
cs412: introduction to numerical analysis 10/26/10

Lecture 13: Cubic Hermite Spline Interpolation II

Instructor: Professor Amos Ron Scribes: Yunpeng Li, Mark Cowlishaw, Nathanael Fillmore

1 Cubic Hermite Spline Interpolation

Recall in the last lecture we presented a special polynomial interpolation problem.

Problem 1.1. Given an interval [L, R] and a function f : [L,R] → R, find the cubic polynomial
p ∈ Π3 with

p(L) = f(L)
p(R) = f(R)
p′(L) = f ′(L)
p′(R) = f ′(R)

Recall that we found a solution to problem 1.1 of the form:

p(t) = ã1(t− L)2(t−R) + ã2(t− L)2 + ã3(t− L) + ã4 (1)

Last time we saw that we can bound the error on p for t ∈ [L,R] using:

|E(t)| ≤
∥∥f (4)

∥∥
∞,[L,R]

384
· (R− L)4

To approximate a function f over an interval [a, b], we can split the interval [a, b] into N
subintervals using partition points ~x = (x0, x1, . . . , xN), and solve problem 1.1 for every subinterval
[xi, xi+1]. More formally, we can define the following cubic Hermite spline interpolation problem.

Problem 1.2 (Cubic Hermite Spline Interpolation). Given an interval [a, b], a function f : [a, b] →
R, with derivative f ′ : [a, b] → R, and a set of partition points ~x = (x0, x1, . . . , xN) with a = x0 <
x1 < · · · < xN = b, find a set of polynomials p0, p1, . . . , pN−1 (a cubic Hermite spline) with

pi(xi) = f(xi)
pi(xi+1) = f(xi+1)

p′i(xi) = f ′(xi)
p′i(xi+1) = f ′(xi+1)

for i = 0, 1, . . . , N − 1.

1

If we assume that each subinterval [xi, xi+1] has equal width h = (b−a)/N , then we can bound
the error for t ∈ [xi, xi+1] as follows.

|E(t)| ≤
∥∥∥f (4)

∥∥∥
∞,[xi,xi+1]︸ ︷︷ ︸
(∗)

· 1
384

· h4 (2)

Note that we bound the error of the cubic Hermite spline over each subinterval [xi, xi+1] indi-
vidually, yielding a very fine-grained error bound. Since the error depends on the fourth derivative
of f only over a small interval (*), large fluctuations of the function in one subinterval will not
affect the error in a different subinterval. We can also use a more coarse error bound, using the
maximum of the 4th derivative of f over the entire interval, but this may be a slight overestimate
of the error.

To illustrate the effect of the 4th power of h in equation 2, consider the following example.

Example 1.1. Given a function f : [0, 4], if we partition [0, 4] into N equal size partitions and
perform cubic Hermite spline interpolation, we obtain an (experimental) error of ≈ 10−3. Ap-
proximately how many subintervals M (as a function of N) must we use to obtain an error of
≈ 10−5?

Examining the error function for t ∈ [a, b]

|E(t)| ≤
∥∥f (4)

∥∥
∞,[a,b]

384︸ ︷︷ ︸
(∗)

·h4

we see that (*) is simply a constant , so that, in the first case, we have:

|E1(t)| ≈ 10−3 = cf · h4 = cf ·
(

4− 0
N

)4

where cf is a constant that depends on f . Similarly, in the second case:

|E2(t)| ≈ 10−5 = cf · h4 = cf ·
(

4− 0
M

)4

To determine M , we take the quotient of the two errors and solve for M :

|E1(t)|
|E2(t)| =

10−3

10−5
= 100

100 =
cf ·

(
4
N

)4

cf ·
(

4
M

)4

100 =
(

M

N

)4

M

N
= 4

√
100 u 3.1

Thus, it will take approximately M = 3.1 ·N intervals to reduce the error by a factor of 100.

2

2 Comparison of Interpolation Methods

Now that we have seen two methods for interpolation using two different kinds of splines (cubic
splines and cubic Hermite splines), how can we choose which method to use for a particular problem?
Table 1 compares some properties of each method.

Cubic Hermite Splines Cubic Splines

Error Bound:
1

384
||f (4)||∞[a,b]h

4 5
384

||f (4)||∞[a,b]h
4

Smoothness: C1 C2

Locality: very local local

Table 1: Comparison of Interpolation by Cubic Hermite Splines and Cubic Splines

As we can see from the table, both methods have an error bound that is O(h4). But it would
seem that cubic Hermite spline interpolation uses a smaller constant:

1
384

∥∥∥f (4)
∥∥∥
∞,[a,b]

<
5

384

∥∥∥f (4)
∥∥∥
∞,[a,b]

so that it would provide more accuracy for the same interval size h. However, to truly gauge the
speed of each algorithm (the amount of cost required to achieve a desired accuracy), we need to look
more closely at the cost of each algorithm. As before, we’ll use the number of function evaluations
to gauge the cost.

