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0. Welcome to CS515

Data, data, data !!!! The last decade was marked by breathtaking increases in data
communications and acquisition abilities, and in data processing power. In today’s world,
questions concerning data, their representation, manipulation, and analysis are proved
critical to technological advance: from high energy physics to astronomy; from analysis
of financial data to deeper understanding of the Internet dynamics; from wireless commu-
nication technologies to computer graphics applications; from microscopy technologies to
biological and medical studies of the human body, the brain and the genetic system. Un-
derstanding the art of data processing is one of the most valuable commodities in today’s
life (read: taking cs515 is one of the smartest decisions that you have ever made!)

The first half of this course is devoted to developing the basic theory of time-frequency
techniques of data representation. This theory is referred to colloquially as “wavelet the-
ory” and was developed mostly in the last two decades. In order to begin, one needs to
understand first the notion of “data representation”, which, by and large, is the most basic
principle in any data processing approach. Then, in order to understand “time-frequency
representation” one has to be acquainted first, separately, with the “time representation”
and the “frequency representation” of data. And, how does mathematics realize “data” to
begin with? Addressing the issues raised this paragraph is the prelude to wavelet theory,
and will be the subject of the first few lectures. Let us then begin the journey.

Before we formalize the notion of “data representation” it is instructive to look at
some examples. On my laptop there are a few:

(1) a musical signal, represented in four different forms (as notes, as a time signal, as a
frequency signal, and one of its possible time-frequency representations)

(2) an image is decomposed into 36 small images

(3) an Internet traffic signal and its framelet decomposition
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Mathematics treats “data” as functions. The simplest of which are functions in one
dimension:

f : IR→ IR : t 7→ f(t).

Note that we assume the function f to be defined on the entire real line and to assume real
values. The latter is convenient, but from time to time we will also consider functions that
assume complex values, i.e., whose target is C. Many functions of interest are not defined
on the entire real line, but only on a closed interval [a, b]. For our mere convenience, we
will extend those functions to the entire line by defining them to be zero outside their
interval of definition. We refer to the independent argument, t, of the function f as time,
regardless whether this makes practical sense or not.

However, the functions that we are interested in this course are very different from
those that a student may encounter, say, in a calculus course. They are usually very
oscillatory, with hundreds and perhaps thousands of local extrema. We usually look for
hidden “features” in these functions, but in many instances we do not know a priori how
to define correctly the notion of a “feature”, neither in mathematical terms nor in any
other, less abstract, ones.

While the functions that we are mainly interested in are real-valued (i.e., their target
is the real line IR), our theory and analysis employs complex numbers everywhere. It is
useful to keep in mind some of complex numbers basics. A few basics are listed here (we
use i for the imaginary

√
−1). Here, ω, a, b ∈ IR, while x, y ∈ C.

|a+ bi| =
√
a2 + b2, |xy| = |x||y|, eiω = cos(ω) + i sin(ω), |eiω| = 1,

a+ bi = a− bi, xx = |x|2, eiω = e−iω.

Part 1. Introduction: Representation

At the heart of data representation (at least at the heart of the part of the theory that
we address in this course) is the notion of a linear functional. Let us assume first that our
objective is not the study of a single function f , but rather a family of functions F (each
of which is still defined on the real line etc.) Let us assume further that F is not just a
“collection of functions” but a space of functions, in the sense of Linear Algebra (i.e., a
vector space), i.e.,

f, g ∈ F, a ∈ IR =⇒ f + g ∈ F, af ∈ F.
Once we fix F , we say that a map

λ : F → IR

is a linear functional if it is a linear map, i.e., if the following two conditions are satisfied:
(a) For every f, g ∈ F , λ(f + g) = λ(f) + λ(g), and
(b) For every f ∈ F and a ∈ IR, λ(af) = aλ(f).

Intuitively, the linear functional is a “feature”, or a “feature detector”; if, for given
function f , λ(f) = 0 one might think about that as “ the feature represented by λ does
not appear in the function f”. Let us try to make this more concrete by examining specific
functionals.
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Examples.

(1) Choose some (fixed) t ∈ IR and define λt(f) := f(t). This is the linear functional of
point evaluation. The feature captured by λt is the most obvious one: the value of
the function at t.

(2) Choose some (fixed) t ∈ IR and define λ(f) := f ′(t) (for this λ we need all the functions
in F to be differentiable at t.) This is the linear functional of derivative evaluation.

(3) Fix any function g : IR→ IR (which might be in F or might not be there). Define:

λg(f) :=

∫

IR

f(t)g(t) dt(=

∫ ∞

−∞
f(t)g(t) dt).

In our discussion, we will actually consider linear functionals of this class only. It
is now far less trivial to identify the “feature captured by the linear functional λg”.
Sometimes a good way to realize this feature is to look at the graph of g. Sometimes,
we invoke more sophisticated techniques. A part of the art here is to design g so that
λg “captures the feature we are interested in”. We will go into great length later in
expanding and providing a concrete context to the above general, abstract, discussion.

Examples for (3) above include local averaging and local differencing. Given some
fixed interval [a, b], the local averaging g over that interval is the function

(1) g(t) :=

{
1
b−a , a ≤ t ≤ b,
0, otherwise.

A local differencing is obtained by subtracting two local averaging functions.

The notion of local averaging can be generalized, and the generalization is actually
very useful. For that, we first would like to recall the notion of compact support.

Definition: a function with compact support. Let g : IR→ IR be given. We say that
g has compact support (or is “compactly supported”) if g vanishes everywhere outside
of some bounded interval [a, b]. The smallest such interval is called the interval support
of the function g.

The local averaging in (1) is compactly supported. Its interval support is the interval
[a, b] that appears there. In addition to the compact support, the local averaging (1) has
the additional property of having mean value 1, i.e.,

∫

IR

g(t) dt = 1.

Definition. Every function with compact support and mean value 1 is called local aver-
aging.
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The notion is, needless to say, very qualitative. There is tremendous difference between
an averaging function whose interval support is [0, 1], and another averaging function whose
interval support is [0, 1000].

In the same spirit of the general local averaging, one can talk about general local
differencing: if g and h are two averaging functions, their difference

g − h

is a (generalized) local differencing. We sometimes refer to a local differencing function as
discrete differentiation.

(2) The analysis map. We use linear functionals as the soldiers in the assembly of
a real army. This real army if the analysis map (also known as the decomposition map),
which provides the given function f with a new representation.

To this end, we let Λ be a family of linear functionals indexed by some index set I
(which may be finite or infinite):

Λ := {λi}i∈I .
The map

Λ∗ : f 7→ {λif}i∈I
in the analysis map. We often use the positive integers IN or the integers ZZ as the index
set I. There is at least one important example in this course (viz., the Fourier transform)
where the real line IR is used as the set I.

A student who has not seen before the notion of the analysis map (i.e., essentially
every student in 515) may be surprised by the attention we give above to the index set
I. “We may choose, perhaps, very carefully the linear functionals that go into Λ, but the
way we index them is a matter of formality”, right? Wrong. One of the major arts of
data representation is to organize the linear functionals correctly. They usually come in
“groups” and “units”, and we would like the index set to reflect that organization.

The key in successful representation is to take a cohesive set of linear functionals.
Same as the army analog: if you just pick random soldiers and put them together, you
might call that an army, but that army cannot fight. You need soldiers that many of them
are of “similar skills”, and each of them has a well-defined role.

The time representation. The simplest of all representations is the time one. In this
case I := IR, and Λ is the collection λt, t ∈ IR, where λt is the point-evaluation at t. The
analysis map then provides us with the representation

Λ∗f = (f(t))t∈IR.

For many of us, this looks like a triviality: we just took a function a found a complicated
way to recapture something that is identical to the function. The truth is somewhat
different: we are used to be “given a function” via its time representation, i.e., via its
standard definition as a map from IR to IR. The “time representation” is simply the way
most of us think about functions in the first place.
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One can easily realize the derivative function f ′ of f via a suitable selection of another
class of linear functionals (which one?)

Definition: sampling. We say that the analysis map Λ∗ is a sampling map if each of
the linear functionals in Λ is local averaging.

Regular sampling. We highlight in the sequel the basic assumption that time is invari-
ant. If we find a need to do, say, some local averaging over some interval [a, b], then we
have an equivalent need to do the same local averaging over any translation of that interval
[a+ t, b+ t], t ∈ IR. For practical purposes, we discretize the above as follows:
First, we choose some local averaging function g, and define the linear functional

λ0 : f 7→
∫

IR

f(t)g(t) dt.

Then, for every integer j, we define λj to be local averaging with respect to the shift of g
by i:

t 7→ g(t− j).
We denote that shifted function by g(·−j). The analysis map associated with the collection
Λ := {λj : j ∈ ZZ} is called regular sampling. Note that every regular sampling is also
sampling. A signal is the image of a function under regular sampling.

Regular sampling does not change in an essential way the time representation of a
function: we just average the values of the function over many small intervals. In a sense,
it is a practical way to record a function using some sensing tool (a sensor, almost always,
records local averages of a function).

(4:) Basic assumption: time is invariant.
Let us move ahead with the theory. If time is invariant, and we have picked some

function g together with the associated linear functional λg then we ought to accept also
all the linear functionals which are induced by all the possible translations of g.

We define the translation operation

Et(g)(u) := g(u− t).

Et(g) is then a translate of g. We also write Etg, and also g(· − t) for that translate.
The analysis map associated with a function g and all it translates is known as con-

volution and is defined by

(f ∗ g)(t) :=

∫

IR

f(u)g(t− u) du.

In fact, it is not g and its translates that appear here but a “flip” of g around the vertical
axis. One explanation for that is the desire to get nice properties for the binary operation
f ∗ g:

Properties of convolution.
(a) commutative: f ∗ g = g ∗ f ,
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(b) associative: (f ∗ g) ∗ h = f ∗ (g ∗ h),
(c) distributive over addition: f ∗ (g + h) = (f ∗ g) + (f ∗ h).
Example. Let B1 be the support function of the interval [0, 1] (also known as a B-spline
of order 1):

(3) B1(t) :=

{
1, 0 ≤ t ≤ 1,
0, otherwise.

Let f by some function. Then,

B1 ∗ f(t) =

∫ t

t−1

f(u) du.

(verify that!). Thus, the convolution product B1 ∗ f averages the values of f .

Example. Choose f = B1 in the previous example. Then B2 := B1 ∗ B1 is the hat
function, also known as the B-spline of order 2.

Our next task is to introduce the frequency representation. Recall the definition of
the complex exponential function:

u 7→ eiu = cos(u) + i sin(u).

The function
eiω : t 7→ eiωt

is known as the exponential function with frequency ω. It is periodic with period
2π/ω.

The action of multiplying a function f by an exponential function eiω is called modu-
lation. The frequency representation is obtained by choosing the linear functionals in the
analysis map to be exponentials with certain frequencies. This representation is important
enough to warrant the opening of the new part.

Before we depart from Part 1, we want to highlight two important operators that were
introduced in this section, and to add a third one.

Operation number 1: convolution. It transforms the function f into the convolution
product f ∗ g.

Operation number 2: modulation. It transforms a function f into the pointwise
product feiω.

Operation number 3: dilation. Given a ∈ IR, the dilation Daf of the function f is a
new function defined as

(Daf)(t) := f(at).

We will refer to Daf is the a-dilation of f .
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Part 2. Introduction: Fourier series and orthonormal systems.

The frequency representation is centered around the exponential functions. Whatever
version of it we choose (and we will describe two of its many versions), the analysis map
of the frequency representation is comprised of exponentials. We learned before to think
about a linear functional as a “feature detector”. Linear functionals such as local averaging
capture “features” which we may be able to visualize and understand in terms of the time
representation of the function. The exponentials, being periodic and of global support,
are anything but local in time. The “feature” that the exponential linear functional eiω
captures is not of a kind that had a counterpart in the time representation. Thus, the
frequency representation will reveal in our original functions features that the time repre-
sentation is unable to easily identify. In turn, some properties of the function which are
obvious from the time representation (e.g., the interval support of a compactly supported
f) become almost “invisible” on the frequency domain.

