
cs412: introduction to numerical analysis 11/4/10

Lecture 16: Linear Algebra III

Instructor: Professor Amos Ron Scribes: Mark Cowlishaw, Nathanael Fillmore

For the last few lectures we have discussed numerical solutions to linear systems of equations

A~x = ~b

We have particularly focused on four fundamental topics:

Algorithms

We introduced two direct algorithms for solving linear systems, both using the technique of
factorization: LU Factorization, and QR-factorization. Recall that LU-factorization factors a
matrix into the product of an upper-triangular and lower-triangular matrix. QR-factorization
factors a matrix into the product of an orthogonal and upper triangular matrix.

Complexity/Cost

We stated last time that for a system of n equations in n unknowns (represented by an
N × N matrix A), both LU and QR-factorization take time proportional to the cube of n
(O(n3)). LU-factorization takes less time by a constant factor of around 2 - as n gets large,
this constant factor is dwarfed by the third power of the matrix dimension, however.

Note that the theoretical “best-case” for the complexity of solving a linear system is O(n2),
since there are n2 entries in the matrix A, and any correct algorithm would have to examine
each entry.

Conditioning

As we discussed last time, conditioning is a property of the matrix A that determines whether
we can expect any numeric algorithm to provide a numerical solution to a linear system
involving A. The idea is that any linear system we represent on a computer has some error,
since we always use a fixed precision, that is the linear equation

A~x = ~b

really becomes a slightly perturbed system when represented on a computer:

Â~̂x = ~̂b

So that, if A has the property that small perturbations in ~b can produce large changes in ~x,
we have no hope of solving any linear system involving A, no matter which algorithm we use.
Recall that we measure this property of A using the condition number:

1

cond(A) =
max {‖A~v‖ : ~v ∈ Cn ∧ ‖~v‖ = 1}
min {‖A~v‖ : ~v ∈ Cn ∧ ‖~v‖ = 1}

If the condition number is large for a matrix A, then no system of linear equations

A~x = ~b

can be reliably solved using any numerical algorithm. For example, recall the ill-conditioned
matrix we discussed in the last lecture, and the difference in the norms of vectors (A~x) as
measured using the infinity norm:

∥∥∥∥
[

1 1
1 1 + ε

]
·
[

1
1

]∥∥∥∥
∞

=
∥∥∥∥
[

2
2 + ε

]∥∥∥∥
∞

= 2 + ε∥∥∥∥
[

1 1
1 1 + ε

]
·
[

1
−1

]∥∥∥∥
∞

=
∥∥∥∥
[

0
−ε

]∥∥∥∥
∞

= ε

Note that, since the norm of the second vector is very, very small, the condition number of
the matrix will be quite large, so that we cannot reliably solve any equation involving this
matrix using any numerical algorithm.

Stability

Unlike conditioning, stability is a property of the numerical algorithm and not of the system
of equations. Assuming that we are given a good linear system, stability measures how reliably
a particular algorithm will solve it.

For example, consider solving the following linear system of equations using brute-force elim-
ination (as we will see, this is essentially LU-factorization):

[
ε 1
1 1

]
·
[

x(1)
x(2)

]
=

[
1
2

]

As shown in Figure 1, the angle between the two equations:

ε · x(1) + x(2) = 1 (and)
x(1) + x(2) = 2

2

−2 0
0

2

4

e⋅ x
1
 + x

2
 = 1

x
1
 + x

2
 = 2

Figure 1: A Well-Conditioned Linear System

is quite large, so that we can see that the system is well-conditioned. Furthermore, since
ε ¿ 1 the solution x(1) = x(2) = 1 is nearly correct. If we solve this system using brute-force
elimination, we would multiply the top row by 1/ε and subtract it from the bottom row:

[
ε 1
0 1− 1/ε

]
·
[

x(1)
x(2)

]
=

[
1

2− 1/ε

]

Using back-substitution, we see that:

x(2) =
2− 1/ε

1− 1/ε

∼ −1/ε

−1/ε
(2) (since 1/ε >> 1, 2)

∼ 1

Which leads to the solution x(1) = 0, x(2) = 1, which is clearly not the solution to the original
equation. Note that the round-off that happens at step (2) depends only on ε. If ε is small
enough, it will cause this rounding in any fixed precision representation of numbers.

There is also another more theoretical way to see how our algorithm is at fault in the example
above. As was already hinted, what we did above was actually to solve the system via an
LU-factorization A = LU : We first solved the L-system

Ly = b

where

L =
[
1 0
1
ε 1

]

and we then solved the U -system

Ux = y

3

where

U =
[
ε 1
0 1− 1

ε

]
.

In order for this approach to avoid instability, the condition numbers of both L and U need to
be small: if L is ill-conditioned, then the method may fail while solving the L-system, while
if U is ill-conditioned, then the method may fail while solving the U -system. In our example
above, cond(L) ≈ 1, but cond(U) À 1, and indeed the algorithm introduces error precisely
when solving the U -system.

