€s412: INTRODUCTION TO NUMERICAL ANALYSIS 10/21/10

Lecture 12: Cubic Hermite Spline Interpolation

Instructor: Professor Amos Ron Scribes: Yunpeng Li, Mark Cowlishaw, Nathanael Fillmore

1 Review of Interpolation using Cubic Splines

Recall from last time the problem of approximating a function over an interval using cubic splines.

PROBLEM 1.1. Given an interval [a,b], a function f : [a,b] — R, and a set of nodes ¥ =
(zo,21,...,2N). Assume for simplicity that a = z9 < 1 < -+ < xny = b. Find a cubic spline
s [a,b] such that

s(x;) = f(x;) (fori=0,1,...,N)

We showed last time that, using the not-a-knot formulation, the error for the spline s could be
approximated as:

I = Flowosy ~ 5o |7, -4 1)

00,[a,b]
We did not provide an algorithm for finding a spline, but we can use builtin Matlab functions to

create and evaluate splines. For example, to create and evaluate a spline s approximating function
f using nodes x, we could use the following Matlab commands.

s spline(x, f(x))

sval = ppval(s, z)

where s is the internal representation of a spline in Matlab, x is a set of nodes, z is a dense mesh
of points to evaluate the spline at and sval is the evaluation of the spline s at the points z.
Recall the example we used to end the last lecture.

ExaMPLE 1.1. Consider a function f : [0,5] — R that is defined, but not easily accessible. We
know the following facts, which uniquely define f on the interval [0, 5]:

f”(t) | 05 = €_t2
f(0) =0
f(0) =0

How many function evaluations must we perform to approximate f on [0,5] using cubic spline
interpolation, if we would like the error to be approzimately 10762

Last time we determined that it would take approximately 65 function evaluations to achieve
an error of around 1076, It is important to note that this accuracy is entirely dependent on the

accuracy of our function evaluations - if the function evaluations do not have an accuracy of at
least 1076, then the extra digits of accuracy in the spline interpolation are meaningless.

This may seem like an unimportant point but later on, we will find that some methods for
evaluating functions defined similarly to f over an interval [a,b] will require doing incremental
evaluations over a dense mesh of points on [a, b]. Since the error of the spline is proportional to the
4th power of the size of the intervals, the error of the spline we could derive from these incremental
evaluations over a large number of points could be dwarfed by the errors of the individual evaluations
themselves. Finally, we will end our discussion of interpolation with interpolation by cubic Hermite
splines.

2 A Different Polynomial Interpolation Problem

We will motivate interpolation by cubic Hermite splines by way of an example problem in polynomial
interpolation.

PROBLEM 2.1. Given an interval [L, R] and a function f : [L,R] — R, find a polynomial p € Il3
approzimating f such that:

p(L) = f(L)
p(R) = f(R)
p(L) = f(L)
P(R) = f(R)

Figure 1: Situation described in Problem 2.1

The idea is that the interval [L, R] will be a subinterval in a larger interval [a, b], so that we can
piece together several such solutions to form an approximation of f over a larger interval.

This problem is somewhat different than the interpolation problems we have seen before, which
only involved constraints using the function values. For example, even though we want to interpolate
just two points, we have four constraints, so we will need to take the interpolating polynomial p
from the class II3 of cubic polynomials. The question is, can we adapt the tools we already have
for polynomial interpolation to solve this problem?

2.1 Solution Using Divided Differences

The answer is yes, we can solve this problem using divided differences. Recall the formula for filling
out the divided difference table
N z; ifj=0
Dli, j] = fl@i, Tig1, -+, Tivj] = Dliyj—1]=D[i+1,j-1]]
Ti—Titj

(2)

Otherwise

where D[i, 7] is the entry in the ith row and jth column of the divided difference table, with indexes
starting from 0. If we look at the entries in column 1 of the table, we see that:

Dli 1] = fle xi1] = D“’Oii—_ll[:mn o
_ fa) — flai) "

Tj — Ti41

So flx;, zi+1] is the slope of the secant line from f(z;) to f(zi+1).
To solve a problem like Problem 2.1, we set up the divided difference table by doubling the
points and putting them in the order L, L, R, R:

L | fIL] | fIL.L] | fIL,L,R] | fIL,L,R R |
L fIL] | fIL,R] | fIL, R R

R | fIR] | fIR,R

R | fR]

