
cs412: introduction to numerical analysis 12/07/10

Lecture 23: Systems of Differential Equations

Instructor: Professor Amos Ron Scribes: Yunpeng Li, Mark Cowlishaw, Nathanael Fillmore

1 Review

For the last few lectures, we have discussed the solution of initial value problems for first order
differential equations. Recall that the initial value problem is a problem of the form:

Problem 1.1. Given

y′(t) = f(t, y(t))
y(a) = y0

find y(b).

We have discussed several methods for solving the IVP, all using the idea of splitting the
interval [a, b] into N subintervals using partition points (t0, t1, . . . , tN ), then approximating the
definite integral of y′ over each subinterval. In this lecture, we shall discuss the solution of higher
order differential equations.

2 Higher Order Differential Equations

To begin, we consider second order differential equations. When solving second order differential
equations we would like to find a function y(t) given an expression for its second derivative in terms
of t, y(t), and y′(t):

Problem 2.1. Given the second order differential equation:

y′′(t) = f(t, y(t), y′(t))

find y(t).

As was the case with first order differential equations, this is not a well-defined problem. For
example, consider the second order differential equation:

y′′(t) = −y(t)

It is not difficult to see that functions like:

y(t) = k1 · sin(t)
y(t) = k2 · cos(t)
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are correct solutions. In fact, we can characterize all correct solutions using the linear combination.

y(t) = k1 · sin(t) + k2 · cos(t)

Note that this general solution has two parameters, and therefore we need two pieces of infor-
mation to formulate the problem so that there is a unique solution. We will consider two correct
formulations of the problem:

Initial Value Problem

In an initial value problem, we are given the values of y and y′ at the same point a and want
to find the value of y at a second point b.

Problem 2.2. Given:

y′′(t) = f(t, y(t), y′(t))
y(a) = y0

y′(a) = y′0

find y(b).

Boundary Value Problem

In a boundary value problem, we are given the value of y at two different points a and b, and
want to find the value of y at some third point c, which is usually in the interval [a, b].

Problem 2.3. Given:

y′′(t) = f(t, y(t), y′(t))
y(a) = y0

y(b) = y1

find y(c).

Solving boundary value problems is far more complex than solving initial value problems. We
shall focus on initial value problems for the next two lectures.

(One could wonder: Does it make the problem well-posed to give the second derivative at a as
our third piece of information? In other words, is the problem “Given

y′′(t) = f(t, y(t), y′(t))
y(a) = y0

y′′(a) = y′′0

find y(c)” well-posed? The answer is no. Either y′′(a) is redundant or it is contradictory. In
our example above, suppose y(0) = 1. Then y′′(0) = −1 is redundant with y′′(t) = −y(t), while
y′′(0) = 2 contradicts y′′(t) = −y(t). Similarly, giving y′(a point different from a) doesn’t work.)
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3 Solution of Second Order IVP

We use substantially the same method for solving a second order initial value problem that we used
for solving a first order initial value problem. The trick is to reduce the second order IVP to a
system of first order IVPs, which we then solve in tandem. Given a second order IVP:

Problem 3.1. Given:

y′′(t) = f(t, y(t), y′(t))
y(a) = y0

y′(a) = y′0

find y(b).

we first define two new functions x1(t) and x2(t):

x1(t) = y(t)
x2(t) = y′(t) = x′1(t)

We can then rewrite the second order differential equation from problem 3.1 as two first order
differential equations:

x′1(t) = x2(t)
x′2(t) = f(t, x1(t), x2(t))

Then we rewrite the initial values for y and y′ in terms of x1 and x2:

x1(a) = y0

x2(a) = y′0

As before, we solve the problem by splitting up the interval [a, b] into N equal-sized partitions
using partition points (t0, t1, . . . , tN ). We must approximate both functions on each subinterval, so
we calculate two approximate values at each point ti: X1,i and X2,i, then use f to calculate X ′

2,i.
Note that X ′

1,i = X2,i so that we only calculate three total values at each point. Here we define
Xi,j as our approximation of xi(tj) and X ′

i,j as our approximation of x′i(tj).
Now we can apply any method that we have studied for solving first order initial value problems

to solve this problem. The only issue is that we must calculate all the approximations X1,i, X2,i, X
′
2,i

at point ti before we can calculate the approximations at the next point ti+1, since the values are
coupled (we use the X2 values to approximate X1, and we need both X1 and X2 values to calculate
X ′

1). To illustrate, consider the following example

Example 3.1. Given the second order IVP:

y′′(t) = −ty(t) + y′(t)2

y(2) = 5
y′(2) = −1

find y(3).
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Solution:

1. Define functions x1(t), x2(t):

x1(t) = y(t)
x2(t) = y′(t)

2. Rewrite as a system of first order differential equations

x′1(t) = x2(t)
x′2(t) = −t · x1(t) + x2(t)2

3. Define initial values for the first partition point t0:

X1,0 = 5
X2,0 = −1
X ′

2,0 = −t ·X1,0 + X2
2,0

= −(0)(5) + (−1)2

= 1

4. Solve using any method for first order IVP

£

4 Systems of First Order IVP

Note that this method for solving second order IVP is a special case of a general method for solving
systems of first order IVP. Given the system of first order initial value problems:

x′1(t) = f1(t, x1(t), x2(t))
x′2(t) = f2(t, x1(t), x2(t))
x1(a) = x1,0

x2(a) = x2,0

We can solve this system by calculating our approximations for the value of each function xi at
each partition point tj together (i.e. Xi,j).

4.1 Adapting Euler’s Method to Systems of First Order Differential Equations

Recall that, to find the approximation Yj+1 of y(tj+1) with Euler’s method, we use:

Yj+1 = Yj + h · Y ′
j
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To adapt this rule to systems of first order differential equations, we must calculate the two
approximations X1,j+1, X2,j+1:

X1,j+1 = X1,j + h ·X ′
1,j

X2,j+1 = X2,j + h ·X ′
2,j

Example.
Say, h = .1, t0 = 0,

X0 =
[
0
1

]

and

X ′
1,0 = 1

X ′
2,0 = 1

so

X ′
0 =

[
1
0

]

We use Euler:

X1,1 = X1,0 + hX ′
1,0

= 0 + .1 · 1 = .1
X2,1 = X2,0 + hX ′

2,0

= 1 + .1 · 0 = 1

so

X1 =
[
.1
1

]
.
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