
cs412: introduction to numerical analysis 11/18/10

Lecture 20: Numerical Integration III

Instructor: Professor Amos Ron Scribes: Mark Cowlishaw, Yunpeng Li, Nathanael Fillmore

For the last few lectures we have discussed numerical approximations of the definite integral

I(f) =
∫ b

a
f(t)dt

Our general approach is to perform polynomial interpolation of the function over [a, b], then
integrate the polynomial. We showed that, if we use the Lagrange representation, the approximation
of the definite integral can be written as a simple weighted sum of the function values.

I(f) ≈
n∑

i=0

f(ti) · wi

Where w(i) is the integral of the Lagrange polynomial for ti:

wi =
∫ b

a
`i(t)dt

Note that the weight wi is distinct from the nth Newton polynomial ω(t), which comes from
the error formula for approximation of definite integrals:

∫ b

a
f(t)dt−

∫ b

a
p(t)dt =

∫ b

a

f (n+1)(c)
(n + 1)!

n∏

j=0

(t− tj)

︸ ︷︷ ︸
ω(t)

dt

It is also important to note that the quantity f (n+1)(c), cannot simply be taken outside the
integral, as c may be a different value for every t. For this reason, we split up the error analysis into
cases. The error analysis for case 1, in which we put restrictions on ω(t)|[a,b] allows us to calculate
the error as

∫ b

a
f(t)dt−

∫ b

a
p(t)dt =

f (n+1)(c)
(n + 1)!

∫ b

a

n∏

j=0

(t− tj)dt (case 1)

However, the analysis that allows us to express the error this way is beyond the scope of this
lecture.

1

1 Composite Rules

If we examine the error formula for any of the simple rules, for example, the error for Simpson’s
rule:

ES(f) = −f (4)(c)
2880

(b− a)5

we see that the error becomes smaller as the size of the interval [a, b] shrinks. As we discussed last
time, this leads to the idea of composite rules. In a composite rule, we split up the interval [a, b]
into equidistant partitions, estimate the integral over each partition using a simple rule, then add
the estimates together to reach our final approximation. As we saw last time, a simple rule with
an error formula of the form:

Erule = #f (j)(c) · (b− a)j+1

where # is some constant, has a corresponding composite rule with error formula

Ecomposite-rule = #f (j)(c) · hj · (b− a)

where h = (b − a)/N is the size of each subinterval. To illustrate, here are the error formulas for
the composite rules corresponding to the simple rules we have studied.

Rectangle Rule

ECR(f, h) =
1
2
f ′(c) · h · (b− a) (1)

Midpoint Rule

ECM (f, h) =
1
24

f ′′(c) · h2 · (b− a) (2)

Trapezoid Rule

ECT (f, h) = − 1
12

f ′′(c) · h2 · (b− a) (3)

Simpson’s Rule

ECS(f, h) = − 1
2880

f (4)(c) · h4 · (b− a) (4)

Note that, in each case, a high power of h, corresponding to an algorithm that quickly converges
to small error, requires higher fidelity of the function f .

Note that the composite rules are to basic rules as spline interpolation is to polynomial interpo-
lation. Indeed a composite rule essentially fits a spline to the given function and then interpolates
the spline.

To illustrate the use of these error formulas, consider the following example:

2

Example 1.1. Compute the number of function evaluations required to approximate log(2) with
error ≤ 10−8

Solution: Recall that we can represent the natural logarithm of 2 as an integral.

log(2) =
∫ 2

1

1
t
dt

To approximate this integral, we should first consider which algorithm to use. Since 1/t is infinitely
differentiable on [1, 2], we are free to use any of the rules, so we choose composite Simpson’s rule,
since it converges at a rate of h4. We know that f (4)(t) = 24/t5, substituting into equation 1 yields:

10−8 ≥ 1
2880

∥∥∥∥
24
c5

∥∥∥∥
∞,[1,2]

· h4 · (2− 1)

10−8 ≥ 1
2880

24 · h4

0.0331 ≥ h

N u 30

Thus our approximation will have about 30 subintervals. This will require 30 evaluations at the
midpoints and 31 evaluations at the endpoints, for a grand total of 61 function evaluations. £

2 Extrapolation

If we are given an error formula for a numerical method that is an exact measure of the error,
we can sometimes use that formula to derive better numerical methods. This process is called
extrapolation. For example, consider the error formula for the composite midpoint rule.

