
cs412: introduction to numerical analysis 12/7/10

Lecture 22: Rules for Solving IVP
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1 Review

Recall that last time we discussed the numerical solution of first order differential equations. When
solving differential equations, we are looking for a function y(t), given an expression for the deriva-
tive y′(t) in terms of t and y(t):

y′(t) = f(t, y(t))

Last time we showed that this problem is ill-formed, since there are infinitely many solutions
(in fact, for each point (a, y(a)), there is a unique solution y(t)). In order to make this problem
well-formed, we must also provide an initial value for y(t), giving us an initial value problem

Problem 1.1 (Initial Value Problem). Given

y′(t) = f(t, y(t))

y(a) = y0

find y(b)

Last time, we discussed some simple methods for solving initial value problems. All of our rules
follow the same general scheme

1. Partition the interval [a, b] into N subintervals of equal length h = (b − a)/N using points
(t0, t1, . . . , tN ).

2. Denote values for the function yi = y(ti) and derivative y′i = y′(ti) at each point. We will
compute approximations for these values Yi ≈ yi and Y ′

i ≈ y′i.

3. Start with Y0 = y0, Y
′

0 = f(t0, Y0), then calculate each successive value Yi+1 for i = 0, 1 . . . N−

1 by approximating the integral of y′(t) over [ti, ti+1]:

Yi+1 = Yi +

∫ ti+1

ti

y′(t)dt

4. Calculate Y ′

i+1
using f and the approximate value for yi+1:

Y ′

i+1 = f(ti+1, Yi+1)
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We can create different rules for solving the IVP by using different approximations of the definite
integral ∫ ti+1

ti

y′(t)dt

Last time we introduced two simple methods for solving the IVP, using the rectangle and
midpoint rules:

Rule I: Euler’s Method (Rectangle Rule) For each sub-interval, we have

yi+1 = yi +

∫ ti+1

ti

y′(t)dt

Approximating this integral using the rectangle rule yields

Yi+1 = Yi + h · Y ′

i

We can then calculate Y ′

i+1 using

Y ′

i+1 = f(ti+1, Yi+1)

t j
t j+1

Y’ values

Y values

Figure 1: Function and Derivative Values used in Euler’s Method

We say that this rule is single-step, since it only requires information about the current point
ti to calculate the values for the next point ti+1, and no information about previous points is
required. Figure 1 shows the function and derivative values required to apply Euler’s rule.

Rule II: Modified Euler’s Method (Midpoint Rule) In modified Euler’s rule, we approxi-
mate the integral using the midpoint rule. However, recall that the midpoint rule requires
that we know the value of the function we are integrating at the midpoint of the interval. To
overcome this, we use an interval that is twice as large (2h), as shown in Figure 2.

t j+1t j
t j−1

Y’ values

Y values

Figure 2: Function and Derivative Values used in Modified Euler’s Method
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yi+1 = yi−1 +

∫ ti+1

ti−1

y′(t)dt

Yi+1 = Yi−1 + 2h · Y ′

i

We calculate the derivative value at ti+1 as always:

Y ′

i+1 = f(ti+1, Yi+1)

We say that this rule is multi-step, since it requires knowledge of values at a past point (ti−1)
as well as the current point (ti) to calculate the values at the next point (ti+1). Although
modified Euler’s method is substantially better than Euler’s method, it is not often used in
practice since the error is still quite large compared to other methods.

Today we will study additional rules for solving the IVP, some of which are not used for ap-
proximating integrals in the general case, but are used for approximating integrals when solving
the IVP.

2 Additional Rules for Solving IVP

2.1 Rule III: Trapezoid Method

Recall that, in the trapezoid rule, we approximate the integral using the line between the function
values at the endpoints, so to approximate:

yi+1 = yi +

∫ ti+1

ti

y′(t)dt

t j
t j+1

Y’ values

Y values

Figure 3: Function and Derivative Values used in the Trapezoid Method

we use the following approximation, as shown in Figure 3

Yi+1 = Yi + h ·

(Y ′

i + Y ′

i+1)

2

Note that this method requires us to use Y ′

i+1
, which is a value that we do not know. Methods

that require knowledge of the derivative at the point we are estimating are called closed methods.
In general, to use a closed method, we must first use some other method to predict the value of

3



Y ′

i+1
. When we use an open method to predict the derivative value Y ′

i+1
and a closed method to

use this value to calculate a corrected Yi, we call such hybrid methods predictor-corrector methods

and we will discuss them later in the lecture. The Trapezoid method is a single step method, since
it requires no knowledge of function and derivative values at previous points.

