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Lecture 24: Systems of First Order Differential Equations

Instructor: Professor Amos Ron Scribes: Yunpeng Li, Mark Cowlishaw, Nathanael Fillmore

1 Systems of First Order IVP

In the last lecture, we discussed the solution of systems of first order initial value problems. Recall
that in a system of first order IVP, we must find two unknown functions x1(t) and x2(t), given an
expression for their derivatives and their values at some point a. The derivatives x′1(t) and x′2(t)
are given in terms of t, x1(t) and x2(t), i.e.,

x′1(t) = f1(t, x1(t), x2(t))
x′2(t) = f2(t, x1(t), x2(t))
x1(a) = xa

1

x2(a) = xa
2

Note that the IVP gives the value of x1, x2 at the same point. The goal is to find x1(t) and x2(t),
in particular, to compute x1(b) and x2(b) for b 6= a.

As before, we use the following procedure to approximate x1(b), x2(b):

1. partition [a, b] into N equal length sub-intervals using a = t0, t1, · · · , tN = b. Denote Xi,j ≈
xi(tj) and X ′

i,j ≈ x′i(tj) for i ∈ {1, 2}, 0 ≤ j ≤ N .

2. Start with X1,0 = xa
1, X2,0 = xa

2, calculate X ′
1,0 and X ′

2,0 using f1, f2.

3. Use one of our methods for approximating the integral to calculate X1,j+1 using the values
of X ′

1,i (i ≤ j + 1). Do the same for X2,j+1 using the values of X ′
2,i (i ≤ j + 1).

4. Calculate X ′
1,j+1, X ′

2,j+1 using

X ′
1,j+1 = f1(tj+1, X1,j+1, X2,j+1)

X ′
2,j+1 = f2(tj+1, X1,j+1, X2,j+1)

5. Repeat steps 3 and 4 until we find X1,N , X2,N

For example, Table 1 shows the process of calculating function and derivative values at tj+1

using modified Euler’s rule.
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t0 . . . tj tj+1

X1,0 . . . X1,j X1,j+1 = X1,j−1 + 2h ·X ′
1,j

X ′
1,0 . . . X ′

1,j X ′
1,j+1 = f1(tj+1, X1,j+1, X2,j+1)

X2,0 . . . X2,j X2,j+1 = X2,j−1 + 2h ·X ′
2,j

X ′
2,0 . . . X ′

2,j X ′
2,j+1 = f2(tj+1, X1,j+1, X2,j+1)

Table 1: Calculating Function and Derivative Values at tj+1 Using Modified Euler’s Rule

2 Higher Order Differential Equations

As we saw in the last lecture, solving a second order initial value problem is simply a special case
of solving a system of first order IVP. Given a second order IVP like:

y′′(t) = f(t, y(t), y′(t))
y(a) = y0

y′(a) = y′0

We reformulate the problem as a system of first order IVP, using x1(t) = y(t), x2(t) = y′(t):

x′1(t) = x2(t)
x′2(t) = f(t, x1(t), x2(t))
x1(a) = y0

x2(a) = y′0

We can then solve this system using the same method. However, since x′1(t) = x2(t), we need
only calculate 3 values at each partition point. Table 2 shows the process of calculating function
and derivative values at tj+1 using modified Euler’s rule.

t0 . . . tj tj+1

X1,0 . . . X1,j X1,j+1 = X1,j−1 + 2h ·X2,j

X2,0 . . . X2,j X2,j+1 = X2,j−1 + 2h ·X ′
2,j

X ′
2,0 . . . X ′

2,j X ′
2,j+1 = f(tj+1, X1,j+1, X2,j+1)

Table 2: Calculating Function and Derivative Values at tj+1 Using Modified Euler’s Rule

3 Runge-Kutta Method of Order Four

We diverge from our discussion of higher order differential equations to discuss a matter left un-
resolved in our treatment of first order IVP. We have discussed several rules for solving first order
IVP, but all of the better rules are multi-step rules, so that we must calculate several values be-
fore the rule can be used, and this can only be done with a single-step, open rule. However, the
only single-step, open rule we have discussed is Euler’s method and we know that Euler’s method
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introduces unacceptable amounts of error. So , the question remains, how do we get started when
solving an IVP? Runge-Kutta methods are often used to do this.

We will discuss the Runge-Kutta method of order four. The end result of this method will be
to approximate the value of tj+1 using Simpson’s rule over the interval [tj , tj+1]. However, since
Simpson’s rule requires function values at the midpoint and endpoint of the interval, we will need
to approximate those values. The main trick in Runge-Kutta methods is in approximating these
values in a way that minimizes the total error of the approximation of tj+1.

