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ABSTRACT

Latent topic models can be used to automatically decompose a collection of text documents into

their constituent topics. This representation is useful for both exploratory browsing and other tasks

such as informational retrieval. However, learned topics may not necessarily be meaningful to the

user or well aligned with modeling goals. In this thesis we develop novel methods for enabling

topic models to take advantage of side information, domain knowledge, and user guidance and

feedback. These methods are used to enhance topic model analyses across a variety of datasets,

including non-text domains.
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Table 0.1: Symbols used in this thesis (part one).

Concept Symbol Meaning

Data

W The number of words in the vocabulary

w Vector of words

wi The vocabulary word of the ithword in the corpus

D The number of documents in the corpus

d Vector of document assignments

di The document associated with the ithword in the corpus

Nd Number of words in document d

LDA

β Dirichlet hyperparameter for topic-word multinomials

α Dirichlet hyperparameter for document-topic multinomials

φj(v) Multinomial topic-word probability P (w = v|z = j)

θu(j) Multinomial document-topic probability P (z = j|d = u)

z Vector of topic assignments

zi The latent topic associated with the ithword in the corpus

T Number of latent topics

Collapsed Gibbs

z−i The vector of latent topic assignments excluding zi

n
(d)
v For a given z, number of times topic v appears in document d

n
(d)
−i,v Same as the count n(d)

v , but excluding index i

n
(w)
v For a given z, number of times word w assigned topic v

n
(w)
−i,v Same as the count n(w)

v , but excluding index i
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Table 0.2: Symbols used in this thesis (part two).

Concept Symbol Meaning

∆LDA

o Observed document label (program failure or success)

Tu “usage” topics representing normal program behavior

Tb “buggy” topics representing buggy program behavior

α(s) Dirichlet hyperparameter for successful documents

(e.g., [1 1 1 0 0])

α(f) Dirichlet hyperparameter for failing documents

(e.g., [1 1 1 1 1])

Topic-in-set

C(i) Set of compatible topics for wi

η Constraint strength (η = 1 hard, η = 0 unconstrained)

qiv Standard LDA Gibbs sampling probability of zi = v

δ(v ∈ C(i)) Compatibility indicator function, 1 if v ∈ C(i) and 0 otherwise
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Table 0.3: Symbols used in this thesis (part three).

Concept Symbol Meaning

Dirichlet Forest

Must-Link (A, B) Words A and B are Must-Linked

Cannot-Link (A, B) Words A and B are Cannot-Linked

η Constraint strength (η →∞ hard, η = 1 unconstrained)

γ(k) Dirichlet tree edge weight into node k

C(k) Children of node k

Lj Set of leaves for topic j Dirichlet Tree

L(s) Set of leaves descended from node s

Ij Set of internal nodes for topic j Dirichlet Tree

∆(s) Incoming minus outgoing edge weights at node s

R Number of Cannot-Link graph connected components

Mr1 . . .MrQ(r) Maximal cliques of connected component r’s complement

q Maximal clique selection vector for a single topic

q
(r)
j Maximal clique for topic j, connected component r

Iv(↑ i) Ancestors of leaf wi in topic v Dirichlet Tree

Cv(s↓i) Unique node that is immediate child of internal

node s and an ancestor of wi (may be wi itself)

Ij,r=q′ Set of internal nodes below the r-th branch of tree

selected by qj when clique Mrq′ is selected

t′(qu) Internal nodes in the subtree selected by qu

a(wi) Set of ancestors of the leaf word wi

s(j) Immediate descendants of internal node j

a(wi, j) The unique node in a(wi) ∩ s(j) (possibly wi itself)

n
(k)
j Number of words under node k assigned to topic j

γ
post(k)
j Posterior edge weight into k for topic j
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Table 0.4: Symbols used in this thesis (part four).

Concept Symbol Meaning

LogicLDA

W(i, v) Logical predicate, true iff wi = v

D(i, j) Logical predicate, true iff di = j

Z(i, t) Logical predicate, true iff zi = t

o Variable representing all other side information (e.g., sentences)

KB Weighted first-order knowledge base {(λ1, ψ1), . . . , (λL, ψL)}

ψi The ithfirst-order rule

λi The weight of the ithrule

G(ψi) The set of groundings for rule ψi

| ∪k G(ψk)| Number of non-trivial groundings for a given knowledge base

1g Indicator function for ground formula g, 1 if g true and 0 otherwise

LogicLDA inference

p MaxWalkSAT probability of random (versus greedy) local step

∆ MaxWalkSAT global objective function change

zKB Set of all zi involved in non-trivial ground formulas

zit Relaxed topic assignments (zit ∈ [0, 1] and
∑

t zit = 1)

f Alternating Optimization with Mirror Descent term

(can be either an LDA term or logic-polynomial term)

∇f Alternating Optimization with Mirror Descent gradient w.r.t.f

η Alternating Optimization with Mirror Descent mirror descent step size



5

Chapter 1

Introduction

The goal of this thesis is to make topic models more useful by giving the user tools for integrat-

ing domain knowledge into the model. Latent topic models [Hofmann, 1999, Blei et al., 2003a] as-

sume that grouped count data (e.g., words in documents) are generated by group-specific mixtures

of hidden components. When these models are applied to a corpus of natural language documents

(e.g., newswire articles), the statistical regularities captured by the hidden components often cor-

respond to meaningful semantic themes, earning them the name “topics”. These models are useful

for a wide variety of tasks, both in natural language processing and beyond.