2.2 Rule IV: Simpson’s Method

Simpson’s Method is a closed, multi-step method. As in the midpoint rule, we use an interval of
size 2h for our approximation, as shown in Figure 4:

t j+1t j
t j−1

Y’ values

Y values

Figure 4: Function and Derivative Values used in Simpson’s Method

The approximation for the new function value Yj+1 is given by:

Yj+1 = Yj−1 +
h

3
(Y ′

j−1 + Y ′

j + Y ′

j+1)

2.3 Rule V: Milne’s Method

Milne’s method interpolates the function (that is y′(t)) using three equidistant points in the middle
of the interval, as shown in Figure 5.

t j−3 j−1t jtt j−2 t j+1

Y’ values

Y values

Figure 5: Function and Derivative Values used in Milne’s Method

Milne’s method is open and multi-step, using an interval of size 4h The approximation for the
new function value Yj+1 is given by:

Yj+1 = Yj−3 +
4h

3
(2Y ′

j−2 − Y ′

j−1 + 2Y ′

j )

2.4 Rule VI: Adams-Bashforth Method

The Adams-Bashforth rule is an open, multi-step method that uses four points to interpolate the
function (y′(t)) being integrated, as shown in Figure 6. This method seems counter-intuitive, since
it is asymmetric and uses many points off the interval to calculate the definite integral. Notes that
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t j−3 j−1t jtt j−2 t j+1
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Y values

Figure 6: Function and Derivative Values used in the Adams-Bashforth Method

all of these values are available when we reach tj, however so that the method is open. In practice,
this rule does not suffer from many instabilities that many of the other rules share.

The approximation for the new function value Yj+1 in the Adams-Bashforth method is given
by:

Yj+1 = Yj +
h

24
(55Y ′

j − 59Y ′

j−1 + 37Y ′

j−2 − 9Y ′

j−3)

2.5 Rule VII: Adams-Moulton Method

The Adams-Moulton rule is similar to Adams-Bashforth, but is closed, as shown in Figure 7

j−1t jtt j−2 t j+1

Y’ values

Y values

Figure 7: Function and Derivative Values used in the Adams-Moulton Method

The approximation for the new function value Yj+1 in the Adams-Moulton method is given by:

Yj+1 = Yj +
h

24
(9Y ′

j+1 + 19Y ′

j − 5Y ′

j−1 + Y ′

j−2)

2.6 Predictor-Corrector Methods

Note that, if we use an open method to predict a value Yj+1 (and associated derivative Y ′

j+1), we
can use this prediction as input to a closed rule to provide a (hopefully) better approximation.

We call these hybridized methods that pair together an open predictor rule with a closed
correcting rule predictor-corrector methods. To calculate the next function value Yj+1 in a predictor-
corrector method, we perform the following steps:

1. Use the (open) predictor method to calculate an approximation of the next function value,
Ŷj+1.

2. Use the differential equation to find the approximate derivative at tj+1

ˆY ′

J+1
= f(tj+1, Ŷj+1)
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3. Use the approximate derivative value you just calculated ˆY ′

j+1
as input to the closed corrector

method to get the final approximation Yj+1.

For example, the Milne-Simpson predictor corrector uses Milne’s rule as a predictor and Simp-
son’s rule as a corrector.

The Adams-Bashforth-Moulton predictor corrector uses the Adams-Bashforth rule as predictor
and the Adams-Moulton rule as corrector.

3 Example

Consider the following initial value problem:

y′(t) = ty(t)

y(0) = 1

It is easy to see that the analytical solution is

y(t) = e
1

2
t2 (1)

Let h = 0.1 and we want to compute y(0.4). We will use Equation (1) to set y(0.1), y(0.2) and
y(0.3):

Y1 = y(0.1) = 1.0050125 Y ′

1 = y′(0.1) = 0.10050125

Y2 = y(0.2) = 1.020201 Y ′

1 = y′(0.2) = 0.2040402

Y3 = y(0.2) = 1.046028 Y ′

1 = y′(0.3) = 0.3138084

And the correct value of y(0.4) = 1.083287068.

Euler’s Method:
Y4 = Y3 + hY ′

3 = 1.077

Modified Euler’s Method:
Y4 = Y2 + 2hY ′

3 = 1.08296

Trapezoid Rule:

Y4 = Y3 +
h

2
(Y ′

3 + Y ′

4)

Milne-Simpson predictor-corrector First we carry out Milne’s rule as the predictor, since it
is open

Ŷ4 = Y0 +
4h

3
(2Y ′

3 − Y ′

2 + 2Y ′

1) = 1.083275

We then use the differential equation to calculate Ŷ ′
4, then use this as input to Simpson’s

rule (the corrector).

Y4 = Y2 +
h

3
(Y ′

2 + 4Y ′

3 + Ŷ ′

4
) = 1.083285

which is very close to the correct value.
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