
Online optimization algorithms

David Andrzejewski

CS 880 - Final Project

May 16, 2007

1 Introduction

This project surveys some recent algorithms and results in the field of online
learning theory [5][6][7]. The problem context is that of an online decision
problem, where one must choose a point xt from a fixed set K for each round t.
After a choice has been made, a cost function ft(x) for that round is revealed
and used to compute the cost of that decision. On the next round t + 1, a
new point xt+1 must be chosen, a new cost function ft+1(x) will be revealed,
and so on. The goal then is to minimize the regret R, the difference between
the cumulative cost of the single best point chosen in hindsight x∗ and the
cumulative cost of the sequence of points chosen by the online procedure x1...T .

R =
T∑

t=1

ft(xt) − min
x∗∈K

T∑

t=1

ft(x
∗) (1)

This formulation is quite general, and can be used to model a wide variety of
real-world problems and applications, such as industrial production. In partic-
ular, many papers mention, and several investigate in-depth [3], the connection
between the online decision problem and the universal portfolio algorithm [4],
which deals with setting stock proportions in a financial portfolio. Within the
field of theoretical computer science, online learning also has strong connections
to auction and game theory [2]. Finally, many practical applications of ma-
chine learning techniques would be most naturally handled in an online fashion.
This has led to the recent research into online versions of well-studied machine
learning techniques, such as kernel methods [9].

Two of these papers [5][7] deal with the case of online convex optimization,
where the feasible set of points K is convex, and each cost function ft(x) is also
convex. That is, for all {x, y} ∈ K, λ ∈ [0, 1] and ft(x) we have:

λx + (1 − λ)y ∈ K (2)

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) (3)

The remaining paper [6] ([Kalai]) does not assume convexity, and also exam-
ines the interesting modification where there is a cost associated with changing

1

the previous round’s decision. It also does not make use of any gradient infor-
mation, unlike the techniques discussed in both [5] and [7].

The outline of this survey is as follows. First, we will briefly present the
major algorithms along with their contextual assumptions and regret bounds.
For each algorithm we will briefly describe the general strategy or motivation
behind it, and then outline the analysis and regret bound proof, highlighting
key steps.

Next, we examine the commonalities between the different approaches. In
particular, many of the approaches can be interpreted as variants of a “follow
the leader” stategy. The differences between these approaches reflect uses of
additional information (gradient, curvature), or randomization to avoid “worst-
case” cost function sequences. Studying these differences can help shed light on
how exactly these algorithms work.

2 Gradient Descent [5]

This algorithm deals with the setting of online convex optimization, as described
in the introduction. Each round t, the algorithm must select a point from a
bounded feasible set K, after which a convex cost function ft will be revealed.
It should be emphasized that this sequence of cost functions can be totally
arbitrary, with no relationship between one and the next.

There are some assumptions required. The diameter of K is be bounded
by some D ∈ ℜ, such that ||x − y||w ≤ D ∀x, y ∈ K. Furthermore the al-
gorithm requires the gradient ∇ft(x) for each revealed cost function ft, and
it requires that these length of these gradients be bounded by some G such
that ||∇ft(x)||w ≤ G. Finally, it requires a projection operator ΠK capable of
projecting any given x into the nearest point in K.

The algorithm itself is quite simple. For the very first point x1, select any
arbitrary point in K. Then for every round afterwards, select the next point
according to a simple gradient descent rule followed by a projection back into
the convex set K.

xt+1 = ΠK(xt − ηt∇ft(xt)) (4)

The additive regret over T rounds of play for this algorithm is O(
√

T), with
step sizes chosen as ηt = 1/

√
t.