Fourier series

In the theory discussed in this part, we analyse a space of functions which is known
as L2(TT). A function f : IR → C belongs to that space if it satisfies the following two
conditions:

(1) It is 2π-periodic:

f(t+ 2π) = f(t), ∀t ∈ IR.

(2) It is of finite energy:

‖f‖L2
:= (

∫ π

−π
|f(t)|2 dt)1/2

is finite.

The quantity

‖f‖L2

is referred to as the L2 (read: “L-two”) norm of f .

The first condition in the above definition is very restrictive. The second one is actually
very mild: functions that are continuous definitely satisfy it. Furthermore, functions
that have finitely many jump-discontinuities (on the interval [−π, π]) also satisfy it. A
guiding example is as follows: the (restriction to [−π, π] of the) function |t|−1/2 is not
in L2. However, |t|−1/3 is in L2 (the actual definition of these functions at the origin is
immaterial).

The above norm is associated with the following inner product:

〈f, g〉 :=

∫ π

−π
f(t)g(t) dt.

The connection is:

‖f‖2 = 〈f, f〉.
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A norm, in general, is a number that attempts to measure the “size” of a function (there is
a more precise mathematical definition to that, and we may come back to this point later
on). Most examples of norms cannot be associated with an inner-product as above. This
makes the L2-norm very special. We say that L2(TT) is an inner product space.

Definition: the Fourier series. Let eiω be the periodic exponential with frequency ω,
i.e.,

eiω : t 7→ eiωt = cos(wt) + i sin(wt).

The linear functionals in the decomposition map of the Fourier series are the exponentials
with integer frequencies i.e.,

Λ := (ein)
∞
n=−∞.

Explicitly, we denote f̂(n) := 〈f, ein〉, i.e.,

f̂(n) :=

∫ π

−π
f(t)e−int dt.

We then consider (naturally) f̂ as a function (i.e., sequence) defined on the integers ZZ.
There is a sequence space, ℓ2, which is analogous to the L2-space: A sequence x :

ZZ→ C belongs to ℓ2 (or the sequence is ‘square-summable’) if

‖x‖ := (
∞∑

n=−∞
|x(n)|2)1/2 <∞.

Note that we are using the same notation, ‖ · ‖ for two different norms: the L2-one and
the ℓ2-one. Usually, it should not cause any confusion: if we write ‖f‖, you need only to
check whether f is a 2π-periodic function or a sequence defined on the integers in order to
choose the right norm. Sometime we stress an underlying norm by writing

‖x‖ℓ2 .

The ℓ2-space is also an inner-product space, with the inner product being

〈x, y〉 := 〈x, y〉 :=
∞∑

n=−∞
x(n)y(n), x, y ∈ ℓ2.

Properties of the analysis map of the Fourier series.
orthogonality: 〈ein, eim〉 = 0, for any two different integers n,m. Moreover, 〈ein, ein〉 =

2π (check!). (Thus, had we chosen to ‘normalize’ each exponential, by dividing it by
√

2π
we would have obtained an orthonormal system, i.e., an orthogonal system with the norm
of each element being unit; because we do not normalize the exponentials, the factor 2π
occurs in all the formulas below).

An important consequence of the above orthogonality is the Bessel inequality:
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‖f̂‖ ≤
√

2π ‖f‖, ∀f ∈ L2,

i.e.,

(
∞∑

n=−∞
|f̂(n)|2)1/2 ≤

√
2π ‖f‖L2

.

In particular, the map f 7→ f̂ maps L2 into ℓ2.

completeness: This is a highly non-trivial property of the exponential system (ein)n∈ZZ

and is known as the Fischer-Riesz Theorem. There are several different ways to express
this property. The most convenient one is to say that ‘the map f 7→ f̂ is one-to-one’ i.e.,
‘the only function f in L2 that satisfies f̂(n) = 0, all n, is the zero function.’

The fact that the exponential system is complete and (almost) orthonormal implies
several very important properties.

First and foremost is the perfect reconstruction property:

Theorem. For every f ∈ L2,

f =
1

2π

∞∑

n=−∞
f̂(n)ein =

1

2π

∞∑

n=−∞
〈f, ein〉ein.

The second property is Parseval’s identity: for every f ∈ L2,

‖f‖ =
1√
2π
‖f̂‖.

Another, seemingly stronger, version of Parseval’s identity is:

〈f, g〉 =
1

2π
〈f̂ , ĝ〉,

i.e., ∫ π

−π
f(t)g(t) dt =

1

2π

∑

k∈ZZ

f̂(k)ĝ(k).

Note: Parseval’s identity is equivalent to the perfect reconstruction property. None
of the two implies the orthonormality of the system (of linear functionals) that we use.
Later on, we will encounter systems of linear functionals that give us perfect reconstruction
without being orthonormal (or orthogonal).

Connection between smoothness of f and the decay of its Fourier coefficients.
Functions in the space L2(TT) can be very wild. They might be unbounded, and have

an abundant of “bad points”: blow-up points, jump-discontinuities, cusps and other, more
hidden, bad points. The worse the function is, the harder it is to capture it easily. For
example, it might be hard to analyse such function with the aid of only a few values of it.
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We try to understand the “goodness” of a function via different methods. The first
and most common one is the notion of “smoothness” which amounts to the number of
times that we are able to differentiate that function.

Definition: smoothness. Let f ∈ L2(TT), and let k be a non-negative integer. We say
that f is k-times differentiable (or is “differentiable of order k”) if:
(a) The k − 1 derivative of f exists everywhere and is continuous.

(b) The kth derivative of the function exists everywhere with the exception, perhaps, of
finitely many points. Moreover, f (k) ∈ L2(TT).

Unfortunately, we “cut a few corners” in the above definition: we demanded a bit too
much in our definition.

Theorem. Let k be a non-negative integer. Suppose that all the derivatives up to order
k of f (as a 2π-periodic function) exist and lie in L2. Then the sequence n 7→ nkf̂(n) lies
in ℓ2. The converse is also true.

While the theorem is entirely correct, you should be warned that the smoothness
notion it uses is not entirely the same as ours (it is a bit more forgiving).

Example: take the function f which is 0 on [−π, 0) and is 1 on [0, π) (note that the
function has two ‘bad’ points: the obvious one is at 0, the less obvious one is at π; recall
that we think of the function as 2π-periodic hence identify π with −π.) This function does
not satisfy the above theorem for any value of k (other than k = 0), hence we are granted

that the sequence n 7→ nf̂(n) is not square-summable. This implies, for example, that we
cannot have an inequality of the form

|f̂(n)| ≤ c |n|−1.5−ε, ∀n ∈ ZZ,

for some c, ε > 0 (why?). Compute f̂ and find the exact rate of decay of it.

Discussion. The Fourier series representation provides, for every function f in the
space L2(TT), a representation as a convergent series:

f =
∞∑

n=−∞
f̂(n)ein.

From a practical point of view, this is “general nonsense”: first, the space L2(TT) is very
large, and most of the functions in that space are of no interest to us. Second, a represen-
tation of functions as infinite series is nice in theory, but in practice, we will have to ignore
most of the summands in the series. In fact, we would like to get a good approximation
to f by summing a small number of terms. Specifically, we may define, for every positive
integer N ,

fN :=
N∑

n=−N
f̂(n)ein,
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and would like to use fN (for some small value of N) instead of f . Our success in doing
that hinges on the size of the error

gN := f − fN =
∑

|n|>N
f̂(n)ein.

Now, the Fourier coefficients of gN are

ĝN (n) :=

{
0, |n| ≤ N ,

f̂(n), otherwise.

(This is due to the fact that, given any sequence x ∈ ℓ2, that series
∑
n∈ZZ x(n)ein converges

in a function in L2(TT) whose Fourier coefficients are the given values of x.)
Now, by Parseval’s formula,

‖gN‖2 =
∑

n∈ZZ

|ĝN (n)|2 =
∑

|n|>N
|f̂(n)|2.

If the Fourier coefficients of f decay fast to 0 as n → ±∞, then we expect, already for
small values of N , that ‖gN‖ is small. This is the case when the function f is known to
be smooth, and the smoother the better!

All that sound good: in science we are usually interested in “good” function. If we
classify “good” by “smoothness”, then we a good deal from the Fourier representation:
smooth functions are represented quite accurately using only few terms in the Fourier
expansion. However, a glimpse at the example that precedes this discussion reveals the
main shortcoming of the Fourier series: the function f in the example has only two bad
points, and is very nice elsewhere. Altogether, it is a very simple function, but in terms
of smoothness it is not smooth at all (not even continuous). The decomposed function f̂
reacts to the bad points on the time domain by decaying very slowly (as it must do, in
view of the above theorem). So, it is hard to reconstruct this function from its Fourier
coefficients, i.e., we need a large N in order for fN to be close enough to f .

There is another difficulty that the example reveals. While one can immediately
conclude from the slow decay of the Fourier coefficients that the original f cannot have
a first order derivative in L2, there is (at least in essence) no way to tell where the bad
points of f are, or how frequently they occur.

In summary, the discussion here exposes two shortcomings of the frequency represen-
tation:
(i) It provides good effective representation to smooth functions, but there are many

“nice” functions that are not smooth, and for those the representation might be quite
deficient (= we need to sum many terms before getting a good “resolution” of the
function.)

(ii) It is not local in time: by inspecting the rate of decay of the coefficients we might
understand the exact smoothness of the function, but we won’t be able to know where
the bad points of the function are.
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Part 3. Introduction: Fourier transform (L2 theory)

In many (but not all) regards, the Fourier transform is the extension of the Fourier
series theory from periodic functions to functions defined on the entire real line.

This will be the first and last time that we use a non-countable number of linear
functionals (i.e., there are so many linear functionals that there is no way to index them
by the integers).

The L2-space. We now assume that our functions are defined on the entire line. Then
our inner product is

〈f, g〉 :=

∫

IR

f(t)g(t) dt,

our norm is

‖f‖L2
:= (

∫

IR

|f(t)|2 dt)1/2,

and the space L2 is again the space of all functions whose above L2-norm is finite. Note
that the functions in L2 should not be too bad around any point, and also should decay
somewhat at ±∞.

Examples. The function t 7→ 1/t is not in L2 because it behaves too badly at the
origin. The function t 7→ t−1/3 is not in L2 because it does not decay fast enough as t
approaches ±∞. The function t 7→ 1/

√
|t| is ‘too bad’ both at 0 and at ±∞. How about

t 7→ 1

|t|+
√
t
?

The Fourier transform f 7→ f̂ is the decomposition map that employs all the expo-
nentials

Λ := (eiω)ω∈IR.

Thus,

f̂(ω) := 〈f, eiω〉 =

∫

IR

f(t)e−iωt dt.

The are a few technical difficulties here that arise from the fact that the exponentials
(viewed as functions defined on the entire line) do not belong to the L2-space. For example,
the notion of orthogonality is not very meaningful since it is hard to make sense of the
inner product of two exponentials. Also, the above definition of the Fourier transform
makes sense only for ‘nice enough’ functions f in L2.

We brush away all these difficulties, partly since we really are interested in analysing
functions f of compact support (and for those the theory is simpler).

We regard f̂ as a function defined also on IR, i.e.,

f̂ : IR→ C : ω 7→ f̂(ω).
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However, the fact that the domains of f and f̂ seem to be the same, is misleading (it is
a mathematical accident: recall that in the periodic case, f is defined on [−π, π] while

f̂ is defined on ZZ). Many books make the distinction formal by denoting the domain of

f̂ by ÎR, although of course ÎR is still the real line. We will distinguish between the two
domains by referring to one of them as the time domain and the other as the frequency
domain.

The core of Fourier analysis is the fact that f and f̂ , while both defined on the same
real line, exhibit completely different behavior. What may be apparent from an inspection
of f (e.g., a jump discontinuity) may be very hard to observe by looking at f̂ , and vice
versa. To a large degree, we would like to be able to look at a function simultaneously in
both domains.