It is easy to see that cubic spline interpolation over N intervals requires N + 1 function evalu-
ations (one for each partition point). On the other hand, cubic Hermite spline interpolation over
N subintervals requires N + 1 function evaluations and an additional N + 1 evaluations of the
derivative. Assuming that evaluating the derivative is at least as costly as evaluating the function,
this means that finding cubic Hermite splines over N subintervals is twice as expensive as finding
cubic splines. So, for the same cost, we can use twice as many subintervals (subintervals of half
the size) to find cubic splines as we use for cubic Hermite splines. So, the error for cubic splines
normalized for cost is:

|E(t)| ∼ 5
384

||f (4)||∞[a,b]

(
h

2

)4

=
5

16 · 384
||f (4)||∞[a,b]h

4

and thus, cubic splines can produce slightly more accuracy for the same cost as cubic Hermite
splines. Note that this analysis applies to situations in which the cost of evaluating the function
dominates the cost of running the algorithm given the function values. This covers most interesting
cases, however, if function and derivative values are provided in advance, the algorithm for finding
cubic Hermite splines over N subintervals is actually faster than the algorithm for finding cubic
splines over the same subintervals.

From the table, we can see that both kinds of splines are differentiable, but cubic splines are
doubly differentiable, so they may provide a more pleasing visual representation of the function.

The last row in the table compares the locality of the methods. Locality measures the degree
to which the function approximation is affected by small, local changes in the interpolation data.

3

A method is local if small, local changes in the interpolation data have limited affects outside the
area near the change. A method is global if small, local changes in interpolation data may affect
the entire approximation. An example of locality is shown in Figure 1.

We can tell from the algorithm for cubic Hermite spline interpolation that the method is ex-
tremely local. If we change a single interpolation point xi, the approximation can only be affected
in the two intervals [xi−1, xi] and [xi, xi+1] that share that partition point. It turns out that cubic
spline interpolation is also local, but not quite to the degree of cubic Hermite spline interpolation.
In cubic spline interpolation, local changes to the interpolation data may have small effects out-
side the area of change, but these effects diminish rapidly as the distance from the area of change
increases. In contrast, polynomial interpolation is a global method - local changes in interpolation
data can affect the entire approximation.

function f

interpolant
function

function f

interpolant
functionnew interpolation

 point

Figure 1: An Example of a Local Interpolation Method

3 Cubic Hermite Spline Interpolation in MATLAB

There are two methods of doing interpolation using cubic Hermite splines in Matlab. The first is
the function pchip.

pp = pchip(x, f(x))

pchip takes a vector of nodes x and the corresponding function values f(x), and produces a cubic
Hermite spline in Matlab’s internal format. One can then use ppval to evaluate the cubic Hermite
spline over a dense mesh of points.

The careful reader will notice that pchip takes function values as input, but no derivative values.
This is because pchip uses the function values f(x) to estimate the derivative values. Recall that
we can approximate the derivative at a point x1 using the slope of a secant line between adjacent
points x0 and x2:

f ′(x1) u
f(x2)− f(x0)

x2 − x0

However, this would produce an error ∼ O(h2), which is much worse than the interpolation
error. To do a good derivative approximation, the function has to use an approximation using 4

4

or more points - the exact algorithm is beyond the scope of this class. It is important to realize,
however, that approximating the derivative introduces an additional error into the interpolation.

Luckily, using Matlab we can write our own functions to do interpolation using real cubic
Hermite splines.

3.1 Creating a Function for Cubic Hermite Spline Interpolation

Recall that, to do spline interpolation, we use the command spline, for example:

s=spline(x,f(x))

We can evaluate the spline s using the function ppval.

fv=ppval(s,z)

We can access the individual polynomial pieces of a spline using the unmkpp command.

[X, C, . . .] = unmkpp(s)

unmkpp returns an array of 5 elements, but we only need the first two.

(1) X

The vector of input nodes that were used in creating the spline.

(2) C

A matrix containing a representation of the polynomials for each subinterval. Each row i
of the matrix contains the coefficients of the polynomial for the ith interval. Remembering
that Matlab indexes vectors and matrices starting with 1, the first row C(1) represents the
interval [X(1), X(2)] (the first two elements of the vector X). In our previous notation, this
is the interval [x0, x1]. Thus, C has the form:

C =




a11 a12 a13 a14

a21 a22 a23 a24
...

...
...

...
ai1 ai2 ai3 ai4
...

...
...

...
aN1 aN2 aN3 aN4




The polynomial for row i, pi for the interval [xi−1, xi] is represented as:

pi(t) = ai1(t− xi−1)3 + ai2(t− xi−1)2 + ai3(t− xi−1) + ai4

If we replace xi−1 with L, this becomes:

p(t) = a1(t− L)3 + a2(t− L)2 + a3(t− L) + a4 (3)

5

If we can reconstruct this matrix C, then we can create a cubic Hermite spline s using the Matlab
function mkpp:

s = mkpp(X, C)

Recall that the result of cubic Hermite spline interpolation was a polynomial for each interval [L,R]
of the form:

p(t) = ã1(t− L)2(t−R) + ã2(t− L)2 + ã3(t− L) + ã4 (4)

Substituting [t− L− (R− L)] for (t−R) in equation 4 yields:

p(t) = ã1(t− L)2[t− L− (R− L)] + ã2(t− L)2 + ã3(t− L) + ã4

= ã1(t− L)3 − ã1(t− L)2(R− L) + ã2(t− L)2 + ã3(t− L) + ã4

= ã1(t− L)3 + [ã2 − ã1(R− L)](t− L)2 + ã3(t− L) + ã4

Thus we can represent each polynomial p we obtain from cubic Hermite spline interpolation as a
row of matrix C using:

a4 = ã4

a3 = ã3

a2 = ã2 − ã1(R− L)
a1 = ã1

Using this transformation, we can create the matrix C, and use it to create true cubic Hermite
splines in Matlab.

6