So if LU-factorization is unstable, why does Matlab use it? The answer is that the instability
of LU-factorization can be avoided by permuting the rows of the matrix A. For example, we
could rewrite the previous system with the first and second rows exchanged:

[
1 1
ε 1

]
·
[

x(1)
x(2)

]
=

[
2
1

]

Elimination produces the following upper triangular system:

[
1 1
0 1− ε

]
·
[

x(1)
x(2)

]
=

[
2

1− 2/ε

]

This system avoids the huge factor 1− 1/ε, and hence does not lead to the round-off error we
saw in the previous system. We call this reordering of rows a pivot. Pivoting can always be
used to make LU-factorization a stable algorithm.

Matlab uses pivoting to stabilize LU-factorization when you call lu:

[L,U,P] = lu(A)

Here P is a permutation matrix which permutes the rows of A in order to avoid an unstable
LU-factorization.

Note that QR-factorization is stable without pivoting, and takes roughly twice as long as
LU-factorization. (LU without pivoting costs ∼ n3/6 multiplications, while QR costs ∼ n3/3
multiplications.) Thus, any calculations to determine pivots in LU-factorization must take
less than a constant factor of 2 in the overall running time to make LU-factorization cost-
effective. We know that such efficient pivoting algorithms must exist, since Matlab uses
QR-factorization as the default direct method for solving linear systems of equations.

1 Indirect Methods

So far, we have discussed only direct algorithms for solving linear systems of equations. As we
have seen, the cost of these algorithms is O(n3) for an n × n matrix A. As the dimension n of
the matrix A gets very large, the problem of solving the system may become computationally

4

infeasible, due to this cubic term. For example, a matrix with dimension n = 104 would take
roughly O((104)3) = O(1012) computations to solve.

However, if we look at the theoretical minimum of O(n2), a system of size n = 104 might be
solvable in a reasonable period of time O((104)2) = O(108). This gap between systems that can
be reasonably solved using an algorithm with cost O(n2) but not an O(n3) algorithm is filled by
so-called indirect methods.

Indirect methods use an iterative process, similar to the iterative methods we used for solving
equations earlier this semester. The idea is to produce a series of solutions:

~x0, ~x1, . . . , ~xk

with each transition ~xi 7→ ~xi+1 taking less than O(n2) operations. If k ¿ n, that is, if we can
reach an acceptable solution in a relatively small number of iterations, then this method will be
more efficient than a direct method.

Indirect methods have an additional advantage - it turns out that as matrices get very large,
small calculation errors are magnified during factoring, so that there is a practical limit to how
large a linear system can be solved by direct methods.

2 Rectangular Systems

So far we have discussed the solution of square linear systems - systems in which the number of
equations match the number of unknowns. We will now look at solving rectangular linear systems,
systems in which the number of equations is larger than the number of unknowns (overdetermined
systems), or is smaller than the number of unknowns (underdetermined systems).

2.1 Overdetermined Linear Systems

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

9

10

x
1

x 2

3
4[]

[]6.1
7.9

Figure 2: An Overdetermined Linear System

An overdetermined system is a system of linear equations in which the number of equations is
larger than the number of unknowns. For example, consider the following linear system:

5

[
3
4

]
x(1) =

[
6.1
7.9

]

Clearly, this system has no exact solution, as depicted in Figure 2, so what do we mean when
we ask for a solution to the system? Intuitively, what we would like is the solution with the smallest
amount of error. If we define the error for an overdetermined linear system

A~x = ~b

using the difference between the vector (A~x) and the vector ~b, i.e.,

e = A~x−~b,

we notice that the error e is a vector, and we can measure its size using a norm. So, we solve an
overdetermined system A~x = ~b by minimizing

∥∥∥A~x−~b
∥∥∥ for some norm. The choice of norm is

important, as it may have a profound effect on the solution.

2.2 Least Squares

If we measure success using the 2-norm, then we are said to be using a least squares method.
For example, if we solve an overdetermined system as in the previous section using the 2-norm

to measure our error, then we are using a least squares method to solve our overdetermined system.
More formally, given an overdetermined linear system

A~x = ~b,

solving this system using least squares means finding a vector x∗ with the following property:
∥∥∥A ~x∗ −~b

∥∥∥
2
≤

∥∥∥A~x−~b
∥∥∥

2
for all vectors ~x

Geometrically, we can think of the least squares method as finding the point on the vector (A~x)
at the minimum Euclidean distance from ~b, as shown in Figure 3.

It turns out that there is a simple formula for solving overdetermined systems using least squares,
we simply multiply by the transpose of the matrix A on the left:

Am×n~xn×1 = ~bm×1 (m > n)
A′n×m (Am×n~xn×1) = A′n×m

~bm×1

(A′A)n×n~xn×1 = (A′~b)n×1

Note that the last equation is a square linear system in which (A′A) has dimension n. To
illustrate, consider our example from the last section:

[
3
4

]
x(1) =

[
6.1
7.9

]

(
[3 4]

[
3
4

])
x(1) = [3 4]

[
6.1
7.9

]

[25] x(1) = [49.9]
x(1) u 1.996

6

x
1

x 2 Ax*−b

b

Ax*

Figure 3: Solution to an Overdetermined Linear System using the 2-Norm

7