So, how can we use our derivative values, and how do we define f[L,L] and f[R, R], since, ac-
cording to equation 3, each evaluates to 0/07 Consider f[L,L]. We can try perturbing the second
point near L, yielding

fIL L] = lim fIL,L+¢]
g [0 = (1)

e—0 €
= fi(L)

Thus, we can set f[L, L] = f'(L) and f[R, R] = f'(R), allowing us to fill in the divided difference
table as usual. We obtain the Newton polynomials for the first row of the table by considering the
points in order (L, L, R, R)

No(t) 1
Ni(t) = t—L

No(t) = (t—L)(t—L)=(t—L)
Na(t) = (t—LY(t—R)

So that we obtain the polynomial p:
p(t) = f(L)-1+f'(L)-(t=1)+ fIL,L,R]- (t =1)” + f[L,L,R,R] - (t = L)*(t - R)

To illustrate this process, consider the following example.

Figure 2: Situation described in Example 2.1

EXAMPLE 2.1. Use divided differences to find a polynomial p € 13 that approximates a function f
over [0, 1] with

f(0) =
) =
flo) = -1
f1@) —2

We set up our divided difference table by doubling the points 0 and 1, filling in the values for
f in column 0 and the values for f’ in the appropriate rows of column 1.

1 ‘

-2

== o O

’wwﬂﬁ%

We can then fill out the rest of the table using equation 2.

= o O

’ww%m
|
N

No(t) = 1
Ni(t) = t—0=t
No(t) = t(t—0) =t
N3(t) = t3(t—1)

And the polynomial p is:

p(t) = 4-14+—-1-t+0-*+-2-3(t—1)

2.2 Error Analysis
Given that we are using a cubic polynomial to approximate f, the error for ¢ € [L, R] is given by:

A
4l

(t—L)(t—L)(t—R)(t—R) for some c € [L, R] (5)
(*)

f(t) —p(t) =

L Midpoint R

Figure 3: Graph of (t — L)?(t — R)? over [L, R]

Since (*) is a quartic polynomial with a double-root at each endpoint, as shown in Figure 3, its
maximum will be at the midpoint (L + R)/2, so that we can bound the error for ¢ € [L, R] with
the expression:

f(4) ~ _ 4
50 -po) < 1 izm (=D ©

For example 2.1, this yields the bound

£ o pmy (1 = 0)*
4! 16
£ o fzm
384

B| <

This error formula depends only on the fidelity of our function - there’s no parameter we can change
to control the error, if L and R are fixed - so the procedure we have described in this section is not
practical by itself. However, we will use it as a building block in the next section.

3 Cubic Hermite Spline Interpolation

The idea behind interpolation by cubic Hermite splines is to piece together the polynomials we
constructed in the previous section. Given an interval [a, b], a function f : [a,b] — R, with derivative
1"+]a,b] — R we would like to find a cubic Hermite spline s that approximates f over [a,b]. Our
method will be to split the interval [a, b] into N subintervals using nodes & = (xq, z1,...,zN) with
a=u1xy<z <- - <axy =>b. For each subinterval [z;, z;;1], we find the cubic polynomial p € II3
with

plzi) = f(z)
p(Tit1) f(@it1)
o) = f(i)
Pri) = flwin)

If we simply piece these individual polynomials together, and we assume that each subinterval
has width h = (b — a)/N, logically we can bound the error for t € [a, b] using:

< Hf(4) Hoo,[a,b]
- 384

[E()] - ht

For our error analysis, the nodes ¥ are assumed to be equidistant, but this need not be the
case. However, there is no reason to choose a different point distribution unless we have particular
knowledge of f. For example, if we know that f is highly oscillatory on some part of [a,b], we
might choose more points from this part and fewer points elsewhere to improve the overall error.

Figure 4: Interpolation of cos(t) over [0, 3.1] using Cubic Hermite Splines and Associated Error

Note that the process of cubic Hermite spline interpolation requires f to be differentiable ev-
erywhere on [a, b], and further, requires that we know how to differentiate f, so that we may not
always be able to use this method.

In Matlab, the pchip function does cubic Hermite spline interpolation. Figure 4 shows an
example using pchip to interpolate cos(t) over the interval [0, 3.1].

Next time we will compare cubic spline interpolation with cubic Hermite spline interpolation.