The particularly interesting aspect of the analysis is that the regret is bounded
by replacing each cost function ft with the hyperplane tangent to ft at xt de-
fined by the gradient ∇ft(xt). That is, for each t define gt = ∇ft(xt). Then

replace the cost function ft with ˜ft(x) = gt • x. This linearization preserves the
gradient, meaning that the algorithm will still select the same points. By the
convexity of ft, we have that

ft(x) ≥ ∇ft(xt)(x − xt) + ft(xt) (5)

2

where x∗ is the optimal offline point. Using this expression for both xt and
x∗ allows us to bound to upper bound the true regret with the regret of our
linearized cost functions.

ft(xt) − ft(x
∗) ≤ ft(xt) − (gt(x

∗ − xt) + ft(xt)) (6)

≤ gt • xt − gt • x∗ (7)

This key trick is then combined with the fact that ||ΠK(x) − x∗||w ≤ ||x −
x∗||w in order to derive the bound.

This algorithm can also be interpreted as an instance of “follow the leader”
for a suitably defined sequence of cost functions [7], which will be discussed
later.

2.1 Experts problem, online linear programming [5]

This paper then describes an alternative formulation of the original problem as
a series of repeated games. Here the utilities (costs) depend on the actions of
another player, which takes the place of the sequence of cost functions. The
property of universal consistency is proven for the gradient ascent (descent)
algorithm in this setting.

But what is more interesting to us is the definition of several new problems,
including the experts problem. Here the algorithm must select a probability
distribution over n experts, which is equivalent to a vector on the boundary of
an n dimensional simplex. Each round the algorithm then gets a cost vector,
which is equivalent to a linear cost function ft.

A related problem is online linear programming, where the feasible set is
some convex polytope K and a series of cost vectors are presented to the algo-
rithm, which must choose points xt ∈ K each round.

The interesting connection is that any experts problem can be formulated
as an online linear program, by associating an expert with each vertex of a
polytope. Note that the offline solution to the linear program uses the sum of
all cost vectors, which is itself a cost vector. Therefore the optimal solution to
the offline linear program must then be one of the vertices, which is equivalent
to saying the optimal offline experts solution must be to choose a single expert,
which is an interesting connection.

Furthermore, the paper mentions the fact that some expert algorithms begin
with an uneven weighing over the experts. In the online linear program, this
may actually be helpful, as some vertices of the polytope may be nearer to
one another, spatially clustered. An uneven weighing over the experts (each
associated with a vertex) may then actually allow the online linear program to
start from a distribution which is more spatially uniform, allowing it to approach
the true offline optimal vertex more quickly.

3

3 Follow Perturbed Leader [6]

This problem assumes a framework similar to the experts advice problem de-
scribed earlier. Here the algorithm must choose from among n experts each
round, after which a cost function will be revealed. For purposes of analysis,
the authors use a linear generalization, where each choice corresponds to a de-
cision vector d, and each cost corresponds to a cost vector c. The true experts
problem can easily be mapped into this formulation by saying that choosing
expert 1 means setting d1 = 1 and di = 0 for all i 6= 1, etc.

For our linear generalization, we again bound the diameter of our decision
space by D. We also bound the maximum cost |d•c| above by C, and the length
of our cost vector by A. All bounds here are in terms of the ℓ1 norm. This setting
is not exactly the same as the previous one (no convexity assumptions) but there
are still some interesting connections to be observed.

The Follow Perturbed Leader (FPL) algorithm is quite simple. A natural
choice for the online experts problem is to simply choose the expert who had
done best so far for the cost functions you have observed (the leader). However,
this approach is vulnerable to worst-case sequences of cost functions chosen such
that the leader changes constantly, and at each step the current leader does very
badly. To avoid this pitfall, FPL randomly perturbs each experts’ running total
score. Specifically, it selects a vector uniformly from the cube [0, 1

ǫ]n, adding
each component of the vector to the score of the corresponding expert.