Example: Music. Music is an excellent example of the combined meaning of time
and frequency. We may regard each note of an instrument as representing one particular
frequency (it does not matter for the present discussion whether this is completely true).
So, the most basic info about music (one instrument, say), is to know which note was played
and when. The time representation of music answers the question ‘when’: the music was
played during the time that its time representation was non-zero (the time representation,
in essence, records the amplitude of the music at each particular time). The frequency

representation (i.e., f̂) answers the question ‘which’: it tells us what notes were active
during the entire time that the music was played. Neither of the two is satisfactory. We
will be looking soon for methods that allow a simultaneous representation of a function on
a combined ‘time-frequency’ domain. We need first the Fourier transform, since it defines
for us a new domain where the function can be examined: the frequency domain.

Properties of the Fourier transform (i.e., properties of the above exponential
set Λ).

Completeness. The Fourier transform is one-to-one on L2, i.e., the only function in
L2 that satisfies 〈f, eiω〉 = 0 for each ω ∈ IR is the zero function.

Parseval identity. For every f ∈ L2,

‖f‖ =
1√
2π
‖f̂‖.

Again, this identity leads to an analogous result on the corresponding inner products:

〈f, g〉 =
1

2π
〈f̂ , ĝ〉,

i.e., ∫

IR

f(t)g(t) dt =
1

2π

∫

IR

f̂(ω)ĝ(ω) dω.

Perfect reconstruction.

f(t) =
1

2π
〈f̂ , e−it〉 =

1

2π

∫

IR

f̂(ω)eiωt dω.

13



The next three properties are easy to prove (try!)

Connection between translation and modulation. For every t ∈ IR,

êitf = Etf̂ , Êtf = e−itf̂ .

I.e., translation on the time domain is converted to modulation of the frequency domain.
(The fact that modulation of the time domain is converted to translation of the frequency
domain must then follow, since applying twice the Fourier transform brings us back, almost
exactly, to the original function; see the Perfect Reconstruction property).

connection between convolution and multiplication. This is among the most remarkable
and the most powerful properties of the Fourier transform:

(4) f̂ ∗ g = f̂ ĝ.

Example. Let B1 be the B-spline of order 1. It is relatively easy to compute its Fourier
transform

B̂1(ω) =
1− e−iω

iω
.

Higher order B-splines are defined by repeated convolutions:

Bk := Bk−1 ∗B1.

It is non-trivial to compute Bk (it is, btw, a piecewise-polynomial supported on [0, k]).
The property (4) implies, almost immediately, that

B̂k(ω) =
(1− e−iω

iω

)k
.

connection between dilation and dilation. It is useful to define dilation in a normalized
way: if a > 0, then

(Daf)(t) :=
√
af(at).

(In this way, ‖f‖ = ‖Daf‖.)
Then

D̂af = D1/af̂ .

(Thus, dilation by a on the time domain is converted to dilation by 1/a on the frequency
domain: ‘stretching’ on the time domain becomes ‘squeezing’ on the frequency domain.)

connection between differentiation and multiplication by a polynomial; connection be-
tween smoothness of f and decay of f̂ .

Let () be the linear function ω 7→ ω. Then

f̂ ′ = ()f̂ .

It follows:

14



Theorem. Let k be a positive integer and let f ∈ L2. Then the derivatives f ′, f ′′, . . . , f (k)

all exist and lie in L2 if and only if the function ()kf̂ : ω 7→ wkf̂(ω) lies in L2.

Example. We take the function Bk:= the B-spline of order k. While we do not know
much (yet) about this function in the time domain, we already know that

B̂k(ω) =
(1− e−iω

iω

)k
.

We can bound
|B̂k(ω)| ≤ 2k|ω|−k.

Thus,
|ωk−1B̂k(ω)| ≤ 2k|ω|−1.

This implies that ()k−1B̂k ∈ L2, hence that all the derivatives of Bk up to order k−1 exist
and are in L2.

notes will be expanded here: we will add discussion as follows: we will take a nice,
smooth, non-negative compactly supported function, and will see how the Fourier transform
fails to account for any translation that we apply to the function, while it nicely captures
any modulation that we apply to the function.

Part 4. Time-frequency localization and WH systems

We would like to construct systems that:
(1) Perform a good time-frequency localization. In principle, this means that the

functions in the system are local in time (e.g., compactly supported, or decay very fast
at ∞), and are also very smooth (since this corresponds to good decay of their Fourier
transform).

(2) Are good in the sense of the section on ‘Good Systems’. This means that once we
applied the decomposition operator

Λ∗ : f 7→ 〈f, λ〉λ∈Λ,

we have a ‘good’ way to reconstruct f . For example, a very good system would allow us
a perfect reconstruction:

f =
∑

λ∈Λ

〈f, λ〉λ.

(2) Are augmented by a fast algorithm that allows us to do painlessly the decompo-
sition and reconstruction.

When attempting to perform good time-frequency localization, we must have certain
priorities in mind: there is a subtle balance between the ability to be ‘very local’ in time,
and the ability to be very local in frequency.

15



Most of the prevailing constructions start with a window function g (or several window
functions) and associate with it its set of shifts i.e., integer translations:

E(g) := {Ekg : k ∈ ZZ}, Ekg : t 7→ g(t− k).

Assuming that g is ‘concentrated’ around the origin, we may associate the function Ekg
in the system E(g) with the point t = k in the time domain.

In order to complete the construction of the system Λ, we need to choose between the
following two options:

Option 1: we aim at having elements in Λ that identify very local features in the time
domain. If this is our goal, then we need to have in Λ functions of smaller and smaller
supports. This can be achieved by applying dilations to E(g), and it leads to the notion of
wavelets. The sacrifice here is in the frequency domain: using such a system, our ability
to distinguish between frequencies will deteriorate as the frequency gets higher.

Option 2: we would like to ‘tile’ the frequency domain in a similar way to that of the
time domain. I.e., given the window g, we would like that our system will include all the
functions whose Fourier transforms is of the form Ej ĝ, with j varies over either the integers
of some fixed scale of the integers. This approach leads to the notion of Weyl-Heisenberg
systems. Since translating the Fourier transform is equivalent to modulating the original
function, we are led to constructing here a system of the form

Λ = {eijEkg : k ∈ ZZ, j ∈ 2πZZ}.

I.e., a typical function in the system is of the form

gj,k : t 7→ eijtg(t− k).

If ĝ is ‘concentrated’ around the origin (in the frequency domain), then ĝj,k is concentrated
around 2πj. This means that, roughly speaking, that the inner product

〈f, gj,k〉

‘tells us’ about the behaviour of f at time t = k and frequency ω = 2πj. (The fact that
we use the lattice 2πZZ on the frequency domain is not essential, and for this reason we do
not justify that choice; however, see the theorem below).

Example. Let B1 be the B-spline of order 1. Then the Weyl-Heisenberg (WH) system

{ejEkB1 : k ∈ ZZ, j ∈ 2πZZ}

is known as the (discretized) windowed Fourier transform. It is a complete orthonormal
system (and therefore has the ‘perfect reconstruction’ property. It is local in time (although
its elements cannot ‘zoom on’ very local features, which is a drawback of all WH systems),

but its localness in frequency of very bad (why? look at B̂1).
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The attempt to construct WH systems with better frequency localization has to deal
first the following theoretical barriers. The third part of the theorem in known as the
Balian-Low Theorem.

Theorem 5. Let g ∈ L2, and let Λ be the

Λ := {ejEkg : k ∈ ZZ, j ∈ hZZ}.

Then:

(i) If h < 2π (=oversampling) the system Λ is dependent, i.e., one of the elements in the
system can be represented by the others. In particular, Λ cannot be orthonormal in
this case.

(ii) If h > 2π (=undersampling) the system Λ is not complete.

(iii) If h = 2π, and if Λ is known to be complete and orthonormal, then either g′ 6∈ L2

(and then the system has very poor frequency localization ), or ĝ′ 6∈ L2 (and then the
system has very poor time localization).

One may attempt to conclude from the above that there is no way to construct good
WH systems. That is not the case however. First, there is a genuine trick that alters
a bit the definition of a WH system. The systems constructed in this twisted manner
are known as Wilson bases and they escape the curse of the Balian-Low theorem: there
are smooth compactly supported Wilson bases which are orthonormal and complete. The
famous construction of Wilson bases is due to Daubechies-Jaffard-Journé (1992).

Simpler than that: it is very easy to construct WH systems which satisfy the complete
reconstruction property, and have excellent time-frequency localization property as well
(they are not orthonormal however). The first such construction is due to Daubechies-
Grossman-Meyer (1986).

Theorem 6. Let g be a function supported in the interval [0, 1/h], for some positive
h < 1. Then the system

Λ = {ejEkg : j ∈ ZZ, k ∈ 2πhZZ}

is a system that satisfies the complete reconstruction property if and only if

∑

k∈ZZ

|g|2(·+ k) = 1.

There are many compactly supported univariate functions whose shifts sum up to the
constant 1. For example, this is true for each B-spline Bm. Thus, we can take g to be the
square root of the B-spline Bm. Since Bm is supported in the interval [0,m] we can choose
h = 1/m for this case.
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Part 5: Wavelets, MRA, and refinable functions

(The beginning of this section repeats the discussion in Part 4, and is included since
we skip in class Part 4).

We would like to construct systems that:
(1) Perform a good time-frequency localization. In principle, this means that the

functions in the system are local in time (e.g., compactly supported, or decay very fast
at ∞), and are also very smooth (since this corresponds to good decay of their Fourier
transform).

(2) Are good in the sense of the section on ‘Good Systems’. This means that once we
applied the decomposition operator

Λ∗ : f 7→ 〈f, λ〉λ∈Λ,

we have a ‘good’ way to reconstruct f . For example, a very good system would allow us
a perfect reconstruction:

f =
∑

λ∈Λ

〈f, λ〉λ.

(2) Are augmented by a fast algorithm that allows us to do painlessly the decompo-
sition and reconstruction.

When attempting to perform good time-frequency localization, we must have certain
priorities in mind: there is a subtle balance between the ability to be ‘very local’ in time,
and the ability to be very local in frequency.

Most of the prevailing constructions start with a window function g (or several window
functions) and associate with it its set of shifts i.e., integer translations:

E(g) := {Ekg : k ∈ ZZ}, Ekg : t 7→ g(t− k).

Assuming that g is ‘concentrated’ around the origin, we may associate the function Ekg
in the system E(g) with the point t = k in the time domain.

In order to complete the construction of the system Λ, we need to choose between the
following two options:

Option 1: we aim at having elements in Λ that identify very local features in the time
domain. If this is our goal, then we need to have in Λ functions of smaller and smaller
supports. This can be achieved by applying dilations to E(g), and it leads to the notion of
wavelets. The sacrifice here is in the frequency domain: using such a system, our ability to
distinguish between frequencies will deteriorate as the frequency gets higher. This is the
option we choose here. It leads us to the notion of wavelet systems.

Vanishing moments. Before we continue with our main topic, constructing a wavelet
system, we digress in order to analyse the important notion of vanishing moments.

Definition. Let ψ be a compactly supported function. We say that ψ has m van-
ishing moments (with m some positive integer) if, for every polynomial p of degree
< m,

〈p, ψ〉 =

∫ ∞

−∞
p(t)ψ(t) dt = 0.
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Note that the polynomial p is not in our class L2(IR) (why?). Nonetheless, the inner
product is well-defined (why?). Also, we are assuming ψ to be real valued. If ψ is complex-
valued, a conjugation should be added above (that would not change the definition, though.
(why?).)

Proposition 7. A compactly supported function ψ has m vanishing moments if and only
if

(ψ̂)(l)(0) = 0, 0 ≤ l < m,

i.e., the Fourier transform of ψ has mth order zero at the origin.

Proof: (main idea) Since integration is linear, the vanishing moments property
amounts to ∫

tlψ(t) dt = 0, 0 ≤ l < m.

Now,

ψ̂(ω) =

∫
ψ(t)e−iωt dt.

Differentiating both sides of this equation l times gives

ψ̂(l)(ω) =

∫
ψ(t)(−it)le−iωt dt.

(We exchanged the order of differentiation and integration , and then found that the
argument ω appears only in the exponential. We then used the fact that (eat)′ = aeat,
which is valid for complex exponentials as well).

Evaluating the last identity at ω = 0, gives

ψ̂(l)(0) = (−i)l
∫
ψ(t)tl dt.

From this, it is easy to obtain the claim.