However, it is widely acknowledged that the discovered topics may not always correspond to

what the user had in mind. The mechanisms developed in this work allow the user to influence

the learned topics, while still retaining the statistical pattern discovery abilities which make topic

modeling such a powerful tool. While a suitably sophisticated researcher may be capable of for-

mulating arbitrary models for any occasion, the goal of this work is to develop simple yet flexible

methods for expressing domain knowledge in topic models, enabling non-experts to adapt topic

modeling to their application needs.

1.1 A motivating example

Say you are given a text corpus consisting of people’s wishes for the New Year

[Goldberg et al., 2009] and told to describe the common themes present in these wishes. Man-

ual inspection of individual wishes is one approach, but it is not practical for large numbers of

wishes.
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A more scalable method would be to examine the word frequencies throughout the corpus (af-

ter filtering uninformative “stopwords” [Manning and Schütze, 1999]). The top ten most frequent

words in this corpus are shown in the first two columns of Table 1.2, and the “word cloud” vi-

sualization1 in Figure 1.1a displays words with size proportional to their frequency in the corpus.

Notice that combining all wishes predominantly yields words which are shared across many differ-

ent types of wishes (“wish”, “happy”, “love”), yielding little insight about different wish themes.

A slightly more sophisticated approach would be to cluster [Duda et al., 2000] the wishes

themselves by their word content, hoping that the clusters correspond to common wish themes.

However, notice that wishes such as “To get into grad school and find love of my life” do not fit

neatly into a single cluster. This wish appears to exhibit two very distinct themes, love and career,

which will probably correspond to two distinct clusters.

Latent topic models [Hofmann, 1999] solve this problem by assuming that a corpus of doc-

uments contains a collection of themes, called topics. Each topic z consists of a multinomial

distribution P (w|z) over vocabulary words w. Each document then consists of a mixture of these

topics, allowing multiple topics to be present in the same document. Both the topics and the

document-topic mixtures are estimated simultaneously from data.

Taking each individual wish to be a document, the remaining columns of Table 1.2 show the

estimated word probabilities P (w|z) for three of the twelve learned topics. Figures 1.1b,1.1c, and

1.1d show the corresponding word clouds, where words with high probability P (w|z) within a

given topic appear larger. We can see that these topics give us a much richer understanding of

common themes than the corpus-wide word frequencies alone.

1.2 Latent topic modeling

Latent topic models such as Probabilistic Latent Semantic Analysis (pLSA) [Hofmann, 1999]

and Latent Dirichlet Allocation (LDA) [Blei et al., 2003a] model observed data in groups (e.g.,

words in documents) as being associated with mixtures of unobserved components (the topics).

In this thesis we use the LDA model, a more complete generative model [Blei et al., 2003a]. In

1http://www.wordle.net

http://www.wordle.net
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Table 1.1: Example wishes.

Lose weight and get married To Stop Drinking Liquor and Find a Nice Girlfriend

god bless us all and peace to the world Vote for Ron Paul!

Peace on Earth for my cousins cancer to be cured

To get into grad school and find love of my life God bless us

Get a Job bring my boyfriend home safe from iraq

Be closer to friends & family and WIN THE LOTTERY! bush to get impeached

To have all of our dreams realized More Cowbell

(a) Corpus-wide frequencies. (b) Learned love topic.

(c) Learned troops topic. (d) Learned religion topic.

Figure 1.1: Word cloud representations of corpus-wide frequencies and learned topics. More

frequent or more probable words appear larger. Note that the “labels” (love, troops, and religion)

are manually assigned, not learned automatically.
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Table 1.2: Corpus-wide word frequencies and learned topic word probabilities.

Corpus freq love topic troops topic religion topic

wish 13666 love 0.119 all 0.065 love 0.086

love 11036 me 0.093 god 0.064 forever 0.023

year 10066 find 0.091 home 0.059 jesus 0.022

peace 9647 wish 0.075 come 0.047 know 0.017

happy 8457 true 0.022 may 0.041 loves 0.016

new 7313 life 0.020 safe 0.036 together 0.015

all 7055 meet 0.020 us 0.030 u 0.014

health 7019 want 0.020 bless 0.026 always 0.013

happiness 6173 man 0.017 troops 0.025 2 0.013
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LDA, topics are shared across all documents, but words in each document are modeled as being

drawn from a document-specific mixture of these topics. For each word in a document d, a random

topic z is sampled from the document-topic mixture P (z|d), and a random word w is then sampled

from the corresponding topic-word multinomial P (w|z). Figure 1.2b shows hypothetical topics

for a corpus of Presidential State of the Union Addresses, and Figure 1.2a shows the latent topic z

associated with each word w in a given sentence.

w Most Americans think their taxes are high enough.

z 1 2 4 - 3 - 1 1

(a) Excerpt from the 2008 State of the Union Address delivered by George W. Bush,

along with latent topic assignments.

Topic 1 Topic 2 Topic 3 Topic 4

(amounts) (America) (laws) (opinion)

many Americans exemption prefer

few country forms consider

most people regulation about

low citizen law think

amount nation rebate agree

high public taxes issue

enough voters refund debate

... ... ... ...

(b) High-probability words for several latent topics.

Figure 1.2: A hypothetical example of topic modeling applied to Presidential State of the Union

Addresses.
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Besides purely exploratory analysis (as in the initial motivating example), topic

models have also been applied to a wide variety of tasks in natural language pro-

cessing [Boyd-Graber et al., 2007, Newman et al., 2007, Rosen-Zvi et al., 2004], vi-

sion [Cao and Fei-Fei, 2007, Wang and Grimson, 2008], and social network analysis

[McCallum et al., 2005, Bhattacharya and Getoor, 2006]. In many of these studies, the pat-

terns discovered by latent topic modeling have been exploited to improve performance in other

prediction tasks while simultaneously providing human-interpretable “explanations” of the results

in terms of the learned topics.

