
cs412: introduction to numerical analysis 11/02/10

Lecture 15: Linear Algebra II

Instructor: Professor Amos Ron Scribes: Mark Cowlishaw, Nathanael Fillmore

Recall that last time, we were discussing the numerical solution of systems of linear equations.

A~x = ~b

We shall discuss four important aspects of numerical solutions to linear systems:

1. Algorithms - What methods can we use to find numerical solutions to linear systems.

2. Complexity/Cost - What is the cost of each algorithm. This will determine how large a
linear system can be solved in a reasonable amount of time.

3. Conditioning - How good is the system we are trying to solve? Some (ill-conditioned)
systems of equations will pose problems for any numerical algorithm.

4. Stability - How reliable are the algorithms.

As we discussed last time, all of the direct, finite algorithms for solving linear systems use
factorization, which is decomposing the matrix A into simple matrices, then solving the resulting
set of linear equations.

1 Simple Matrices

What do we mean by a simple matrix? We shall discuss three kinds of simple matrices:

• Lower Triangular Matrices

• Upper Triangular Matrices

• Orthogonal Matrices

1.1 Lower Triangular Matrices

A lower triangular matrix is a matrix in which all the elements above the diagonal are zero (A =
(aij), ∀j>i aij = 0).

AN×N =




a11 0 0 . . . 0
a21 a22 0 . . . 0
...

...
...

...
...

aN1 aN2 . . . aNN−1 aNN




If we are given the system

A~x = ~b
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with A lower triangular, then the first row corresponds to the equation

a11 · x1 = b1

We can then substitute the resulting value for x1 into the equation that corresponds to the
second row of A.

a21 · x1 + a22 · x2 = b2

Leaving only one unknown to solve for. Clearly, we can continue this process until we have deter-
mined each entry of ~x, solving a single equation with a single unknown at each step. This process
is known as forward substitution. How many computations does this process require? In general,
we must perform one multiplication for each non-zero entry in A. There is 1 non-zero entry in row
1, 2 non-zero entries in row 2, and so on, yielding:

N∑

i=1

i =
N(N − 1)

2
u

N2

2

So, we must perform about N2/2 calculations to solve a linear system containing a lower-
triangular matrix. Note that this is essentially the theoretical optimum cost, since we are performing
about one calculation per non-zero entry in the matrix. In general, we expect that any algorithm
for solving a general linear system must perform at least one calculation per entry in the matrix, or
O(N2) operations in total, so that forward substitution is quite a good method (when it is possible
to use it).

For example if we are given the system




2x1 = 7
3x1 + 5x2 = 8
4x1 − 4x2 + x3 = −2

we solve

2x1 = 7 so x1 = 3.5

then

3 · 3.5 + 5x2 = 8 so x2 = −0.5

and finally

4 · 3.5− 4 · (−0.5) + x3 = −2 so x3 = −2− 4 · 3.5 + 4 · (−0.5) = −18.

1.2 Upper Triangular Matrices

Similarly, an upper triangular matrix is a matrix in which all the elements below the diagonal are
zero (A = (aij),∀j<i aij = 0).

AN×N =




a11 a12 . . . a1N−1 a1N

0 a22 a23 . . . a2N

0 0 a33 . . . a3N
...

...
...

...
...

0 0 . . . 0 aNN




2



If we are given the system

A~x = ~b

with A upper triangular, then the final row corresponds to the equation

aNN · xN = bN

As before, we can solve this equation and substitute the resulting value for xN into the equation
for the row above. We can continue this process, solving one equation with one unknown at each
step, until the entire linear system is solved. We call this process backward substitution. As before,
we must perform about N2/2 calculations to solve a linear system containing an upper triangular
matrix using this method.

1.3 Orthogonal Matrices

An orthogonal matrix is a square matrix with inverse equal to its transpose, that is:

A ·AT = AT ·A = I

For example, consider the matrix Q:

Q =
[

0.6 0.8
−0.8 0.6

]
QT =

[
0.6 −0.8
0.8 0.6

]

It is easy to verify that Q ·QT = QT ·Q = I. Note that if we can write a linear system in terms
of an orthogonal matrix Q, then we can easily find the inverse by transposing the matrix, and use
this to find the solution:

Q · ~x = ~b

QT · (Q · ~x) = QT ·~b
(QT ·Q) · ~x = QT ·~b

I · ~x = QT ·~b
~x = QT ·~b

However, the seeming simplicity of obtaining the solution is not enough, we must quantify just
how costly this operation is. To get the solution, we multiply the vector ~b by the matrix QT .
Consider that, for ~b ∈ CN , to calculate each element (QT ·~b)i, we must perform N multiplications.
Since there are N such elements, there are N2 multiplications in total. This has the same order
of growth as the methods of forward and back substitution (O(N2)), but requires roughly twice as
many multiplications.