Theorem 8. Let ψ be a function supported in the interval [a, b] and having m vanishing
moments. Suppose that f ∈ L2(IR) has m continuous derivatives on the interval [a, b].
Denote

C(f, a, b) := max{|f (m)(t)| : t ∈ [a, b]},
and assume that ‖ψ‖ ≤ 1. Then

|〈f, ψ〉| ≤ C C(f, a, b)(b − a)m+1/2.

Proof: Let p be the Taylor expansion of f of order m around the point a, i.e., p
is a polynomial of degree < m. Writing

E(t) :=

{
f(t)− p(t), t ∈ [a, b],
0, otherwise,
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it is known that, for every t ∈ [a, b], there exists ct ∈ (a, t) such that

E(t) =
f (m)(ct)

m!
(t− a)m.

Thus, by our assumptions, |E(t)| ≤ C(f,a,b)(b−a)m

m! =: K.

Now, due to the vanishing moments of ψ,

〈f, ψ〉 = 〈p, ψ〉+ 〈E,ψ〉 = 〈E,ψ〉.

(Note that our decision to define E to be 0 outside [a, b] affects nothing, since ψ already
vanishes outside [a, b]. I.e., p+E equals f only on [a, b], and that’s all we need). Therefore,

|〈f, ψ〉| = |〈E,ψ〉| ≤ ‖E‖‖ψ‖ ≤ ‖E‖.

Finally,

‖E‖ =

√∫ b

a

|E(t)|2 dt ≤

√∫ b

a

K2dt = K(a− b)1/2 =
C(f, a, b)

m!
(b− a)m+1/2.

Remark. We have forgone listing the constant C as 1/m! since better constants are
available. For example, we could do the Taylor expansion around the midpoint of the
interval.

Discussion. If the mother wavelet ψ is supported in [α, β], then the wavelet ψj,k is
supported in [2−j(α+ k), 2−j(β + k)]. The length of its support is, therefore, (β − α)/2j .
Also, ‖ψj,k‖ = ‖ψ‖ (why?). Thus, if f has m continuous derivatives in some fixed interval
[a, b], then, for every wavelet ψj,k whose entire support lies in [a, b], we will have

|〈ψj,k, f〉| ≤ C C(f, a, b)(α − β)m+1/22−j(m+1/2).

Note that each time we increase j by 1, the bound above shrinks by a factor of 2m+1/2.
Also note that extra differentiability in f does not help here, since we are limited by the
number of vanishing moments in ψ. Also, additional vanishing moments in ψ are not going
to help either, unless f has additional derivatives. So, the basic rule is:

Basic rule. The expected decay rate of the wavelet coefficients is determined by the
smaller of (i) the number of vanishing moments of the wavelet, and (ii) the smoothness of
f on the support of the corresponding wavelet.
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This is now a leftover. I am leaving it in just in case there is still some value in it.
will be expanded here. we will add a discussion how we construct a good window function
ψ for the wavlet system. The discussion will say that we try achieve three goals:

(1) The window function should be local in time. This is achieved by selecting a
function ψ with compact support. Ideally, the support is the interval [0, 1] (for reasons that
we do not elaborate on now it cannot be smaller than that. Usually the support will be
larger.)

(2) The window function should be local in frequency, i.e., should be smooth.
(3) The inner product 〈f, ψ〉 should measure the “roughness of f”: if f is a very nice

function (on the support of ψ: 〈f, ψ〉 does not depend at all on the behavior of ψ outside
the support of f . why?), we want 〈f, ψ〉 to be small.

The last point requires some elaboration. Let us agree that a linear polynomial at our
epitome of anything that is “nice and predictable” (after all, if you know two values on the
graph of the linear polynomial, you find all the other values by simple averaging. So it is
a very predictable function). Now, suppose that ψ is supported on an interval [a, b]. We
look at f on that interval, and we try to fit (on that interval only) the function f a linear
polynomial p:

f = p+ (f − p).
Suppose that we managed to do very well, i.e., we found p such that the error f − p is a
very small on [a, b]. In this case, it is reasonable to think about f is “ very predictable”
(i.e., smooth) on the interval. If ψ measures “roughness” (and is supported on [a, b]) then
〈f, ψ〉 may better be small, reflecting thereby the ”goodness” of f on [a, b]. An easy way to
do that is to require that

(9) 〈p, ψ〉 = 0, for every linear polynomial.

Note that, by taking p(t) = 1 in (9) we obtain the requirement

ψ̂(0) =

∫ ∞

−∞
ψ(t) dt = 〈1, ψ〉 = 0.

In fact, it can be shown (and is not very hard) that (9) is equivalent to

(10) ψ̂(0) = ψ̂′(0) = 0.

Now, if we managed to find ψ that satisfies (9), then, for any linear polynomial p

〈f, ψ〉 = 〈p+ (f − p), ψ〉 = 〈p, ψ〉+ 〈f − p, ψ〉 = 〈f − p, ψ〉.

So, if ψ is supported on [a, b], and there is, on [a, b], a good fit to f by some linear p, then
we are guaranteed that 〈f, ψ〉 is small, without a need to ever find p!!

If we consider ‘roughness’ as the “inability to find a good fit to f on small intervals
by linear polynomials” (a notion which is closely related to failing to differentiate f even
once, hence is a very good way to think about roughness), then all the above tells that that
we better require of ψ to satisfy (10).
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Thus,,wavelet systems are created from the shift-invariant system E(g) by applying
dilations. The most standard dilations are in powers of 2. Such wavelet systems are
sometime referred to as ‘dyadic wavelets’.

Definition: a (dyadic) wavelet system. Let Ψ be a finite collection of a functions in
L2(IR). The wavelet system generated by Ψ is the collection of functions

WΨ := {D2jEkψ : j, k ∈ ZZ, ψ ∈ Ψ}.

The functions in Ψ are called mother wavelets. We index the wavelet by ψ, j and k.
Thus,

ψj,k : t 7→ 2j/2ψ(2jt− k).
Note: ψj,k is obtained from ψj,0 by translation. The translation is not by k, but by

k/2j . Thus, our shifts become denser as j →∞ and sparser as j → −∞. This completely
agrees with the fact that positive dilation ‘squeezes’ the function, while negative dilation
‘stretches’ the function.

Proposition. Let Wψ be a wavelet system generated by a single mother wavelet ψ. Then
Wψ is orthonormal if and only if the following condition is valid for every k ∈ ZZ and every
j ≥ 0:

(11) 〈ψ0,0, ψj,k〉 =

{
1, j = k = 0,
0, otherwise.

Proof: One implication is trivial, i.e., if the system is orthonormal then the above
three conditions should definitely hold: they are a part of the definition of an orthonormal
system.

In order to prove the converse, we assume that (11) hold. We note that both dilation
and translation are unitary operators, that is for every t ∈ IR and every non-zero a and
every f, g ∈ L2

〈Etf,Etg〉 = 〈Daf,Dag〉 = 〈f, g〉.
We also note that

DaEt = Et/aDa.
Thus, first,

〈ψj,k, ψj,k〉 = 〈D2jEkψ,D2jEkψ〉 = 〈ψ,ψ〉 = 1.

Second, in computing 〈ψj,k, ψj′,k′〉 we may assume that j ≤ j′ (since the inner product is
symmetric, up to conjugation). Thus,

〈ψj,k, ψj′,k′〉 = 〈D2jEkψ,D2j′Ek
′

ψ〉 = 〈Ekψ,D2j′−jEk
′

ψ〉 =

〈ψ,E−kD2j′−jEk
′

ψ〉 = 〈ψ,D2j′−jEk
′−2j′−jkψ〉 = 0,

with the last equality by assumption (11), since D2j′−jEk
′−2j′−jkψ = ψj′−j,k′−2j′−jk.
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Remark. Another variant of this result is as follows: Wψ is orthonormal if and only if
the following conditions are valid, for every j ≤ 0 and every k ∈ ZZ:

〈ψj,0, ψ0,k〉 =

{
1, k = j = 0,
0, otherwise,

We organise the wavelets in WΨ in scales or layers or levels. The jth scale, Wj , of the
system consists of the ZZ/2j-shifts of the dilated functions ψj,0:

Wj := {ψj,k : ψ ∈ Ψ, k ∈ ZZ}.

Let’s see a few examples.

Example: The Haar wavelet system. We choose Ψ to consist only of one function, and
take this function to be the Haar function H. Then, one can show that WH is orthonormal
(easy) and complete (a bit harder). This is the archetypal wavelet system.

The Haar system gives us a good insight to the way wavelets organize the time domain:
each scale Wj covers completely the time line IR. As j → ∞, the ‘tiles’ becomes smaller
(hence we need more of them). As j → −∞ the tiles becomes wider...

It is hard to envision the frequency decomposition of the wavelets by looking at the
Haar system. The performance of Haar on the frequency domain is so poor, that it gives
there a very blurred picture of ‘what should have happened’.

It is useful therefore to go to the other extreme and to look at the wavelet system
which has the ideal frequency localization (and which is very poorly localized on the time
domain).

The Shannon wavelet system. We take Ψ to consist again of a single mother wavelet.
We choose this wavelet by defining its Fourier transform:

ψ̂(ω) :=

{
1, π ≤ |ω| ≤ 2π,
0, otherwise.

(one of the homework problems will ask you to compute this function explicitly.) Again,
it is easy to prove that the Shannon wavelet system is orthonormal (it is also complete).
It is also easy to understand that the wavelets of this system have poor time localization
(why?). However, the point of this example is to see how the Shannon wavelet system tiles
the frequency domain. The is the ideal frequency tiling (for wavelets).

The Fourier transform of ψ0,0 is given explicitly. Recall that a dilation on the time
domain is transformed to the opposite dilation on the frequency domain. Thus, the Fourier
transform of the ‘squeezed’ wavelet ψ1,0 is the support function of the ‘stretched’ domain:

ψ̂1,0(ω) :=
1√
2

{
1, 2π ≤ |ω| ≤ 4π,
0, otherwise.

let’s accept for the time being the concept that we would like to keep the supports of the

various ψ̂j,0 as separated as possible. The Shannon wavelet is ideal in this regard, since

that support of {ψ̂j,0}∞j=−∞ tile the frequency domain.
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The important observation here that we need ψ̂0,0 not only to decay fast at∞, but we
also need it to have a high order zero at the origin: otherwise, we get substantial overlaps

of the supports of ψ̂j,0 for negative j. We amplify that in the next discussion.
Thus, we think about the wavelet as ‘band pass filters’ which means that their fre-

quency content should concentrate in a domain that is strictly ‘between’ 0 at ∞.

Discussion. By now, we know of a few ways to judge whether a given system is good
or not. One criterion is the ability to invert the decomposition by a ‘good reconstruction’.
As said, complete orthonormal systems enjoy the perfect reconstruction property. Thus,
in this regard the Haar system is ‘perfect’.

Another criterion is the time-frequency localization. In terms of time localization the
Haar function is perfect. Its frequency localization is poor. There are now two different
criteria that should be satisfied when judging the frequency localization of the wavelet ψ.

How to judge the frequency localization of a given mother wavelet ψ? The first
is by looking at the decay rate of ψ̂ at ±∞, or equivalently, at the smoothness of ψ. The
Haar wavelet already fails this initial test. But it also fails another ‘frequency localization
test’ which is specific to wavelets only: its Fourier transform has only a first order zero at
the origin.

The main issue at stake: We would like to construct wavelet systems that satisfy the
following conditions:

(1) The system is local in time. We can achieve that by making sure that the mother
wavelets in our system have (short) compact support.

(2) The system is local in frequency. There are two complementary aspects here. One
is the requirement that the Fourier transform of each mother wavelet decays fast at ∞, or
equivalently, that each mother wavelet be smooth. As alluded to above, we also require
the Fourier transform of each mother wavelet to “stay away of the origin”. We will come
back to that notion later.

(3) The analysis/decomposition should be inverted by a corresponding synthesis step.
For example, we may require the system to satisfy the perfect reconstruction formula:

f =
∑

j,k∈ZZ

∑

ψ∈Ψ

〈f, ψj,k〉ψj,k, ∀f ∈ L2(IR).

Recall that a complete orthonormal WΨ would have this perfect reconstruction property
but not vice versa.