1.3 Challenges in topic modeling

The standard LDA model is unsupervised, decomposing the observed data into latent topics

according to a purely data-driven objective function (e.g., maximum likelihood). In this sense, la-

tent topic modeling has much in common with unsupervised clustering techniques which attempt

to optimize a data-driven objective function. However, this also means that topic models inherit

some of the inherent disadvantages of unsupervised learning. For example, the clustering task it-

self is ill-defined [Caruana et al., 2006], as there may be multiple candidate partitions of the dataset

which capture different aspects of the underlying structure. In topic modeling, recovering topics

which appear reasonable but are “orthogonal” to user goals is a common failure mode. For exam-

ple, a user trying to learn sentiment topics from a corpus of positive and negative movie reviews

[Pang and Lee, 2004] may recover topics related to movie genre instead.

Purely unsupervised topic modeling can also recover topics which represent strong statistical

patterns but do not correspond to user expectations of semantically meaningful topics. The first row

of Table 1.3 shows high-probability words for a topic learned from news articles [Newman et al., 2009].

In this topic the two rather distinct geographical regions of Korea and Carolina have been merged

into a single topic due to their associations with the words “north” and “south”. The next two rows

contain high-probability words for a pair of topics learned from a corpus of MEDLINE abstracts,

and represent scientific measurements and citations, respectively. All of these topics represent real
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patterns in the data, but may not align with the user idea of a “topic”, potentially making them less

useful for exploratory browsing or other tasks.

Table 1.3: Example learned topics which may not be meaningful or useful to the user.

Issue High probability words

North/south confusion north south carolina korea korean

Units of measurement microm km values vmax nmol constant

Citation abbreviations et al natl proc acad 1992

The simple LDA generative model may fail to capture important structure or extra information.

Researchers have therefore developed a variety of extensions to the base LDA model. For example,

the topics themselves may be correlated [Blei and Lafferty, 2006a], or we may be modeling both

text and image data [Blei and Jordan, 2003]. By exploiting additional assumptions or sources of

information, these topic model variants can be more effective in uncovering meaningful topics, and

will be discussed further in Chapter 2.

1.4 Adding domain knowledge

The goal of this work is to enhance the effectiveness of latent topic modeling by developing

general methods for the incorporation of domain knowledge. In the presence of multiple candidate

topic decompositions for a given corpus, domain knowledge can steer the model towards topics

which are best aligned with user modeling goals. We also show how a general mechanism for

encoding additional modeling assumptions and side information can lessen the need for “custom”

topic model variants.

In order to resolve the ambiguities of unsupervised learning, we can turn to recent clustering

research for inspiration. Clustering researchers have developed a variety of methods which allow

the user to assist the learner in recovering the “correct” clustering by supplying additional domain

knowledge. For example, the user could supply a known clustering they do not want the learner

to return [Gondek and Hofmann, 2004], or pairwise labels for items indicating whether or not they
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belong in the same cluster [Wagstaff et al., 2001, Basu et al., 2006, Basu et al., 2008]. These meth-

ods combine user guidance with statistical learning in order to improve quantitative performance

(i.e., accuracy) with respect to the true target clustering. While no clearly analogous notion of

accuracy exists for topic modeling, this thesis will show that the inclusion of domain knowledge

can help steer topic models towards the discovery of topics which are relevant to user modeling

goals.

The more complex topic model variants discussed above can also be viewed as bringing ad-

ditional domain knowledge to the topic modeling task. However, the creation of “custom” topic

models from scratch can be difficult and error-prone. In this thesis we develop general mecha-

nisms for incorporating domain knowledge into topic models, facilitating the use of different types

of assumptions and domain knowledge.

1.5 Overview

This thesis begins by formally defining the LDA model and explaining how topics are actually

learned from data in Chapter 2. This chapter also discusses some of the general issues related

to topic modeling. In Chapter 3 we survey the wide variety of extensions and modifications re-

searchers have made to the base LDA model, as well as some of the recent research on partially

supervised clustering techniques.

Chapters 4, 5, 6, and 7 constitute the main body of work in the thesis. Each chapter describes

a different mechanism for the incorporation of domain knowledge into latent topic modeling. The

types of domain knowledge used by these models form a natural progression from relatively simple

forms of guidance to richer and more general types of domain knowledge.

Chapter 4 describes ∆LDA, an extension which allows the user to define “restricted” topics

which can only be used in specially labeled documents. This model is applied to statistical de-

bugging, where the learned topics allow us to both locate bugs in code as well as cluster failing

program runs by root cause of failure.
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Chapter 5 covers Topic-in-Set knowledge, an extremely simple and effective way to include do-

main knowledge about individual topic assignments, which can be used to construct topics around

a few strategically chosen “seed” words.

The Dirichlet Forest prior is introduced in Chapter 4. This prior allows the user to encode prior

knowledge about pairs of words via Must-Link and Cannot-Link constraints, where Must-Linked

words are encouraged to have similar probabilities across all topics while Cannot-Linked words

are prevented from both having high probability in the same topic.