ECM (f, h) =
1
24

f ′′(c) · (b− a)
︸ ︷︷ ︸

(∗)

·h2 (5)

This formula is almost good enough to use for extrapolation. However, the constant (∗) depends
both on the function f and the size of the interval h. For extrapolation, we would like a constant
that depends only on the function f . As it turns out, it is possible to rewrite equation 5 as follows:

ECM (f, h) = cf · h2 + c̃f (h) · h4

where cf is a constant dependent only on f , and c̃f (h) is a constant dependent on both f and h.
We can rewrite the error formula for the composite trapezoid rule (equation 1) similarly:

ECT (f, h) = kf · h2 + k̃f (h) · h4

3

It also turns out that, similar to the standard form of the error functions, kf = −2 · cf . Now,
consider the definition of the error functions for the composite midpoint and composite trapezoid
rules.

I(f)− ICM (f, h) = ECM (f, h) (6)
I(f)− ICT (f, h) = ECT (f, h) (7)

If we multiply the top equation by 2 and add it to the bottom equation, this yields:

3 · I(f)− ICT (f, h)− 2 · ICM (f, h) = ECT (f, h) + ECM (f, h)

Now, since kf = −2 · cf , the first term in each error formula cancels, leaving only some constant
times h4, thus we have:

3 · I(f)− ICT (f, h)− 2 · ICM (f, h) = O(h4)

How does this translate into a new method? We simply estimate the definite integral by applying
the composite midpoint rule with subinterval size h, multiplying the result by two and adding this
to the result of one application of the trapezoid rule with identical subinterval size h, then dividing
the entire sum by three. This method has error O(h4), since:

I(f)− ICT (f, h)− 2 · ICM (f, h)
3

= O(h4)

How good is this new method? If we look at the weights applied to each interpolation point,
we see that the composite midpoint rule applies weights:

2
3

[
f

(
a +

h

2

)
+ f

(
a +

3h

2

)
+ · · ·+ f

(
b− h

2

)]

while the trapezoid rule applies weights:

1
3

[
1
2
· f(a) + f(a + h) + f(a + 2h) + · · ·+ f(b− h) +

1
2
· f(b)

]

Combining these yields:

1
6

[
f(a) + 4 · f

(
a +

h

2

)
+ 2 · f(a + h) + 4 · f

(
a +

3h

2

)
+ 2 · f(a + 2h) + . . .

· · ·+ 2 · f(b− h) + 4 · f
(

b− h

2

)
+ f(b)

]

Close inspection reveals that this new rule is identical to composite Simpson’s rule. Can we use
extrapolation to produce rules that are better than composite Simpson’s rule? The answer is yes,
we can do this by mixing composite Simpson’s rule with itself.

4

As before, we can write the error formula for composite Simpson’s rule as a lower order term
with a constant independent of h, and a higher order term with a constant dependent on h.

ECS(f, h) = cf · h4 + c̃f (h) · h6 (8)

Furthermore, we can calculate the error formula for composite Simpson’s rule with a subinterval
width twice as large:

ECS(f, 2h) = cf · (2h)4 + c̃f (h) · h6 (9)

Note that the first term in equation 9 will be exactly sixteen times the first term in equation 8,
so that combining the two rules produces error proportional to the sixth power of h.

16 · ICS(f, 2h)− ICS(f, 2h) = O(h6)

Thus, we can produce a rule with error that converges as the sixth power of h using:

I(f)− 16 · ICS(f, 2h)− ICS(f, 2h)
15

= O(h6)

5