2 Factorization Algorithms

The idea of factorization is to take a linear system

A · ~x = ~b (1)
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and transform A into the product of simple matrices B and C:

A = B · C

We can then express our system as

Ax = b

⇐⇒ (BC)x = b

⇐⇒ B(Cx) = b

⇐⇒ By = b and Cx = y

Thus, using the transformation C · ~x = y, we can solve equation 1 by solving two linear systems
involving only simple matrices:

B · ~y = ~b

C · ~x = ~y

As we saw earlier, the cost of solving a system with a N ×N simple matrix of coefficients is only
O(N2) - so once we have B and C, the total cost of solving the system Ax = b is also O(N2).
Unfortunately, the factorization of A needed to get B and C requires O(N3) operations, so the cost
of factorization dominates the cost of the solution.

We will next discuss two prevailing factorization algorithms, LU factorization and QR factor-
ization.

2.1 LU Factorization

As the name suggests, in LU factorization, we factor the matrix A into the product of a lower and
upper triangular matrix:

A = L · U

This process is identical to the familiar process of solving a linear system by elimination. For
example, consider the following linear system:

[
1 2
3 4

]

︸ ︷︷ ︸
A

·
[

x1

x2

]

︸ ︷︷ ︸
~x

=
[

5
6

]

︸ ︷︷ ︸
~b

We might solve this system by multiplying the first row of the matrix A by 3 and subtracting
it from the third row, and making similar transformations to ~b.

[
1 2
0 −2

]
·
[

x1

x2

]
=

[
5
−9

]
(2)

This is equivalent to solving the following system (arrived at by LU factorization):
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[
1 0
3 1

]

︸ ︷︷ ︸
B

[
1 2
0 −2

]
·
[

x1

x2

]

︸ ︷︷ ︸
y

=
[

5
6

]

︸ ︷︷ ︸
b

Since this yields:
[

1 0
3 1

]
·
[

y1

y2

]
=

[
5
6

]

[
y1

y2

]
=

[
5
−9

]

we then solve the equation:
[

1 2
0 −2

]
·
[

x1

x2

]
=

[
5
−9

]
(3)

to obtain our final values for ~x. Note that equations 2 and 3 are identical. In general, LU factor-
ization is equivalent to solving a system by elimination.

In Matlab, we can find the LU factorization of a matrix A via the command

[L,U,P] = lu(A)

This LU factorization command returns the lower and upper triangular matrices L and U , and
also a permutation matrix P . This is due to a problem with the stability of the LU factorization
method, which we will discuss later.

LU-factorization of an N ×N matrix takes approximately N3

6 operations.

2.2 QR Factorization

In QR factorization, we split the matrix A into an orthogonal matrix Q and an upper triangular
matrix R:

A = Q ·R

Transforming the equation A~x = ~b into:

Q · ~y = ~b

R · ~x = ~y

In Matlab, we can find the QR factorization of a matrix A via the command

[Q,R] = qr(A)

QR factorization on an N × N matrix takes about N3

3 operations, about twice as many as
LR-factorization, however, there are situations in which it is a more appropriate choice.
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3 Conditioning

In an ideal world, we would now be done. Unfortunately, in practice we will always need to solve
systems on finite precision machines. Can it happen that things go really wrong when we use finite
precision? The answer is that for some systems, things can go very wrong.

To find out whether things will go wrong for a particular linear system Ax = b, we need to study
how susceptible that linear system is to small perturbations in the right-hand side. For example,
given two linear systems using matrix A

A · ~x = ~b

A · ~x′ = ~b′,

we would like to know that small perturbations in the right-hand side of such linear equations
produces small changes in solutions, that is:

‖x′‖
‖x‖ ∼

‖b′‖
‖b‖

What we would especially like to avoid is small changes in the right-hand side ~b resulting in
large changes in the solution ~x. The reason is as follows: when solving a linear system numerically,
all data values in ~b are represented with finite precision and so will have some error (call it ~b′).
Thus, any linear system that we solve numerically can be represented as

A ·
(
~x + ~x′

)
= ~b + ~b′

where ~b′ is a measure of the error of ~b resulting from finite-precision. From the distributive law, we
know that this is equivalent to solving the following two systems:

A · ~x = ~b

A · ~x′ = ~b′

If
∥∥∥~x′

∥∥∥ is very large in comparison to
∥∥∥~b′

∥∥∥, then the solution to the linear system is dominated

by the error in the right hand side, so that the solution ~x + ~x′ returned by our numerical method
will be very far from the actual solution ~x. Similarly, if small changes in

∥∥∥~x′
∥∥∥ cause very large

changes in
∥∥∥~b′

∥∥∥, then we will be unable to distinguish between numerical solutions ~x and ~x + ~x′ to
very different linear systems.