Chapter 7 describes LogicLDA, which allows the user to express general domain knowledge

in first-order logic (FOL). LogicLDA generalizes several existing topic model extensions, and this

work also introduces a new scalable inference technique of possible interest to the Markov Logic

Network (MLN) research community. In addition to several example applications on well-known

datasets, Chapter 7 contains an application case-study undertaken in collaboration with a biological

domain expert. Here we use LogicLDA to learn sets of words related to biological concepts as well

as associations between these concepts and genes of interest.

Chapter 8 concludes the thesis, summarizing the contributions and describing directions for

further research building on the foundations established in this work.

Without general mechanisms for incorporating domain knowledge, the user is required to to

formulate a specialized variant of LDA if they wish to encode application-specific constraints or

domain knowledge. Specifying a custom model, deriving the associated inference scheme, and

implementing it reliably and efficiently in software requires a non-trivial amount of user expertise

and effort, severely limiting the usefulness of topic modeling. By allowing the user to easily incor-

porate general domain knowledge, the models presented in this thesis (especially LogicLDA) can

serve as generic platforms for adaptation of topic modeling to a wide variety of specific applica-

tions.
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KEY IDEAS

� Topic models generate documents with document-specific mixtures of shared topics.

� Topic models are applicable to a variety of tasks, including exploratory analysis.

� Domain knowledge can help yield more meaningful and useful topics.
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Chapter 2

Background

2.1 Overview

This chapter introduces fundamental topic modeling concepts and notation. We begin with

a formal definition of the LDA model and then move on to how one goes about applying it to

a given corpus of text documents. We briefly discuss practical topic modeling issues including

approximate inference, hyperparameters, and selecting the number of topics.

2.2 Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation (LDA) [Blei et al., 2003a] is a generative probabilistic model

[Ng and Jordan, 2001] which can be applied to a corpus of text documents in bag-of-words (word

count) form [Manning and Schütze, 1999]. That is, LDA assumes a hypothetical generative pro-

cess is responsible for creating our observed set of documents. This hypothetical procedure in-

volves the generation of the unobserved (i.e., latent) topics themselves. Applying LDA to an

observed corpus consists of doing inference to “invert” the generative procedure and recover the

latent topics from the observed words.

2.2.1 Model definition

The observed variables in LDA are the words w and documents d. Let w = w1 . . . wN repre-

sent a corpus of length N (i.e., the concatenation of all documents contains N words total) where

each word wi is a discrete random variable belonging to a vocabulary of size W : {1, 2, . . . ,W}.

The vector d = d1 . . . dN associates each word with a document index di ∈ {1, 2, . . . , D}.
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LDA assumes that each word w = w1 . . . wN is associated with a latent topic z = z1 . . . zN .

Each of these topics t = 1 . . . T is associated with a multinomial φt over the W -word vocabulary,

and each φ is drawn from a Dirichlet prior with parameter β. Likewise, each document j = 1 . . . D

is associated with a multinomial θj over topics, drawn from a Dirichlet prior with parameter α. The

first section of Table 0.1 restates these definitions for quick reference. The full generative procedure

is then

1. For each topic t = 1, 2, . . . , T

Sample topic-word multinomial φt ∼ Dirichlet(β)

2. For each document j = 1, 2, . . . , D

Sample document-topic multinomial θj ∼ Dirichlet(α)

For each word {wi|di = j}

Sample topic zi ∼Multinomial(θj)

Sample word wi ∼Multinomial(φzi)

where the individual document lengths Nj =
∑

i{i|di = j} and the total corpus length N =∑D
j=1 Nj are assumed to be given.

This procedure implies a joint probability distribution over the random variables (w, z, φ, θ),

which is given by

P (w, z, φ, θ | α, β,d) ∝

(
T∏
t

p(φt|β)

)(
D∏
j

p(θj|α)

)(
N∏
i

φzi(wi)θdi(zi)

)
, (2.1)

where φzi(wi) is the wi-th element in vector φzi , and θdi(zi) is the zi-th element in vector θdi . The

conditional dependencies implied by this distribution can be represented by the directed graphical

model [Bishop, 2006] shown in Figure 2.1.

A step-by-step example of the generative process is shown in Figure 2.2. Here we have a very

simple vocabulary (Figure 2.2a) and T = 3 topics (Figure 2.2b). Per the generative procedure
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described above, we first sample a topic-word multinomial φ for each topic. Figure 2.2c shows the

numerical values and Figure 2.2e shows these φ vectors plotted graphically on a simplex, where

the nearness of each φi to each corner is proportional to the probability that φi places on the

corresponding word. For example φ1 places high probability on w3 and is therefore very near

the top corner which corresponds to w3. Next, for each document we sample a document-topic

multinomial θ as shown in Figure 2.2d and Figure 2.2f. Finally, Table 2.1 shows a document

d1 generated by repeatedly sampling a topic zi from the document-topic multinomial θ1 and then

sampling the corresponding word wi from the appropriate topic-word multinomial φzi .

Table 2.1: Example generated document d1, with N1 = 6

wi Dog Run Cat Run Dog Run

zi 3 3 1 3 2 3

It is important to emphasize that only the words w and their documents d are actually observed.

The hyperparameters α and β can be either user-supplied or estimated from data [Blei et al., 2003a,

Wallach, 2008]. The latent topic assignments z, topic-word multinomials φ, and document-topic

multinomials θ are all unobserved. We now turn to a critical step in topic modeling: the recovery

of these latent variables via posterior inference given a corpus (w,d).