More formally, we want to calculate y(tj+1) using:

y(tj+1) = y(tj) +
∫ tj+1

tj

y′(t)dt

Using Simpson’s rule, we approximate y(tj+1) using:

Yj+1 = Yj +
h

6

(
Y ′

j + 4Y ′
j+1/2 + Y ′

j+1

)

Note that Y ′
j+1/2 denotes the approximate value of y′(t) at the midpoint of the interval [tj , tj+1].

The question is, how do we approximate the values of Y ′
j+1/2 and Y ′

j+1?
The idea is to use approximations of the derivative of y to estimate the values of y. We will

use three different approximations of the derivative, each with potentially large error, but the idea
is that the values are calculated and used in such a way that the errors will cancel. This process is
depicted in Figure 1

We begin by approximating the value of y at the midpoint Yj+1/2, by extending a line with
slope Y ′

j from (tj , Yj) to tj+1/2:

Yj+1/2 = Yj +
h

2
Y ′

j

We can then use the differential equation for our first estimate of Y ′
j+1/2:

Y ′
j+1/2 = f(tj+1/2, Yj+1/2)

Recall that there is a solution to the differential equation (that is a function) that passes
through every point, so that we are estimating the derivative of y, using the derivative of one of
these functions. Next, we find another estimate of the midpoint (called Ỹj+1/2), again by extending
a line from the left endpoint, but this time using the slope at the midpoint:

Ỹj+1/2 = Yj +
h

2
Y ′

j+1/2

We can then use the differential equation for another estimate of the derivative at the midpoint
Ỹ ′

j+1/2:

Ỹ ′
j+1/2 = f(tj+1/2, Ỹj+1/2)

Finally, we use this last derivative value to estimate the value of y at the endpoint, Ỹj+1. Once
again, we extend a line from the left endpoint, with slope Ỹ ′

j+1/2 to get our estimate:
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Ỹj+1 = Yj + h · Ỹ ′
j+1/2

As usual, we use the differential equation for our estimate of the derivative at the endpoint:

Ỹ ′
j+1 = f(tj+1, Ỹj+1)

It is important to note that all of these calculated values are simply used as parameters in
Simpson’s rule. Once we have used Simpson’s rule to calculate our estimate of y at the endpoint
(Yj+1), we throw these values away. To get our final estimate of Yj+1, we use Simpson’s rule, with
an average of the derivative values we estimated at the midpoint, and the value we estimated at
the endpoint:

Yj+1 = Yj +
h

6

(
Y ′

j + 4
Y ′

j+1/2 + Ỹ ′
j+1/2

2
+ Ỹ ′

j+1

)
(1)

= Yj +
h

6

(
Y ′

j + 2Y ′
j+1/2 + 2Ỹ ′

j+1/2 + Ỹ ′
j+1

)
(2)

This method gives error of O(h4), so it can be used to start many of the higher-order multi-step
methods.

Y’j+1/2

j+1/2Y

t j t j+1/2 t j+1

j+1/2Y= f(        ,         )t j+1/2

Yj

t j t j+1/2 t j+1

Y’j+1/2

~

Y
~

j+1/2

Y
~

j+1/2t j+1/2= f(        ,         )

jY

(a) (b)

t j t j+1/2 t j+1

~
Yj+1

Yj

(c)

Figure 1: Estimating Values at the Midpoint and Endpoint in the Runge-Kutta Method of Order
4 (a) First, estimate the midpoint using the derivative at the left endpoint (b) Next, estimate the midpoint
using the derivative calculated in step a (c) Lastly, estimate the right endpoint using the derivative value
calculated in step b. Plug all these estimated values into Simpson’s rule to obtain Yj+1.

Note that as for previous methods, one can use Runge-Kutta for a system of differential equa-
tions (and hence for higher-order differential equations). Here the only subtelty is that we need

4



to march in parallel because we need all the Y values to evaluate the differential equation. For
example, first do:

X1,j−1/2 = X1,j−1 +
h

2
X ′

1,j−1

X2,j−1/2 = X2,j−1 +
h

2
X ′

2,j−1

then do:

X ′
1,j−1/2 = f1(tj−1 +

h

2
, X1,j−1/2, X2,j−1/2)

X ′
2,j−1/2 = f2(tj−1 +

h

2
, X1,j−1/2, X2,j−1/2)
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