic spline interpolation by a small constant factor.
The primary advantage of splines over piecewise cubic polynomials is not that splines have
better error, but that splines have derivatives everywhere on the interval.

3.1 Examples of Error Analysis for Spline Interpolation

EXAMPLE 3.1. If we use spline interpolation to approximate f(t) = cos(t) over the interval [0, 3.1]
with h = 0.1, what is our expected error?

Since we know that f®)(t) = cos(t),

f(4)HOO7[$O7$N] < 1. Plugging into error equation 1 yields:

5 . 5 1
. 1-(0.1)f = =
381 L (O-1) 3,840,000 768,000

Notice that this relatively small error required only 31 + 1 = 32 function evaluations.

We can also use equation 1 to decide how many function evaluations to perform to reach an
“acceptable” level of error. This is a task of practical importance; for example we may want
to determine in advance how many function evaluations are needed to achieve a certain level of
interpolation error before we run an expensive or time-consuming experiment to access the function.

ExXAMPLE 3.2. Consider a function f : [0,5] — R that is defined, but not easily accessible. We
know the following facts, which uniquely define f on the interval [0, 5]:

f//(t) | 05 — €_t2
f0) =
f10) =

How many function evaluations must we perform to approzimate f on [0,5] using cubic spline
interpolation, if we would like the error to be approximately 10762

To solve this problem, we use equation 1, set the error to 1079, and solve for h to determine an
appropriate number of function evaluations:

i - »

To determine ” @ HOO 0,5 We must evaluate f4) at the endpoints and at any local extrema on

the interval, so to find local extrema, we must differentiate f” three times.

f =t
O =2t
FOH) =20 442 = (42 — 2)e "’
(t)

= 8te " + —2t(4t2 — 2)e ™" = 4t(3 — 262)e "

Setting f(®)(¢) = 0, we find the local extrema 0 (which we would evaluate anyway, since it’s an
endpoint), and 1/3/2. Evaluating @ we find that

f0(0) =2
F0(/3/2) = 0.4402
f4(5) =0
So, ||f® HOO 05 = 2. Plugging this value into equation 2 yields
5
=~ 9.4 = 1076
384 0
3841076
Rt = T
2-5
h = V384-10-7
h = 0.0787
5—0
N = — =64
W 6

Since we require N + 1 function evaluations to perform the spline interpolation, 65 function
evaluations in total are needed to achieve an error of about 1075.

What if, having completed the above analysis, we change our mind, and we now want error of
about %10*6? We don’t need to completely redo the analysis, but instead can do the following.

Let h and N be the subinterval size and the number of subintervals we found above, resulting
in error about 1076, If we set b/ = %h then observe that

5 4 4 5 4 L,
sgill oo (1) = 2 11 Plloo, 0.5 (51)
15
-~ " f@¥ 4
~ L6
zﬁlo by above

So N’ = 2N evaluations are needed to achieve the new error.

We end with two related notes:

e Note that when we are dealing with functions that are difficult to access, achieving an error
of 1076 is dependent on the accuracy of our function evaluations. We must have accuracy of
at least 1076 in the evaluations to have any hope of similar accuracy in the spline interpolant.

e Recall that to do complete spline interpolation we need derivatives at the endpoints. If these
derivatives are not known, people sometimes approximate the derivative at the endpoints
using a finite mesh, say using five points. If one does this, one needs to be careful, since
the error introduced by approximating the derivatives can be larger than the error of splines
on the whole interval. Usually, it is better to just use not-a-knot if the derivatives at the
endpoints are not known.