2.2.2 Inference

Estimation of (φ, θ) requires knowledge of the latent topic assignments z. Unfortunately

the posterior P (z|w,d, α, β) over z given the observed corpus (w,d) and model hyperparam-

eters (α, β) is intractable due to the coupling between φ and θ in the exponentially large sum-

mation over all possible z [Blei et al., 2003a, Sontag and Roy, 2009]. Researchers have there-

fore developed various schemes for doing approximate inference, such as Variational Bayes

(VB) [Blei et al., 2003a], Expectation-propagation (EP) [Minka and Lafferty, 2002], Collapsed

Gibbs Sampling (CGS) [Griffiths and Steyvers, 2004], and Collapsed Variational Bayes (CVB)

[Teh et al., 2006b]. A brief note about differences between these approaches is postponed until the
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Figure 2.1: The directed graphical model representation of Latent Dirichlet Allocation (LDA).

Each node represents a random variable or model hyperparameter, and the directed edges indicate

conditional dependencies. For example, each word w depends on both the latent topic z and the

topic-word multinomial φ. The “plates” indicate repeating structures: the T different φ drawn from

Dirichlet(β), the D documents, and the Nd words in each document d.
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w

1 Dog

2 Run

3 Cat

(a) Example vocabulary.

T 3

α 0.5

β 0.1

(b) Example parameters.

φ w

1 2 3

z

1 .1 .1 .8

2 .8 .1 .1

3 .5 .4 .1

(c) φz ∼ Dirichlet(β)

θ z

1 2 3

d

1 .15 .15 .7

2 .15 .7 .15

3 .5 .4 .1

(d) θd ∼ Dirichlet(α)

P(w=1) P(w=2)

P(w=3)

φ1

φ2 φ3

(e) Simplex representation of φ.

P(z=1) P(z=2)

P(z=3)

θ1

θ2θ3

(f) Simplex representation of θ.

Figure 2.2: Example of the LDA generative process.
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discussion of hyperparameters in Section 2.2.2.3. We now review CGS in more detail, as much of

the work in this thesis builds on this approach.

2.2.2.1 Collapsed Gibbs Sampling (CGS)

Assume the hyperparameters (α, β) are given and fixed. CGS then consists of integrating out

(φ, θ) and sampling the topic assignments z from the posterior P (z|w,d, α, β). For each iteration

of the sampling procedure, we resample zi for every position i in the corpus according to the

following formula:

P (zi = v|w,d, z−i, α, β) ∝

(
n

(d)
−i,v + α∑T

u (n
(d)
−i,u + α)

)(
n

(wi)
−i,v + β∑W

w′(n
(w′)
−i,v + β)

)
(2.2)

where n(d)
−i,v is the number of times z uses topic v in document d excluding position i. Likewise,

n
(wi)
−i,v is the number of times z uses topic v to emit word wi, again excluding position i. This

scheme is an instance of Markov Chain Monte Carlo (MCMC) inference; it can be shown that

samples drawn in this way constitute states of a Markov chain whose stationary distribution is the

true posterior of z [MacKay, 2003]. A significant advantage of CGS is ease of implementation in

software: the only data structures required are the count matrices n(w)
t (dimensionality T × W )

and n(d)
t (dimensionality T ×D). Furthermore, the derivation of new sampling equations for LDA

variants (see Chapter 3) is usually relatively straightforward.

After running our Markov chain for sufficiently many samples [Gelman et al., 2004], one can

use the counts from the final sample of the chain to estimate the topics φ and document mixing

weights θ as the means of their posteriors

φ̂t(w) =
n

(w)
t + β

n
(∗)
t +

∑W
w′ β

θ̂j(t) =
n

(j)
t + αt

n
(j)
∗ +

∑T
t′ αt′

(2.3)

where φt(w) is the probability of word w under topic t, P (w|z = t), and θj(t) is the probability

of seeing topic t in document j, P (z = t|d = j). The count n(∗)
t is the total number of all words

assigned to topic t, and likewise the count n(j)
∗ is the total number of words in document j.
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It may seem unusual to estimate (φ̂, θ̂) from a single sample. However, it is not valid to pool or

average across multiple samples because the probability distribution is invariant to permutations of

the topic indices. Informally, Topic 2 may not “mean” the same thing from one sample to another.

Quantities that are insensitive to the topic indices (e.g., how often are wi and wi′ are assigned to

the same topic) can safely be estimated across multiple samples, however.

2.2.2.2 Initialization

Theoretically, the initial state z of the Gibbs sample should not matter, since the Markov chain

will (eventually) converge to the true distribution after many samples. However, in practice it

may speed convergence to initialize using a reasonable heuristic. In this thesis, we do “online-like

Gibbs” initialization. In this scheme we begin with an empty z and incrementally sample each

zi according to Equation 2.2, using counts from the previously assigned zi. That is, the very first

zi will be assigned based on the hyperparameters only, while the final zi will be a true collapsed

Gibbs sample conditioned on all other positions z−i.

2.2.2.3 Hyperparameters and scalability

Recall the variety of inference techniques mentioned earlier in this chapter. Given all of these

inference methods, how could a prospective topic modeler decide which to use? Researchers have

typically studied the performance of these approaches along two dimensions: computational speed

and topic “quality”.