(4) The decomposition step as well as the reconstruction step should be implemented
by fast algorithms.

Sometime, we also add another requirement: the mother wavelet are symmetric (or
anti-symmetric; note that the Haar wavelet is anti-symmetric around the point 1/2.)

The vehicle for constructing wavelets systems is MultiResolution Analysis (MRA). It
was introduced by Mallat and Meyer in the late 80’s. At the heart of MRA is the notion
of a refinable function (also known as ‘scaling function’ and ‘father wavelet’).
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Definition 12. Let φ ∈ L2 be a given function. We say that the function φ is refinable
if we can write D1/2φ as a linear combination of E(φ).

We will generalize this definition in the sequel. But, let’s start with examples.

Example. The simplest example of a refinable function is φ := B1, since it is clear that
for this φ

(13) φ(t/2) = φ(t) + φ(t− 1).

We can write this relation also as

√
2φ−1,0 = φ0,0 + φ0,1.

Thus, to say that φ is refinable is tantamount to saying that

(14) φ−1,0 =
∑

k∈ZZ

c(k)φ0,k,

for a suitable sequence (c(k))∞k=−∞. For technical reasons, we normalize this sequence and
introduce

h(k) :=
c(k)√

2
.

For example, in the case of B1, h(0) = h(1) = 1/2, and h(k) = 0, for all other values of k.
With this normalization, the refinement equation (14) reads as

(15) φ−1,0 =
√

2
∑

k∈ZZ

h(k)φ0,k.

We note that there is a simple way to check whether the sequence h is normalized correctly:
when normalized properly, its values should sum up to 1.

The above sequence h is at the core of MRA and is usually referred to as the mask of
the refinable φ. In most (but not all) examples of interest, the mask h is finitely supported
i.e., while being formally defined on all the integers, it assumes non-zero values only at
finitely many integers.

It will be convenient thus to define a mask by specifying only the non-zero entries of
it. Thus, we could simply define the mask of B1 by h(0) = h(1) = 1/2.

Another useful notation here is the following:

V0(φ) := all the linear combinations of E(φ).

Clearly, the refinability condition can be restated as

D1/2φ ∈ V0(φ).
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Set now

V−1(φ) := {D1/2f : f ∈ V0(φ)},

Thus, V−1(φ) is obtained by applying dilation by 1/2 to all the functions in V0(φ). It is
easy to see that V−1(φ) is the ‘span’ of φ−1,k, k ∈ ZZ, i.e. it is spanned by the even-shifts
of the dilated (‘stretched’) function φ−1,0. One can check that the refinability amounts to
the statement that

V−1(φ) ⊂ V0(φ).

The definition of V0(φ) is a bit vague, since E(φ) contains infinitely many functions,
and the Linear Algebra sense of span usually discusses the span of finitely many vec-
tors/functions.

At this point, it is more important to pay attention to the nature of V0(φ) than to
the above nuance. For example, if φ = B1, then V0(φ) consists of piecewise-constants
with (possible) integer breakpoints. V−1(φ) consists of piecewise-constants with (possible)
break-points at the even integers (why?). Thus, indeed, the latter is a subspace of the
former.

If φ = B2, then V0(φ) consists of continuous piecewise-linear functions with integer
breakpoints. V−1(φ) consists then of continuous piecewise-linears with (possible) break-
points at the even integers. Again, the the latter is a subspace of the former. This means
that B2 is refinable, too. Let’s discuss this example in detail.

Example. Let φ be the centered hat function B2(·+ 1). Then (check!)

φ−1,0 =
√

2(
1

4
φ0,−1 +

1

2
φ0,0 +

1

4
φ0,1).

This means that the centered hat function is refinable with mask h(−1) = h(+1) = 1/4,
and h(0) = 1/2.

There is yet another, more general and sometimes more convenient, way to understand
the notion of refinability: viewing the refinability condition as connecting the Fourier
transforms of φ and D1/2φ. Let’s pause momentarily and make some observation before
taking that new route.

Suppose that f is writable as a finite linear combination of E(φ):

f =
N∑

k=−N
c(k)Ekφ.

Applying the Fourier transform to both sides of the above equation, and using some of the
known properties of that transform we get

f̂ = φ̂
N∑

k=−N
c(k)e−ik.
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The sum
∑N
k=−N c(k)e−ik is clearly 2π-periodic. It is actually a very special type of a

2π-periodic function since it is a finite combination of the periodic exponentials. Such
function is known as a trigonometric polynomial. The exponentials themselves (with
integer frequency) are trivially trig. polynomials. More interesting examples are cos and
sin. Indeed (check!):

cos(ω) =
eiω + e−iω

2
sin(ω) =

eiω − e−iω
2i

.

As a summary of the above, one concludes that, if f ∈ L2(IR) and

f̂ = Hφ̂,

with H some trig. polynomial, then f ∈ V0(φ). This allows us to provide the following
(complete and correct!) definition of V0(φ):

Definition 16. Let φ be some L2(IR) function. We define V0(φ) as the collection of all
functions f ∈ L2(IR) that satisfy an equation

f̂ = Hφ̂

with H some 2π-periodic function.

In view of the above, we can recast the refinability condition

D1/2φ ∈ V0(φ)

on the Fourier domain. Since D̂1/2φ = D2φ̂, we obtain that φ is refinable if there exists
2π-periodic H0 such that

φ̂(2ω) = H0(ω)φ̂(ω)

(we absorbed the normalization constant in D2φ̂ into the definition of H0). Thus:

Complete and Correct Definition of Refinability 17. A function φ is said to be
refinable if its Fourier transform satisfies an equality of the form

φ̂(2ω) = H0(ω)φ̂(ω),

with H0 a 2π-periodic function. From now on, we will require additionally that H0(0) = 1.
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A simple exercise shows that if

φ−1,0 =
√

2
N∑

k=−N
h(k)φ0,k

then

φ̂(2ω) = H0(ω)φ̂(ω), H0 =
N∑

k=−N
h(k)e−ik,

i.e., H0 is the Fourier series of sequence h. The function H0 is also called the mask of the
refinable φ, or the symbol of φ.

As a first example of the frequency interpretation of refinability, apply the Fourier
transform to equation (13). Then (after some simple calculation) we get that (for φ := B1),

φ̂(2ω) =
1 + e−iω

2
φ̂(ω).

Example. We previously found that the mask of the centered hat function is defined by
h(−1) = h(1) = 1/4, h(0) = 1/2. Thus, the symbol of this mask is

H(ω) =
e−iω + eiω

4
+

1

2
=

cos(ω) + 1

2
= cos2(ω/2).

We can find that out directly, by finding first the Fourier transform of the centered hat
function. Recall that the transform of B1 is

B̂1(ω) =
1− e−iω

iω
= e−iω/2

eiω/2 − e−iω/2
iω

= e−iω/2
sin(ω/2)

ω/2
.

Thus, the transform of the non-centered hat function B2 is

B̂2(ω) = e−iω
( sin(ω/2)

ω/2

)2
.

Since our function φ is E−1B2, we obtain that

φ̂(ω) =
( sin(ω/2)

ω/2

)2
.

Thus, the symbol H0 is defined by the relation

( sin(ω)

ω

)2
= H(ω)

( sin(ω/2)

ω/2

)2
.

Using the correct trigonometric identity (which one?) one easily gets that H0(ω) =
cos2(ω/2).
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Example. Let φ be the function whose Fourier transform is the support function of the
interval [−π, π] (i.e. φ̂ equals 1 on that interval, and 0 outside that interval). Let H0

be the (2π-periodic extension) of the support function of the interval [−π/2, π/2]. Then,
obviously, φ is refinable (according to definition (17)) with mask H0.

Part 6: MRA and the unitary extension principle

The MRA approach. Start with a refinable φ. Choose the mother wavelets Ψ such
that each ψ ∈ Ψ satisfies D1/2ψ ∈ V0(φ).

For example, if φ = B1, then we choose each D1/2ψ to be some (carefully selected)
piecewise-constant with integer breakpoints. This means that ψ itself is piecewise-constant
with half-integer breakpoints (why?). Of course, this shows that Haar is derived from the
MRA of B1.

Discussion. The smoothness of the mother wavelets will be determined by the
smoothness of the refinable function. The MRA setup guarantees fast algorithms (as
we will see later). In order to build mother wavelet that have small support (local in
time), we need to choose a refinable function with short, compact, support, and we need
also to make sure that only a few of the shifts of this φ are involved in the construction of
the mother wavelets (why?). And how are we going to achieve the prefect reconstruction
property (or, even better, to construct an orthonormal WΨ)?

In order to address this latter question, we formalize it as follows. First, we are given
a refinable function φ, namely, we are given a 2π-periodic function H0 that satisfies

φ̂(2ω) = H0(ω)φ̂(ω).

In addition we assume throughout that

H0(0) = 1

(refinable functions that violate this conditions are pathological). We want to choose
mother wavelets ψ1, ψ2, . . . , ψr such that D1/2ψi ∈ V0(φ), i = 1, . . . , r. Looking at the
definition (16) of V0(φ), we conclude that the condition D1/2ψi ∈ V0(φ) implies (how?)
that there exists a 2π-periodic function Hi such that

ψ̂i(2ω) = Hi(ω)φ̂(ω).

Note that the mother wavelets (hence the entire wavelet system) are determined by φ and
(Hi)

r
i=1.

So, the MRA construction of wavelet systems can be described as a 2-step approach:
Step I: Pick a refinable function φ of desired properties. Find its refinement mask

H0. φ is either chosen from the known refinable functions (e.g., a B-spline), or, sometimes,
we will need to construct it so that it has some especially tailored properties.

29



Step II: Choose the mother wavelet ψ1, . . . , ψr, or, in other words, choose the wavelet
masks H1, . . . ,Hr.

The ultimate goal in the MRA construction of wavelets is to understand the process
well enough so that we can construct in this way good wavelet systems. The immediate
question is thus what we mean by ‘good’. The five basic desired properties are as follows:
(i) Localness in time: ideally we would like all the mother wavelets to be supported in a

small interval.
(ii) Smoothness: in order to be local in frequency, all the wavelets should be as smooth

as possible.
(iii) High vanishing moments: we would like each ψ̂m to have a high-order zero at the

origin (this is the other condition for frequency localization).
(iv) Good reconstruction method. Ideally, we would like the wavelet system to satisfy the

perfect reconstruction formula:

f =
∑

ψ,k,j

〈f, ψj,k〉ψj,k, ∀f ∈ L2.

Even more ambitiously, we might want the system to be complete and orthonormal.
(v) symmetry, or anti-symmetry. We postpone a discussion of that issue.

We ignore, for the time being, properties (iii) and (v). Note that property (ii) is
completely controlled by the choice of φ (i.e., the choice of H0): once φ is smooth, all the
functions in V0(φ) will be smooth, and the mother wavelets will inherit this smoothness.
Property (i) is also largely controlled by the choice of φ: if φ is compactly supported,
we will get compactly supported wavelets by simply choosing all the masks (Hi) to be
trigonometric polynomials (show that!).

The crux in the MRA construction of wavelets is property (iv). Let’s name that
property first:

Definition 18. Let G be a system of functions in L2. We say that G is a tight frame
for L2 if the perfect reconstruction property is valid:

f =
∑

g∈G
〈f, g〉 g. ∀f ∈ L2.

Theorem 19 (The unitary extension principle (=UEP)). Let φ be refinable with
mask H0, H0(0) = 1. Let H1, . . . ,Hr be 2π-periodic functions. Assume that the following
two conditions hold for every ω ∈ [−π, π]:

(20) |H0(ω)|2 + |H1(ω)|2 + . . .+ |Hr(ω)|2 = 1,

and

(21) H0(ω)H0(ω + π) +H1(ω)H1(ω + π) + . . .+Hr(ω)Hr(ω + π) = 0.
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Then the wavelet system associated with the refinement mask H0 and the wavelet masks
(H1, . . . ,Hr) is a tight frame.

Example. We examine the binomial expansion of

(22) (cos2(ω/2) + sin2(ω/2))2,

and take Hm, m = 0, 1, 2 to be the square root of the (m + 1)st term in that expansion.
Thus,

H0(ω) := cos2(ω/2), H1(ω) := i
√

2 cos(ω/2) sin(ω/2), H2(ω) := sin2(ω/2).