The interesting aspect of this modification is the tradeoff it induces. The
perturbation can be seen as making FPL less “data-driven”, and thus less su-
ceptible to misleading sequences of cost functions which will lead to large regret.
However, the fact that the algorithm is made less data-driven will also hamper
its ability to react to the observed sequence of cost functions. The expected
additive regret bound for this algorithm with perturbation parameter ǫ then is
given by

E[FPL(ǫ)] ≤ MIN + ǫCTA +
D

ǫ
(8)

If all of these aspects of the problem are known ahead of time, the perturba-
tion parameter ǫ can be chosen to minimize expected regret by simpling solving
for the minimum of the right-hand side. In this case, knowing these things
about the problem allows us to set ǫ to optimize this tradeoff. If these param-
eters are not known, ǫ can be gradually decreased as the rounds go on (known
as ǫ-havling tricks). The ǫT term in the expected regret bound shows why we
would wish to shrink ǫ as the rounds go on, if T is not known beforehand.

4 Follow Expected Leader [6]

An interesting modification to FPL is for the case of non-discrete feasible sets.
While FPL had to do with choosing among n experts every round, Follow Ex-
pected Leader (FEL) transfers the same ideas into the continuous domain of

4

convex sets. This makes the setting extremely similar to [5] (although here no
gradient information is used, nor are any bounds on the gradient assumed).

The modification is, on any given step, to try a series of perturbations inde-
pendently, and take the average of the best points chosen from each combination
of the cost function history and a perturbation. This requires a convex set of
feasible points in order to guarantee that these averaged points are themselves
feasible. Linearity of expectation means that the expected regret bound for this
algorithm is the same as for FPL. The FPL bound is linear in T , which is not
as good as the gradient descent algorithm, but makes fewer assumptions.

5 Follow Lazy Leader [6]

Another proposed variant of FPL is Follow Lazy Leader (FLL). This algorithm
achieves the same expected regret as FPL, but without changing its decision
as often. This is accomplished by coupling the perturbations, or rather only
making a single perturbation at the beginning.

Recall that our FPL perturbations were uniformly distributed over a cube
with side lengths 1/ǫ. For FLL, we use this initial perturbation to define the
offset from the origin of an entire grid of 1/ǫ cubes. For each step then, the
perturbed cost is taken to be the intersection of this grid with a fake perturbation
box centered at the true running costs total. Because of the initial perturbation,
these grid points give us the same expectation as the original FPL algorithm.
However, as long as the true costs are not moving us too far compared to the grid
size (1/ǫ), we should be using the same grid point relatively often. Using the
same grid point means that the leader is guaranteed to stay the same, avoiding
both the costs of computing the leader and possibly the cost of changing the
decision this round.

One commonality among these “Follow the Leader” style algorithms is that
they all assume the existence of an efficient offline algorithm for calculating the
current leader based on the current history of cost functions. Also, these algo-
rithms require remembering the previous cost histories for each expert, while the
gradient descent algorithm only relies on the current gradient and the previous
point.

6 Online Newton Step [7]

The Online Newton method requires only that the cost functions be log-concave
(exp(−αft(x)) is concave for some α), and that the gradients be bounded by G.
It achieves regret O(log T) The exact formula can be interpreted as a projection
with respect to a sum of gradient outer products, but can more easily be seen
as another variant of follow the leader.

5

7 Gradient Descent as Follow the Leader

As mentioned earlier, gradient descent can be cast as a follow the leader algo-
rithm for a suitably defined sequence of loss functions, which is an interesting
result. The function definitions are

˜f0(x) =
(x − x1)

2

η
(9)

˜ft(x) = ft(xt) + ∇ft(xt)
T (x − xt) (10)

This interpretation of gradient descent is quite interesting, because it con-
nects the seemingly different gradient descent and follow the leader styles. In
particular, the cost of a point with respect to previous cost functions is not
taken for the functions themselves, but for their gradients.

This connection allows us to see more clearly what gradient descent is doing,
which is not what one would first think. Gradient descent here is not trying to
find the minima of each cost function, because the sequence of cost functions
are not guaranteed to be related. Rather, it is trying to move slightly towards a
point which would have been relatively low cost for that previous function, be-
cause the optimal offline decision must be at a point which is, overall, relatively
low-cost for the sequence of cost functions.