The quality of the resulting topics is usually defined in terms of data fit, as calculated by the

likelihood they assign to a set of held-aside documents [Wallach et al., 2009b]. However it must

be noted that, while it is crucial that the learned topic model capture true regularities present in the

data, ultimate notions of topic quality are inescapably dependent on modeling goals (i.e., how will

these topics be actually be used?). Surprisingly, a user study conducted with Amazon Mechanical

Turk [Chang et al., 2009] found topic data fit to be inversely proportional to topic interpretability

in some cases.
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Data fit still provides a useful means of evaluating different approximate inference schemes

in isolation from specific topic modeling applications. Interestingly, recent empirical work

[Asuncion et al., 2009] has found that performance differences between inference approaches may

be an artifact of subtle variation in the effects of the smoothing hyperparameters (α, β) for each

approach. The implication of these findings is that, as long as the hyperparameters (α, β) are

tuned to the particular inference technique and dataset, the choice of inference method need not

have a strong influence on learned topic quality. The model hyperparameters can be learned us-

ing a variety of techniques [Minka, 2000, Blei et al., 2003a, Wallach, 2008], for example within

a Gibbs EM procedure when coupled with CGS. Other research also confirms that learning the

hyperparameters from data (particularly α) can have a strong impact on the quality of the learned

topics [Wallach et al., 2009a].

In this thesis we use fixed values for the hyperparameters (α, β) for simplicity, with spe-

cific values indicated for each experiment. For fixed values, a reasonable starting point

[Griffiths and Steyvers, 2004] is to set β = 0.1 and α = 50/T where T is the number of top-

ics.

We briefly return to the other critical dimension of computation time — how long does it take to

learn topics from 1,000 documents? 10,000? 10 million? Speed differences among the inference

schemes exist [Asuncion et al., 2009], with CVB-style schemes generally being the fastest due

to being both deterministic and collapsed. However, performance differences between schemes

may be swamped by the scalability gains to be had from modifications which parallelize inference

[Asuncion et al., 2008, Newman et al., 2008] across multiple cores or machines. For applications

where scalable inference is critical, distributed inference should definitely be considered.

2.2.3 The number of topics

A perennial question in topic modeling is how to set the number of topics T . Several ap-

proaches exist, but ultimately, the appropriate number of topics must depend on both the corpus

itself and user modeling goals.
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• Set manually via “trial and error”

If there is a human in the loop, it may be simplest to try multiple values of T within some

reasonable range (e.g., T ∈ {5, 10, 25, 50, 100, 200}). The user can then quickly scan the

learned topics associated with each value of T and select the value which seems most appro-

priate to the corpus.

• Use domain knowledge

If the topics are meant to correspond to known entities in the world (e.g., in a vision task

each topic may be a type of object), then we can simply set T equal to the true number of

entities we are trying to model. For example, in Chapter 4 we assume that topics correspond

to bugs in software; knowing the number of bugs present, we set T accordingly.

• Optimize with respect to held-aside likelihood

Given a means of evaluating the probability P (w′|T ) of a validation set of held-

aside documents [Wallach et al., 2009b], we can learn topics for different values of T

and choose the value which maximizes the likelihood of the held-aside validation set

[Griffiths and Steyvers, 2004]. Plotting these values, we can typically see the familiar pat-

tern of P (w′|T ) increasing with larger T up to a point, beyond which the model overfits

[Mitchell, 1997] the data and P (w′|T ) on the held-aside documents begins to fall.

• Optimize performance on secondary task

If the learned topics are to be used as input to another task, then it follows that T should be

chosen according to performance on the ultimate task of interest. For example, if the topics

are going to be used for document classification, T could be chosen to optimize classifier

performance on a held-aside validation set.

• Infer the number of topics automatically

Researchers have recently applied ideas from nonparametric Bayesian statistics to sidestep

the issue of setting T altogether [Teh et al., 2006a]. The Dirichlet Process (DP) [Neal, 1998]

is a distribution over multinomial distributions with potentially infinitely many components.
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Loosely speaking, we can therefore encode uncertainty about the number of topics T by

replacing a Dirichlet prior with a Dirichlet Process prior. Inference under these models then

“automatically” sets the number of topics T based on the observed data and given hyper-

parameters. However, note that hyperparameter choice indirectly influences the number of

topics T the model will use, and these hyperparameters must be chosen somehow (either

manually selected or learned from data).

For the work presented in this thesis, we set T manually, either by from domain knowledge or by

trial and error.

KEY IDEAS

� LDA assumes a specific generative procedure was responsible for the observed corpus.

� Applying LDA consists of inferring the hidden topics given the observed corpus.

� This inference problem is intractable, but various approximation algorithms exist.
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Chapter 3

Related work

This chapter covers existing research related to the use of domain knowledge in topic models.

The fact that LDA is a well defined probabilistic model has enabled researchers to craft a wide

variety of customizations and extensions to the base model. We discuss a variety of extensions

to the standard unsupervised LDA topic model which exploit additional information or structure

to learn richer, more informative models. We also introduce a rough categorization of these topic

model variants to help organize this body of work. The work presented in this thesis complements

and extends the existing research on topic modeling by providing general mechanisms for the

inclusion of user provided domain knowledge.

We also review models and algorithms which augment clustering with additional constraints or

side information. Because of the relationship between clustering and topic modeling discussed in

Chapter 1, these methods can provide useful ideas and perspectives which we can bring to bear on

topic modeling problems. In particular, the Dirichlet Forest prior (Chapter 6) adapts and applies

ideas from constrained clustering to the topic modeling context.

3.1 LDA variants

This chapter discusses extensions to the base LDA model. We loosely categorize these ap-

proaches as modeling additional types of information (LDA+X), or modifying the word generation

(φ-side) or topic generation (θ-side) aspects of the base LDA model. Note that these categories are

intended purely as a rough guide to organizing our understanding and not a “hard” partitioning. For
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several of these models, one could make valid arguments that they belong in a different category

than the one in which they are presented here.

3.1.1 LDA+X

These models extend LDA by modeling additional observed data beyond the text documents.