Then condition (20) is obviously valid here, and condition (21) can be easily verified (the
three terms that are obtained when checking that latter condition come from the expansion
of

(cos(ω/2) sin(ω/2)− cos(ω/2) sin(ω/2))2.)

So, the above should lead to a tight wavelet frame. Let’s find the two mother wavelets.
First, H0 is known to be the mask of the (centered) hat function. In order to find the
wavelets, we first find the Fourier coefficients h1, h2 of H1 and H2. Note

H1(ω) = i

√
2

2
sin(ω) =

√
2

4
(eiω − e−iω).

This means that h1(1) = −
√

2
4 , h1(−1) =

√
2

4 , and

ψ1(t) = 2(h1(1)φ(2t− 1) + h1(−1)φ(2t+ 1)) =

√
2

2
(φ(2t+ 1)− φ(2t− 1)).

Similarly,

H2(ω) = sin2(ω/2) =
1− cos(ω)

2
=
−e−iω + 2− eiω

4
.

This time h2(−1) = h2(1) = − 1
4 , while h2(0) = 1

2 , hence

ψ2(t) = 2(h2(1)φ(2t− 1) + h2(0)φ(2t) + h2(1)φ(2t+ 1)) = 1− 1

2
(φ(2t− 1) + φ(2t+ 1)).

The above example generalizes to higher order B-spline. One just needs to use a
higher power in (22). Note that the number of wavelet increases together with that power.

Figure. The two mother wavelets that generate a piecewise-linear tight
frame (ψ1 is on the right).

31



Part 7: constructing orthonormal wavelet systems

A complete orthonormal system is a tight frame but not vice versa. The performance
of the some of the known wavelet algorithms is better understood for orthonormal systems
and less for the more general tight frames. Thus, one may insist on constructing an
orthonormal system and not only a tight frame. In this regard, it is useful to note the
following:

Fact. If WΨ is a complete and orthonormal wavelet system, then Ψ is a singleton, i.e.,
the system employs a single mother wavelet.

We would like then to focus on UEP constructions that are built on a single mother
wavelet. First, let us interpret the UEP as follows: let H0, . . . ,Hr be the masks involved
in the UEP construction. We introduce a matrix with r+1 rows and 2 columns as follows:




H0(ω) H0(ω + π)
H1(ω) H1(ω + π)
. .
. .

Hr(ω) Hr(ω + π)


 .

Denote the columns of this matrix by H(ω) and H(ω+π). Then the UEP simply requires
these two vectors to be orthonormal for every fixed ω.

Now, suppose that we require r = 1. Then the above matrix is square (2×2), and the
orthonormality of its columns then implies that it is a unitary matrix, and in particular
that the rows of that matrix are orthonormal, too. If we think about H0 as given, and
about H1 is being sought-for, then the above discussion shows that we cannot succeed (in
using the UEP with a single mother wavelet) unless H0 is a CQF:

Definition 23. Let H0 be a 2π-periodic function. We say that H0 is a CQF (Conjugate
Quadrature Filter) if H0(0) = 1 and

|H0(ω)|2 + |H0(ω + π)|2 = 1.

Example. Let

H0(ω) = eiω/2 cos(ω/2) =
1 + eiω

2
.

Then |H0(ω)|2 = cos2(ω/2), and it follows then that H0 satisfies the CQF condition. Note
that this particular H0 is the mask of B1.
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So, suppose that H0 is a CQF. Can we then find H1 so that the UEP conditions are
satisfied? The answer is YES.

Construction of a wavelet system from a CQF mask: Mallat’s construction
Since a CQF mask H0 satisfies

|H0(ω)|2 + |H0(ω + π)|2 = 1,

one may be tempted in this case to choose a single wavelet mask H1(ω) := H0(ω + π),
since then (20) is trivially satisfied. However, this is too crude for the satisfaction of (21).
Instead, we define the unique wavelet mask to be

H1(ω) := eiωH0(ω + π).

Then (20) and (21) are always satisfied, and we obtain a tight wavelet frame generated by
a single mother wavelet. The name CQF is usually connected to the pair (H0,H1).

Let’s try to decipher the meaning of

H1(ω) := eiωH0(ω + π).

Suppose that we know the sequence (filter) h0 whose Fourier series is H0. How do we
modify the filter h0 in order to obtain the filter h1? There are three easy steps:

(1) Shifting H0 by π: this amounts to changing the signs of all the coefficients at odd
locations, i.e., we replace h0(k) by (−1)kh0(k).

(2) Applying complex conjugation to H0(ω + π): this amounts to interchanging the
positive location with the negative location, so that we now find at the kth location
(−1)−kh0(−k).

(3) Multiplying the result by eiω: this amounts to shifting the filter one step (forward
or backward, as you wish: we could have defined H1 with e−iω instead of eiω). Thus,
finally,

h1(k) = (−1)k−1h0(−k + 1).

Example. The mask H0 of the refinable B1 is associated with the filter h0(0) = h0(1) =
1/2. Its mirror filter h1 is thus defined by h1(0) = − 1

2 , h1(1) = 1
2 . Note that the resulting

wavelet is (no surprise) the Haar wavelet.
At this point, the CQF construction is still very fishy. First, in our previous construc-

tions we started with a refinable function φ whose mask is H0. Here we started with H0

without paying attention to the question whether there is a refinable φ with such mask.
This difficulty is settled in the following result:

Theorem. Let H0 be a trigonometric polynomial, and assume that H0 satisfies the CQF
condition.
Then there exists a compactly supported function φ ∈ L2 which is refinable with mask H0.

Next, we realize that the CQF construction is thus a special case of the UEP, and hence
the resulting wavelet system is a tight frame. However, we want to obtain an orthonormal
system. The next fact helps us in this regard:
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Theorem 24. Let φ be a compactly supported refinable function whose shifts E(φ) are
orthonormal. Then:
(i) The mask H0 of φ satisfies the CQF condition.
(ii) The CQF construction yields a wavelet systemWψ which is complete and orthonormal.

We note that (i) above cannot be reversed: there are refinable functions whose mask
is a CQF, but whose shifts are not orthonormal. In fact, we have the following precise
statement:

Theorem 25. Let H0 be a trigonometric polynomial, and assume that H0 satisfies the
CQF condition. Let φ be a corresponding refinable function, and assume that φ̂(0) = 1.
Then φ satisfies one (and only one) of the following two conditions:
(1) The shifts E(φ) of φ are orthonormal

(2) φ̂ has a 2π-periodic zero, i.e., there exists a point ω0 such φ̂(ω0 + 2πm) = 0, for every
integer m.

Discussion and examples. In general, we would like to conclude that the refinable
function whose mask is a CQF has orthonormal shifts. The above theorem simply says
that the orthonormality condition of E(φ) is implied by the CQF condition of H0, once

we know that φ̂ does not have a 2π-periodic zero.
As an example, take

H0(ω) :=
1 + e−3iω

2
.

Then H0 is a trigonometric polynomial, H0(0) = 1 and H0 satisfies the CQF condition
(check!). The refinable function is the support function of the interval [0, 3], which obvi-
ously does not have orthonormal shifts. Indeed (check!)

φ̂(ω) =
1− e−3iω

3iω

and this transform has a 2π-periodic zero (where?) Indeed, the wavelet system constructed
by applying the CQF unitary extension principle to this H0 is a tight frame (as it should),
but is not an orthonormal system.

Summary: how to construct an orthonormal wavelet system? Start with a re-
finable φ whose shifts E(φ) are orthonormal. In fact, since such functions are not really
around, start with a CQF H0. Then apply the CQF construction. If you can show that
you cannot satisfy (2) in Theorem 25, then you must satisfy (1) of that theorem, and you
made it: Wψ is complete and orthonormal.

Fortunately, among the two possibilities in Theorem 25, (1) is abundant and (2) is
rare, so a generic CQF construction yields indeed an ortho wavelet basis.

Before we move on, it is worthwhile to clarify one point: suppose that we select a trig.
polynomial H0 which is not a CQF. Is it still possible to find a refinable φ whose mask is
H0? and if so, then how do we find such a function?
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For that, let us look at the infinite product

(26) ν(ω) :=
∞∏

j=1

H0(ω/2
j).

Theorem 27. Let H0 be a trigonometric polynomial and assume that H(0) = 1. Then
the infinite product (26) converges everywhere (to a very smooth function).

The theorem is insufficient: it does not tell us that the limit ν is the Fourier transform
of some φ ∈ L2. It turns out that this is a much harder problem, which we will settle once
we deal with the issue of the smoothness of refinable functions.

Construction of Daubechies’ refinable functions.
Let k be a positive integer. Consider the binomial expansion of

(28) (cos2(ω/2) + sin2(ω/2))2k−1,

and order the terms in decreasing powers of cos (i.e., the first term is cos4k−2(ω/2)). Let

T (ω)

be the sum of the first k terms in this expansion. For example, when k = 2,

(29) T (ω) = cos6(ω/2) + 3 cos4(ω/2) sin2(ω/2).

T (ω) is a trigonometric polynomial (why?). It is also clear that T (ω) ≥ 0 for every ω, and
that T (0) = 1. Finally, we observe that T (ω + π) is the sum of the last k summands in
(28), and hence

T (ω) + T (ω + π) = 1.

The Féjér-Riesz Lemma 30. Let T be a trigonometric polynomial which is non-negative
everywhere. Then there exists a trigonometric polynomial H0 such that

T (ω) = |H0(ω)|2.

Applying this lemma, we obtain a trigonometric polynomial, H0, such that |H0(ω)|2 =
T (ω). For example, for the case (29) this polynomial turns out to be

H0(ω) = cos2(ω/2)(
1 +
√

3

2
+

1−
√

3

2
eiω).

Note that we can now conclude that (for each value of k) the above H0 is a CQF (do not
forget to verify that H0(0) = 1!) Then, Theorem 25 implies most of next result.
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Theorem and Definition. Given k as above, there exists a corresponding trigonometric
polynomial H0 := H0,k, and a function dk (known as ‘Daubechies’ refinable function’ of
order k) such that
(i) dk is refinable with mask H0.
(ii) dk is supported in the interval [0, 2k − 1].
(iii) The shifts E(dk) of dk are orthonormal.
(iv) The mask h0,k associated with H0,k has exactly 2k non-zero coefficients:

H0,k(ω) =
2k−1∑

m=0

h0,k(m)e−imω.

Note that there are two pieces missing in the above theorem. The first concerns the
actual ‘computation’ of the function dk. It turns out that: (a) this can be done with ease
(using the tool of the cascade algorithm that will be discussed in the sequel). (b) It is not
important at all: the entire practical implementation of wavelets can be done purely in
terms of masks. This will become clear as soon as we discuss the fast wavelet transform.

The other issue is the smoothness of dk, an issue of critical importance. Estimating the
smoothness of refinable functions (by inspecting their masks) is a formidable problem, and
is among the hardest problems in the theory of wavelets. The major success of Daubechies’
construction was her ability to prove the following celebrated result:

Theorem 31. For each positive integer k, one can find a positive integer k′ such that the
refinable function dk′ has k continuous derivatives.

The exact connection between k and k′ is rather complicated. For large values of k,
we have approximately that k′ ≈ 5k. On a more practical level, d3 (which is supported in
an interval on length 5), can be proved to have (barely) one continuous derivative.

In addition to the CQF construction, there are general recipes for constructing other
tight wavelet frames based on the unitary extension principle (that employ more than one
mother wavelet). For example, note that the construction of the piecewise-linear tight
frame (from Part 6) can be generalized to higher order B-splines.

Part 8: Filters, filter banks, and the fast wavelet transform

We would like first to connect the theoretical discussion so far, to practical algorithms.
We start with the notions of signals, filters, and low-pass/high-pass filters.

Discussion: filters. In signal analysis, functions cannot be given as a continuum of
values. Instead, we are given a discrete sequence of values which we can index by the
integers

k 7→ x(k), k ∈ ZZ,

and refer to as a signal. The signal x can be either obtained by sampling some given
function, or by some other (local) processing of the function. We need to assume that the
process is regular in time, e.g., in the case of sampling this means that we have sampled
the underlying function equidistantly in time.
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With only discrete information on f in hand, we need to discretize some of the oper-
ations we use. In a natural way, the Fourier transform is replaced by the Fourier series:

X(ω) :=
∞∑

k=−∞
x(k)e−ikω.