On the other hand, if the solution ‖x′‖ to Ax′ = b′ is always roughly the same size as ‖b′‖,
then we can have confidence that even on a finite precision machine our solutions to Ax = b will
be accurate.

The property of a matrix A that we have been discussing above is called conditioning, and is
captured quantitatively in the condition number of a matrix.

Definition 3.1 (Condition Number). Given a norm ‖ ‖ and an N × N matrix A the condition
number of A is defined as:

cond(A) =
max{‖A · ~v‖ : v ∈ CN , ‖v‖ = 1}
min{‖A · ~v‖ : v ∈ CN , ‖v‖ = 1}
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Intuitively, the condition number measures

cond(A) =
“how much A can stretch a vector”
“how much A can shrink a vector”

So the condition number captures how “bad” the matrix is according to our discussion above.

For example, consider the matrix

A =
[
2 −2
1 −1 + ε

]

Say we use the 1-norm in the definition of the condition number. Note that

‖A‖1 = max{‖Ax‖1 : ‖x‖1 = 1}
≈ 3

On the other hand,

min{‖Ax‖1 : ‖x‖1 = 1} ≤
∥∥∥∥A

[
1/2
1/2

]∥∥∥∥
1

=
∥∥∥∥
[

0
ε/2

]∥∥∥∥
1

= ε/2

Thus

cond(A) ≥ 3
ε/2

=
6
ε
→∞

as ε ↓ 0.

If the condition number cond(A) is large, then due to the issues discussed above we might be
in bad shape, and we should try to avoid any linear system Ax = b involving A. Note that we are
not discussing any particular algorithm - a bad condition number affects any possible algorithm
implemented on a finite-precision machine.

A particular consequence is that even estimating the condition number itself on a finite-precision
machine number may run into problems. If Matlab says that the condition number of a matrix is
large, then we can be sure that it is large in reality. But if Matlab says the condition number is
small, it may still truly be large - so we need to be careful.

3.1 Geometric Interpretation of Conditioning

To illustrate the idea of conditioning, consider the case of a 2× 2 linear system:

a · x(1) + b · x(2) = c

d · x(1) + e · x(2) = f
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original solution x

perturbed solution x’

Figure 1: A Well-Conditioned Linear System

Each of these equations can be represented by a line in two-space, and a change to the right
hand side will result in shifting the line in a direction perpendicular to its slope (essentially, shifting
the line up or down). If this system is well-conditioned, the lines represented by the two equations
have slopes that are noticeably different, so that small changes to the right hand sides will result
in small changes in the solution, as shown in Figure 1.

Conversely, if the lines representing the equations have nearly identical slope, then small changes
in the right hand side will result in enormous changes in the resulting solution, as shown in Figure
2.

    

 

 

 

 

 

original solution x

perturbed solution x’

Figure 2: An Ill-Conditioned Linear System

An ill-conditioned linear system might have the form:
[

1 1
1 1 + ε

]

︸ ︷︷ ︸
A

·
[

x1

x2

]
=

[
?
?

]

where ε is some very small value. If we examine the effect of matrix A on some normalized vectors
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under the ∞-norm, we see that
∥∥∥∥
[

1 1
1 1 + ε

]
·
[

1
0

]∥∥∥∥
∞

=
∥∥∥∥
[

1
1

]∥∥∥∥
= 1∥∥∥∥

[
1 1
1 1 + ε

]
·
[

1
−1

]∥∥∥∥
∞

=
∥∥∥∥
[

0
−ε

]∥∥∥∥
= ε

Thus, if ε is very small, the condition number of A will be very large, and any corresponding
linear system will be ill-conditioned. Looking at the definition of condition number, we can see that
matrices can be ill-conditioned by mapping some vector into a vector with a very large norm, or
into a vector with a very small norm. We have already seen that the former idea can be measured
as the norm of the matrix.
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