This additional data could be document labels, images associated with the documents, or links

between documents. We loosely categorize these models as “LDA+X” variants. Intuitively, the

latent topics are forced to “explain” this additional data as well as the document text. Correlations

between document text and the additional data can then shape the recovered topics. These models

also support additional applications, such as labeling new documents, inferring image annotation

terms, or predicting unseen edges between documents.

Supervised models: Supervised LDA [Blei and McAuliffe, 2008] can be applied to labeled docu-

ments, augmenting each document d with a label variable yd, which can be either categorical (for

classification) or continuous (for regression). Each yd value is modeled by a Generalized Linear

Model (GLM) in the vector of mean topic counts z̄ = 1
Nd

∑Nd

n=1 zn for that document. This ap-

proach can therefore make label predictions by calculating the posterior topic assignments for a

test document to obtain a z̄ value. Furthermore, jointly training the model in this way tends to pro-

duce topics which are able to “explain” the label value y for the training set. In this way the label

information indirectly influences the particular nature of the topical decomposition discovered by

the model. This adapts LDA to the standard supervised learning setting, but restricts user guidance

to providing labels or response values y to be explained. MedLDA [Zhu et al., 2009] also does

supervised topic modeling, attempting to learn a max-margin classifier using the latent topics.

Text+image: Correspondence LDA [Blei and Jordan, 2003] is a joint model of images and asso-

ciated text (e.g., captions). Each latent topic is associated with a multivariate Gaussian distribution

for generating image patches and a multinomial distribution for generating caption words. This

coupling captures the idea that the captions of similar images should contain similar text topics,

and allows interesting applications such as the automatic annotation of new images. Dual-Wing

Harmoniums [Xing et al., 2005] are a similar model based on the undirected harmonium graphical
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model. Multi-class LDA with annotations [Wang et al., 2009] combines ideas from Supervised

LDA and Correspondence LDA to jointly model an image, the supervised label of an image, and

terms used to annotate the image.

Note that applications of topic-style models directly to vision tasks constitute a sig-

nificant research literature of their own [Fei-Fei and Perona, 2005, Cao and Fei-Fei, 2007,

Wang and Grimson, 2008, Wang et al., 2007], which we will not discuss further in this thesis.

Authors and networks: The Author-Topic Model [Rosen-Zvi et al., 2004] adds observed author

information for each document. Within a document, topics are generated by first sampling an

author, and then sampling a topic from an author-topic mixture. The associations between indi-

viduals and topics can then be used for applications such as assigning reviewers to scientific papers

[Mimno and McCallum, 2007] or assigning developers to software bugs [Linstead et al., 2007].

Even more interestingly, for communication texts such as e-mail we may have both author and

recipient information [McCallum et al., 2005], which can be used to further influence the topics.

This is an example of including network structure in the topic model. Many types of documents are

intrinsically networked, such as scientific articles and citations, or websites and links. Topic-link

LDA [Liu et al., 2009], Relational Topic Models [Chang and Blei, 2009], and the Citation Influ-

ence Model [Dietz et al., 2007] represent this additional structure.

3.1.2 φ-side

Recall that words in LDA are generated by simple topic multinomials φ, which are in turn

drawn from a Dirichlet prior with hyperparameter β. The models presented in this section modify

the word generating aspect of LDA in order to capture richer linguistic structure or side informa-

tion. We therefore loosely group these models together as φ-side.

Syntax and sequence-aware models: These topic models dispense with the “bag of words” as-

sumption and explicitly attempt to capture the sequential structure of language. Hidden Topic

Markov Models [Gruber et al., 2007] enforce that all words in a sentence share the same topic,

and at each sentence boundary, flip a coin to decide whether to draw a new topic from the doc-

ument mixture θ or simply use the same topic as the previous sentence. This nicely captures the



28

notion of the topic coherence within sentences. The Bigram Topic Model [Wallach, 2006] and

Topical n−gram Model [Wang and Mccallum, 2005] extend the word generation model to allow

conditioning on previous words, enabling the representation of meaningful bigrams such as “neu-

ral networks”. HMM-LDA [Griffiths et al., 2004] embeds a topic model within a Hidden Markov

Model, allowing most HMM states to model syntactic words while a special semantic HMM state

emits words using the LDA model, capturing the document-level themes. Syntactic Topic Models

[Boyd-Graber and Blei, 2008] explicitly model the dependency parse trees of sentences, forcing

topics to explain both observed words and hidden topics of child nodes in the tree. This allows the

model to learn syntactically relevant topics capturing grammatical regularities in language.

Side information: The Concept-Topic Model [Chemudugunta et al., 2008] extends LDA with spe-

cial topics, known as “concepts.” A concept is defined by some subset of the vocabulary c, and

is restricted to place non-zero probability only on words w ∈ c. That is, if z is a concept then

P (w|z) = 0 for all w /∈ cz. These subsets of the vocabulary can be supplied by some external

knowledge source, such as a concept hierarchy. Words assigned to concepts can then be under-

stood to correspond to a known and labeled concept, allowing interesting applications such as tag-

ging individual words, labeling documents, or summarizing corpora. The Concept-Topic Model

has the advantage of offering a straightforward way to link known concepts to the data, but cannot

generalize the provided concepts and is somewhat limited in expressiveness.