Next, convolution is replaced by discrete convolution:

(h ∗ x)(k) :=
∑

m∈ZZ

h(m)x(k −m).

Note that the Fourier series of h ∗ x is the function H(ω)X(ω). While the action of
convolution is commutative (h ∗ x = x ∗ h), the user will usually regard differently the
two sequences: one, say x, is the given signal. The other, h, is an especially designed
sequence, made in order to separate (i.e., ‘filter‘, ‘mask’) certain properties of x; first, and
foremost, frequency properties. For that reasons, h (or more precisely the convolution
action h∗ : x 7→ h ∗ x (which acts on all signals) is referred to as filter. A filter h is low-
pass if H is concentrated around the origin (and therefore vanishes at the ‘end points’ ±π).
Note that this means that H1(ω) := H(ω + π) vanishes at the origin, and is concentrated
at the end points ±π. Its corresponding filter h1 is thus a high-pass filter. Computing
the sequence h1 in terms of h is easy, and one finds that

h1(k) = (−1)kh(k).

So we have just found an easy way to associate low-pass filter with high-pass filter and
vice versa.

Filtering a given signal x (i.e., replacing it by h ∗ x) results in the enhancement of
certain properties of x, and in the suppression of others. It is rather hard to recover the
original signal x from its filtered version h ∗ x. For example, if h is a very good low pass
filter, then H is very flat at the origin, very flat at π, and H(0) = 1 while H(π) = 0 (and
what about −π?). This means that the filtering by h results in a signal whose Fourier
series H(ω)X(ω) preserves very accurately the low frequency content of x while suppresses
completely the frequencies of x near π. It will be very hard, thus, and highly non-robust
to recover x from h ∗ x.

In order to address this problem, one can use several, complementary filters. Say, a
low-pass h0 and a high pass h1. The immediate problem is then of oversampling: if the
filter h is short (i.e., has only a few non-zero values), then the size (i.e., the number of
non-zero values) in h ∗ x is on par with those of x. However, if we use 2 filters h0, h1, we
find ourselves dealing with a combined ‘processed’ signal of size double the original one.

Heuristically, one then should guess that some of the values in h0 ∗ x, h1 ∗ x should be
discarded. For example, why not discard every other sample. This leads to the operation
of downsampling:

x↓(k) := x(2k).

Note that x↓ preserves only the values of x at even locations (and renumber those loca-
tions).
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Decomposition of a signal using filter banks. We restrict our attention to the setup
that is connected to decomposition by wavelet systems. Let (h0, h1, . . . , hN ) be a filter
bank. We assume that h0 is a low-pass filter, and all the others are high-pass filters. Set:

ν1,m :=
√

2(hm ∗ x)↓.

Note that if we have more than one high-pass filter, we still oversample (by how much?).
This is the intrinsic oversampling of the process.

We then proceed by reapplying the process to ν1,0 (which corresponds to the low-pass
filtering of x). We do not touch any more ν1,m, m > 0. (There are applications where
it is necessary to reprocess the high-frequency components of x. The wavelet theory that
relates to these algorithms is connected with the notion of wavelet packets. We will not
discuss it here).

Thus, in the next stage we decompose ν1,0. Inductively, we define:

(32) νj,m :=
√

2(hm ∗ νj−1,0)↓.

Note that our labeling of the frequency grades is opposite to that used in the wavelet:
ν2,m corresponds to frequencies lower than ν1,m.

The connection between filter banks, the above process and wavelet system is given
in the next (easy to prove) theorem:

Theorem: the fast wavelet/frame transform. Let f be some function, let φ be some
refinable function, and denote:

x(k) := 〈f,Ekφ〉, k ∈ ZZ.

Let H0 be the refinement mask of φ, and let WΨ be the wavelet system associated with
the refinement mask H0 and the wavelet masks (H1, . . . ,HN ). Let h0, . . . , hN be the
corresponding filters. Then, in the notation of (32), and for every j > 0,

〈f, ψm−j,k〉 = νj,m(k), m = 1, . . . , N,

with ψm the wavelet associated with the mask Hm. Moreover,

〈f, φ−j,k〉 = νj,0(k).
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Part 9: Reconstruction.

The reconstruction goal can be described as follows:
Given a collection of linear functionals Λ, associate each one of them with a function

gλ such that we obtain the perfect reconstruction formula:

f =
∑

λ∈Λ

〈f, λ〉gλ, ∀f.

In the case Λ is orthonormal, and even in the case Λ is a tight frame, we can take gλ = λ.
There are many interesting aspects to the more general case, when we reconstruct using
a system different from the one we used to decompose. This will be discussed in the next
section. Our direction in this section is rather different.

We want, in view of the development of filter banks and the fast wavelet transform,
and in view of the fact that our actual world is discrete, to re-examine the notion of
reconstruction.

We have seen in the last section that ‘decomposition’ in the practical level, does
not mean that we actually compute the inner products of a given function against the
elements Λ of the system. Rather, we assume that we are given the inner products of f
with respect to some system, and decompose those inner products. It is rather ambitious
thus to attempt at finding the actual function f during the reconstruction, while we did
not assume to have full access to the function in the first place.

Instead, we merely should wish to invert the process of decomposition. The fast
wavelet transform produces sequences of the form

νj,m, j = 1, 2, . . . , J m = 1, . . . , N.

Note that we are assuming that we terminated the decomposition process after J steps.
This means that we need to retain also the lowest frequency part of the signal

νJ,0

since this part was not decomposed further (note that at previous levels we retain only the
high-frequency values, which correspond indeed to the inner products with the wavelets).

Our theorem concerning the unitary extension principle leads to a tight wavelet frame.
The tight frame property says that we should be able to reconstruct using the same wavelet
system that we used to decompose. In terms of the masks and its filters, this should indicate
that we might be able to use (essentially) the same masks during the reconstruction.

The reconstruction algorithm is recursive:
for j=J:-1:0

use νj,m, m = 0, 1, . . . , N,

in order to reassemble the sequence νj−1,0

end

In order to understand the reconstruction process, it is instructive to envision the
decomposition part of the fast wavelet transform on the frequency domain. On the time
domain, we decomposed νj−1,0 as follows:

(33) νj,m =
√

2(hm ∗ νj−1,0)↓,m = 0, . . . , N.
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Let’s denote by
Xj,m

the Fourier series of νj,m. With some (but not much) effort, one shows that (33) can be
rewritten on the frequency domain as

Xj,m(ω) = (HmXj−1,0)(ω/2) + (HmXj−1,0)(ω/2 + π).

Now, substitute 2ω for ω, and then multiply each side of the last equality by Hm(ω), and
sum over all m. Then

N∑

m=0

Hm(ω)Xj,m(2ω) = (
N∑

m=0

|Hm(ω)|2)Xj−1,0(ω) + (
N∑

m=0

(HmHm)(ω + π)Xj−1,0(ω + π).

Now, comes the punch-line: if our filter bank satisfies the unitary extension principle, we
can use (20) and (21) to conclude that

N∑

m=0

Hm(ω)Xj,m(2ω) = Xj−1,0(ω).

This means that we found a reconstruction algorithm; we only need (if we want to imple-
ment the algorithm on the time domain) to understand, on the time domain) the meaning
of

Hm(ω)Xj,m(2ω).

There are two actions here:
(1) Dilation: Xj,m(ω) 7→ Xj,m(2ω). This is simply a relabeling of the entries of the

signal xj,m. If we define the upsampling operator

x↑(k) =
1√
2

{
x(k/2), k is even,
0, otherwise,

,

then, with y := x↑, Y (ω) = X(2ω).

(2) Conjugation: the switch from Hm(ω) to Hm(ω) amounts to flipping the entries in
the sequence hm: with h∗m defined by

h∗m(k) := hm(−k),

the Fourier series of h∗m is Hm. Note that we also need to apply conjugation to the
coefficients, however, in all examples of interest hm will be real-valued.

(3) Multiplication: The product Hm(ω)X(2ω) indicates that we need to convolve the
underlying sequences, i.e., the sequences h∗m and x↑.

Summary: The reconstruction step is

xj−1,0 ←−
N∑

m=0

h∗m ∗ (xj,m↑)Xj−1,0(ω).
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Part 10: More on refinable functions

When constructing wavelets via MRA, the choice of the refinable function plays a
major role:

(1) It determines completely the smoothness of the mother wavelets (why?)
(2) It determines almost completely the localness in time of the wavelet: it is practi-

cally impossible to construct a wavelet system with compactly supported mother wavelets
unless the corresponding refinable function is compactly supported.

(3) It determines to a large degree the number of vanishing moments the mother
wavelets have. Remember that we say that ψ has m vanishing moments if

ψ̂ℓ(0) = 0, ℓ = 0, . . . , k − 1.

Recall that the frequency localization of the wavelet is determined its smoothness and its
vanishing moments.

(4) It determines to some degree the properties of the resulting wavelet system. For
example, if the shifts of the refinable function are orthonormal, we can construct (via
MRA) an orthonormal wavelet system (using e.g., the unitary extension principle).

In summary, we need to be able to construct refinable functions with desired proper-
ties. We list some of these desired properties:

(1) Smoothness: we would like to have a smooth refinable function.
(2) High approximation order: we explain that property later. This is the property of

the refinable function that we allow us to generate wavelets with high vanishing moments.
(3) Orthonormality (or a similar property) of the shifts E(φ).

We must, therefore, keep in mind that the refinable function, almost always, is not
given to us in an explicit form. We choose the refinement mask H0, and need to know how
to read the desired properties of φ from its refinement mask H0

Before we turn our attention to this problem, we ask a simpler one: given the maskH0,
is there a simple way to visualize the corresponding refinable function φ? An affirmative
answer is given in terms of

The Cascade Algorithm. A refinable φ with mask h0 satisfies (by definition) the re-
finement relation

φ(t) = 2
∑

k∈ZZ

h0(k)φ(2t− k).

Now, let us define the Cascade operator

C(f)(t) :=
∑

k∈ZZ

h0(k)f(2t− k).

Thus the cascade operator maps a give function f to a linear combination of the dilated
shifts of that function. We have chosen the coefficients in that linear combination to be
those of the refinement equation. Thus,

C(φ) = φ.
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In the language of linear algebra, φ is an eigenvector of C. In the language of Numerical
Analysis, φ is a fixed point of C. A standard way to attempt finding a fixed point is by
iterations:

Starting with some initial function φ0,

define φm := C(φm−1), m = 1, 2, . . ..
It turns out that the algorithms succeeds only if the initial function φ0 partition unity

in the sense that ∑

k∈ZZ

φ0(t− k) = 1.

Such functions exist in abundance. For example, all the B-splines satisfy this property. A
standard choice for φ0 is the centered hat function.

Does the cascade algorithm converge? What does it mean ‘to converge’ here? Can it
converge to function other than the refinable φ?

Fact 34. If the mask H0 is a trigonometric polynomial, and if H0(0) = 1, then the cascade
algorithm either diverges, or converges to the refinable φ. It does not matter in that context
how exactly ‘convergence’ is defined.

Definition of ‘convergence’. There are several possible definition here. One of those is
as follows:

‖φ− φm‖L2
→ 0,

as m→∞.
While the complete characterization of the convergence of the cascade algorithm is

non-trivial, there are important cases where such convergence is guaranteed:

Theorem 35. If the shifts of the refinable φ are orthonormal, or even if they only form a
Riesz basis (a notion that is defined in the next section), the cascade algorithm converges.

One should be warned that the cascade algorithm may fail to converge if we only know
that the mask H0 of the refinable φ is a CQF. An example of that possible phenomenon
is given the support function of the interval [0, 3].

How to determine properties of the refinable function from its mask H0?
We focus on three basic properties: the smoothness of φ, the approximation order the

shifts of φ, and the (possible) orthonormality of the shift of φ.

Part 11: The transfer operator

As we already know, wavelet systems are constructed via the tool of MRA. This
requires a ‘good’ refinable function to begin with. Desired properties of the refinable
function include:

(1) Compact support (since this allows us to construct wavelets of compact support.
we simply need to make certain that all the wavelet masks have finite support).