8 Online Newton as Follow the Leader

The Online Newton method can also be defined in terms of a follow the leader
strategy, known as Follow Approximate Leader. This algorithm follows the
strategy outlined in [5], where a series of lower-bound functions are used to
calculate the leader, as opposed to the true cost functions. Here, the lower
bound functions are parabolas incident to the true cost function at the point
the cost function was defined on. These lower bound functions are defined as

˜ft(x) = ft(x) + ∇T
t (x − xt) +

β

2
(x − xt)

T (∇t∇T
t)(x − xt) (11)

where ∇t = ∇tft(x).

9 Discussion and Extensions

It is surprising that all algorithms discussed in this survey are expressable in
the Follow the Leader framework. A notable exception, which was covered in [7]
but omitted from this survey, is an exponential weighting scheme. Howver, this
approach takes integrals over the feasible set, weighing points by exponentials
of the cost functions, which is similar to the notion of following the leader.

This commonality reflects the “under the hood” reality of these online op-
timization algorithms. Aside from some assumptions of convexity or gradient

6

bounds, these algorithms assume virtually nothing about the series of cost func-
tions which will be presented to them. Therefore, minimizing regret with respect
to an optimal static strategy basically involves trying to play like the optimal
static strategy. On any given round, the “best guess” as to the optimal static
strategy is the current leader.

What is interesting about these various algorithms is the way the use addi-
tional information to augment the follow the leader technique. On the surface,
the perturbation techniques of [6] could seem like a regularization technique from
machine learning to avoid overfitting the observed data. While this analogy is
appealing, the fundamental usage is somewhat different. In this online learning
setting, no assumptions are made about cost functions being from a certain
distribution, or even having anything to do with one anything whatsoever. The
notion of prior knowledge or preferences with respect to online decisions is not
clear. Rather, the usage of randomness in [6] seems more similar to randomized
algorithms, such as those for Euclidean TSP [10], in that the chief aim is to
provide good expected behavior by avoiding worst-case problem instances.

It is also important to realize that these fully general online algorithms may
not be the best choice for a given problem. Online approaches for specific
problems can often be designed to exploit structure known to be inherent in the
problem or the cost functions. [7] mentions such algorithms for linear predictions
with convex cost functions, and [6] makes a similar remark with respect to online
shortest paths problems.

Another interesting setting is the bandit versions of these problems, where
the the value of each cost function is revealed for the chosen point only. This
is significantly less information than we are given for the problems discussed in
this survey, and would seem to require explicit “information seeking” behavior
on the part of the algorithm. In the same base setting as the O(

√
T) regret

algorithm from [5], [1] achieves expected regret O(n3/4) in the bandit version.

References

[1] Abraham Flaxman, Adam Kalai, H. Brendan McMahan. Online convex
optimization in the bandit setting: gradient descent without a gradient.
SODA, 2005.

[2] Avrim Blum, Vijay Kumar, Atri Rudra, Felix Wu. Online Learning in Online
Auctions. SODA, 2003.

[3] Adam Kalai and Santosh Vempala. Efficient algorithms for universal port-
folios. JMLR, 2003.

[4] Thomas Cover. Universal portfolios. Math. Finance, 1991.

[5] Martin Zinkevich. Online convex programming and generalized infinitesimal
gradient ascent. ICML, 2003.

7

[6] Adam Kalai, Santosh Vempala. Efficient Algorithms for Online Decision
Problems. Journal of Computer and System Sciences 71(3): 291-307, 2005.

[7] Elad Hazan, Adam Kalai, Satyen Kale, Amit Agarwal. Logarithmic Regret
Algorithms for Online Convex Optimization. COLT, 2006.

[8] D. MacKay. Information Theory, Inference, and Learning Algorithms. Cam-
bridge University Press, 2003.

[9] Jyrki Kivinen, Alexander J. Smola, Robert C. Williamson. Online Learning
with Kernels, NIPS 2002.

[10] S. Arora. Polynomial time approximation schemes for Euclidean traveling
salesman and other geometric problems. In Journal of the ACM, 1996.

8