(2) being in L2. Otherwise, we cannot provide any theory that explains the filter bank
algorithm (i.e., the fast wavelet transform).
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(3) smoothness. Once you know that the refinable function exists, you’d like it to be
smooth. That smoothness is inherited by the wavelets, and the smoothness of the wavelets
is necessary for a good frequency localization of the wavelet system.

(4) having orthonormal shifts. That will imply that the unitary extension principle
results in wavelet systems that are orthonormal, and not only tight frames.

(5) symmetry (later on)
(6) high approximation order (together with (3) this may enable us to construct

wavelets with good frequency localization; we will discuss that issue in the future)

The tool we exploit to this end is called the transfer operator. It is a map T that
maps 2π-periodic functions to 2π-periodic functions. It is linear, i.e.,

T (aX + bY ) = aT (X) + bT (Y ),

for every scalars a, b and every functions X,Y .

Definition: the transfer operator. Let H0 be a trigonometric polynomial:

H0(ω) =

m∑

n=0

h0(n)e−inω.

Denote:

H0 := |H0|2.

The transfer operator T is then defined as follows: its domain is the space of trigonometric
polynomials of degree m:

Pm := span{ein : n = −m, . . . ,m}.

(recall that eθ is the exponential ω 7→ eθω). Then:

T (X)(ω) = (H0X)(ω/2) + (H0X)(ω/2 + π).

It can be shown that

T (Pm) ⊂ Pm.

This means that we can talk about eigenvalues and eigenvectors (=eigenfunctions) of T .
To recall, given µ ∈ C, and X ∈ Pm, we say that µ is an eigenvalue of T associated with
the eigenvector X if

T (X) = µX.

Example. Let

H0(ω) :=
1 + e−iω

2
.
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Then H0(ω) = cos2(ω/2), and the corresponding transfer operator is

T (X)(ω) = cos2(ω/4)X(ω/2) + sin2(ω/4)X(ω/2 + π).

Here m = 1, hence the space

P1 = span{1, eiω, e−iω}

is mapped by T into itself (check!). It is immediate that T (1) = 1 (i.e., for the constant
function X = 1, T (X) = X). This means that 1 is an eigenvalue associated with the
constant eigenfunction X = 1.

Moreover, T (sin(ω)) = sin(ω)
2 , (check!), which means that 1/2 is an eigenvalue asso-

ciated with the eigenfunction sin(ω). Finally, T (cos(ω) − 1) = cos(ω)−1
2 , which means the

a third eigenpair is given by (1
2 , cos(ω)− 1). Since P1 is of dimension three, and since we

have found three (linearly independent) eigenvectors, we should look no further.
The summary for the transfer operator in this case is as follows: it spectrum σ(T ) (:=

the set of all eigenvalues) is {1, 1/2}, and the dominant eigenvalue 1 is unique and simple.

Recall that the spectral radius of a linear map T (that maps a finite dimensional
space into itself) is defined as

ρ(T ) := max{|µ| : µ ∈ σ(T )}.

Thus, in the above example, ρ(T ) = 1.

Theorem 36. Let H0 be a trigonometric polynomial, H0(0) = 1. Let T be the corre-
sponding transfer operator.
(i) If there exists a function φ ∈ L2 which is refinable with mask H0 then µ = 1 is an

eigenvalue of T , and the corresponding eigenfunction is X =
∑m
n=−m c(n)e−in, where

c(n) := 〈φ, φ(· − n)〉.

Moreover, X is non-negative, i.e.,

X(ω) ≥ 0, ∀ω.

(ii) If the spectral radius of T is 1, and if all the eigenvalues of T of modulus 1 are non-
defective, then there exists φ ∈ L2 which is refinable with mask H0. In particular,
this is the case if 1 is a unique dominant simple eigenvalue of T .

Example: CQF masks. If H0 is CQF, then

H0(ω) +H0(ω + π) = 1, ∀ω.

This implies that the transfer operator has in this case the eigenvalue 1 with the constant
function being the eigenvector. It is also possible (and not much harder) to prove that in
that case ρ(T ) = 1 (hint: suppose that

T (X) = µX,

for some |µ| > 1. Begin your proof by evaluating the above at the max point of X).
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Theorem 37. Let H0 be a CQF mask. Then:
(i) There exists φ ∈ L2 which is refinable with mask H0.
(ii) The shifts of φ are orthonormal if and only if 1 is a unique and simple dominant

eigenvalue of T .

Discussion. In a previous theorem, we gave a different characterization of the orthonor-
mality issue: if H0 is a CQF then the shifts of φ are orthonormal if and only if φ does not
have a 2π-periodic zero. It is not clear (albeit not impossible) how to find easily the zeros

of φ̂, given that only H0 is known. At the same time, finding eigenvalues of linear maps is
routine.

The transfer operator also enables us to find the smoothness of φ. Before we state
this result, we precede it by the following discussion. Suppose that φ ∈ L2. We can then
construct a new function with better smoothness (which is refinable, providing that φ is
one) by convolving φ with a B-spline of order n:

ϕ := φ ∗Bn.

In can be shown that ϕ has all its derivatives up to order n lie in L2. In short, convolution
with Bn increases the smoothness of φ by n.

A deeper result is that the converse is also true: if all the derivatives of the compactly
supported refinable ϕ up to exactly order n lie in L2, then we can ‘factor’ ϕ into

ϕ = φ ∗Bn.

While φ ∈ L2 and is compactly supported, its first order derivative is not in L2 (otherwise,
ϕ itself would have been differentiable n+ 1 times).

So, when we analyse the smoothness of ϕ, we first factor out the largest possible
B-spline factor:

ϕ = φ ∗Bn.
At this point, we already know that the (n+ 1)-derivative of ϕ is not in L2. While Bn is
smooth and nice, ‘bad factor’ φ may decrease the smoothness of product. (So, Bn provides
smoothness to convolution, while the bad guy φ helps in other ways: e.g., while the shifts
of Bn are not orthonormal, the convolution of Bn with φ may yield a refinable function φ
with orthonormal shifts. So, the convolution of Bn with φ be accurately thought of as a
trade-off, where we lose smoothness, and gain some other desired properties).

In terms of the mask H of ϕ, a factorization of the form ϕ = φ ∗ Bn is implied by a
factorization

H(ω) =

(
1 + e−iω

2

)n
H0(ω),

with H0 the mask of the ‘bad’ φ. Equivalently,

|H(ω)|2 = cos2n(ω/2)|H0(ω)|2.

The transfer operator enables us to find the ‘bad effect’ of the second factor H0. The
actual result is as follows.
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Theorem 38. Let H0 be a given trigonometric polynomial (H0(0) = 0). Let ρ be the
spectral radius of the transfer operator associated with H0. Given any positive n, define

H(ω) :=

(
1 + e−iω

2

)n
H0(ω).

Assume that

k := n− log2 ρ

2
> 0.

Then:

(i) There exists a function φ ∈ L2 which is refinable with mask H. All the derivatives of
φ up to order < k exist and lie in L2.

(ii) If the shifts of φ are orthonormal, then the converse is also true: the derivatives of φ
to any order ≥ k is not in L2.

Example. Let H be the mask of Daubechies’ function φ of order 2. We know that

|H(ω)|2 = cos4(ω/2)(cos2(ω/2) + 3 sin2(ω/2)).

Thus, we define H0 as the squareroot of

H0(ω) = cos2(ω/2) + 3 sin2(ω/2).

(we do not need to find that squareroot!). Let T be the transfer operator associated with
H0, and let ρ be the spectral radius of T . The above theorem says that all the derivatives
of φ up to any order smaller than

2− log2 ρ

2

are in L2. Unfortunately, we can find out that ρ = 4 in this case (the eigenfunction is the
constant function X = 1), which means that

2− log2 ρ

2
= 1,

which then merely implies that only the zero-order derivative of φ (i.e., φ itself) lies in L2.
Since the shifts of φ are orthonormal, the second part of the theorem says that we do not
underestimate here the smoothness. I.e., the first derivative of φ is not in L2.
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Part 12: Good Systems

(6:) Summary: a general recipe for constructing the linear functionals of
the analysis map Λ∗.

Step I: select a suitable ‘window’ function g (more generally, select a few such win-
dows). The window function is always selected with great care (and much of the theory
goes into the question of how to construct useful window functions). The window function
induces the linear functional

λg : f 7→ 〈f, g〉 :=

∫

IR

f(t)g(t) dt.

Notions in the context of the current discussion:
(a) Compactly supported functions: a function f : IR → IR is compactly sup-

ported if it is identically 0 outside of some bounded closed interval (the smallest such
interval is the support of f ; warning: there are finer definitions for the notion of sup-
port).

Examples of compactly supported functions: the function B1, B2, B3, Hj,k (0 ≤ j, k ≤
1) from Assignment 1.

(b) Periodic functions: A function f : IR→ IR is periodic (with period 2π) if

f(t+ 2π) = f(t), ∀t ∈ IR.

Examples of such functions are abundant. E.g., for every integer (positive or negative,
or even 0) number, each of the functions

t 7→ sin(nt), t 7→ cos(nt)

is 2π-periodic. Closely related to those are the periodic exponential functions

en : t 7→ eint = cos(nt) + i sin(nt).

The ideal window is a periodic exponential function supported in an interval of length
zero. Obviously, such function does not exist (it is not only that there exists no function
supported at a single point. In fact we could interpret the point evaluation functional as ‘a
function supported at one point’; however, the periodic exponential functions are far from
having one point support, and none of them is even compactly supported. moreover, the
only compactly supported periodic function is the 0-function). For reasons that will be
explained later, we try to ‘get close’ to the ideal window by constructing window functions
that are local (i.e., supported in a small interval) and smooth (i.e., possess many continuous
derivatives; look at the above examples of compactly supported functions, to realize that
compactly supported functions may have very low smoothness). In this regard, it is useful
to recall the notation (for a non-negative integer k)

Ck(IR) := {f : IR→ IR : the kth order derivative of f exists and is continuous}.
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(The case k = 0 refers to continuous functions. If f ∈ Ck(IR) for every k, we write
f ∈ C∞(IR), and we say that f is infinitely differentiable. Note that we never differentiate
any function infinitely many times, despite of the above name).

We also recall that in the context of Fourier analysis we measure the smoothness not
in terms of continuous derivatives, but in terms of derivatives that lie in L2. Thus we have
another space

W k(IR) := {f : IR→ IR : all the derivative of f up to order k exist and are in L2}.

Example. Let B2 be the hat function. The hat function is continuous, but its derivative
is not. Therefore, B2 ∈ C0, but B2 6∈ C1. On the other hand, the first derivative of B2 is
still in L2, hence B2 ∈W 1 (but not in W 2).

Step II:
After you selected you window function(s), you select the operation(s) you would like

to apply to this window:
(1) translation
(2) modulation
(3) dilation
The different choices have beautiful names:

translation =⇒ convolution
modulation =⇒ fourier transform (here g is the constant function)
translation+modulation =⇒ Gabor system
translation+dilation =⇒ wavelet system

(7:) so what does it mean to be a ‘good system’?
A ‘good system’ does not relate necessarily to the operations used to produce the

system. Wavelet systems are neither better nor worse than Gabor systems. They simply
fit different applications and have different theories and different algorithms. The notion
of a ‘good system’ is universal to all the systems.

There are two basic criteria, which are seemingly unrelated (but are, as a matter of
fact very much related) that guide us in classifying ‘good systems’.

(I) We want to have a close relation between the ‘size’ of the function f we analyse,
and the ‘size’ of the numbers we produce via f 7→ Λ∗f .

Parseval’s identity tells us that, in the context of Fourier analysis we do achieve such
a relation. In fact, this is the case for every complete orthonormal system.

We measure the size of f by its L2-norm

‖f‖ := ‖f‖L2(IR).

and we measure the size of Λ∗f by the ℓ2-norm:

‖Λ∗f‖ := (
∞∑

i=0

|λi(f)|2)1/2.

We want then the norm of Λ∗f to be ‘nicely’ related to the ‖f‖. Here are the relevant
definitions:
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