LDA with WordNet (LDAWN) [Boyd-Graber et al., 2007] uses an existing linguistic re-

source in order explicitly model word sense (e.g., “tree bank” versus “bank bailout”). WordNet

[Miller, 1995] organizes words into synonym sets (synsets), and these synsets themselves can be

organized into a hyponym (“is-a”) graph. LDAWN modifies the LDA generative procedure by hav-

ing topics emit words via a random walk over this graph. Since different senses of a given word

reside in different synsets, the latent assignment of a token to a synset should reveal the associated

word sense. This model has achieved strong results on word sense disambiguation tasks.
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3.1.3 θ-side

In standard LDA, the document-topic mixture θ is independently sampled from a Dirichlet prior

α for each document. This simple approach may ignore correlations which may exist among the

topics, or information we may have about the documents. θ-side variants are primarily concerned

with richer representations of the document-topic associations.

Topic structure: The standard Dirichlet prior on θ assumes no dependencies between the indi-

vidual topics in a given document (aside from the normalization requirement that
∑

t θd(t) = 1).

However, the presence of a neural networks topic (e.g., containing “backpropagation”, “sigmoid”)

in a scientific article may lead us to expect to see an experimental methods topic (e.g., “cross-fold”,

“significant”) as well.

Hierarchical LDA (hLDA) [Blei et al., 2003b], Correlated Topic Models (CTM)

[Blei and Lafferty, 2006a], and Pachinko Allocation Machines (PAM) [Li and McCallum, 2006,

Mimno et al., 2007] all modify the topic sampling procedure in different ways in order to capture

dependencies between topics. CTM replaces the Dirichlet prior on θ with a logistic normal

distribution, allowing pairwise correlations between topics. PAM generates topics by root-to-leaf

traversal of a directed acyclic graph (DAG), encoding topic correlations via the outgoing edge

weights of the internal nodes. hLDA models topics with a tree-structured hierarchy over topics

where topics get more specific as one moves from root to leaf. In addition to potentially modeling

the data more accurately, the connections between topics may yield additional useful insights.

Document information: It is not uncommon for us to have additional information associated with

the documents themselves. If we believe there to be a relationship between this information and

the content of the document, it makes sense to try to incorporate it into the topic model. The

Dirichlet-multinomial regression (DMR) topic model [Mimno and McCallum, 2008] is a flexible

model which conditions θ on arbitrary document metadata (e.g., authors, citations, or timestamps).

This is accomplished by modeling the Dirichlet hyperparameter α as being generated by a weighted

function of the document metadata vector.

Labeled LDA [Ramage et al., 2009] assumes that each document is associated with a

K−dimensional binary vector Λ of labels. For example, a document may be tagged with the
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tags sports and business. Each of these labels is then associated with its own special topic which

can only be used in documents which have that label. This allows the model to learn special topics

that are strongly associated with their corresponding labels. Returning to our example, Labeled

LDA would have a special topic which only appears in documents having the sports tag, which is

therefore likely to place high probability on words associated with sports.

Markov Random Topic Fields (MRTF) [Daumé, 2009] assume the existence of a weighted

graph over documents (e.g., shared authors or publication venues). Intuitively, we believe that

documents connected by a high-weight edge should contain similar topics. For each edge (d1, d2),

the model adds a potential function penalizing the difference between θd1 and θd2 .

Gaussian Markov Random Field (GMRF) topic models [Mimno et al., 2008] incorporate a sim-

ilarity graph over document collections. Each document draws a topic proportion θ from a logis-

tic normal distribution, as in CTM. However, this model introduces additional coupling between

the CTM parameters within a collection. Furthermore, the GMRF introduces parameter coupling

across document collections depending on the user-supplied graph structure.

Topics over time: Often, documents come with some sort of timestamp (e.g., year of publication

for scientific articles). When doing topic modeling, it is therefore natural to ask if we can exploit

this temporal information in order to learn something about the the evolution of topics and trends

in their usage.

In dynamic topic models (DTM) [Blei and Lafferty, 2006b], it is assumed that we can parti-

tion the corpus into disjoint time slices. Using logistic normal distributions (again as in CTM),

both the document-topic mixtures and topic-word multinomials evolve via multivariate Gaussian

dynamics (i.e., at time step s natural parameter νs is Gaussian distributed with mean νs−1). The

requirement of discretized timestamps is an obvious limitation of this approach. The continu-

ous time dynamic topic model (cDTM) [Wang et al., 2008] is similar to CTM, but replaces dis-

crete Gaussian evolution with its continuous limit, Brownian motion. Topics over time (TOT)

[Wang and McCallum, 2006] takes a different approach, modeling timestamps as being generated

by the model itself. These models are all able to learn interesting trends in topics. For example,

TOT shows interesting results when applied to a corpus of NIPS publications; the neural network
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topic becomes less prevalent relative to the support vector machines topic over the time period

from 1987 to 2003 [Wang and McCallum, 2006].
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3.1.4 Summary and relation to this thesis

Table 3.1: Overview of LDA variant families discussed in this chapter.

Variant family Diagram Examples

LDA+X Images, labels

φ-side Concepts, WordNet

θ-side Topic correlations

This chapter has demonstrated the diversity of potential extensions to the basic topic model.

Table 3.1 summarizes the different families of model variants. In general, however, these models

tend to assume particular types of additional structure or side information, as well as how these

additions influence topic recovery. The goal of this thesis is to create general mechanisms allowing
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the user to inject different types of domain knowledge into topic modeling. The models we de-

velop provide new and general mechanisms for incorporating domain knowledge. In particular, the

LogicLDA model (Chapter 7) is quite flexible, and can be used to “encode” many of the existing

variants presented in this chapter.

3.2 Augmented clustering

Recall that standard LDA is a fundamentally unsupervised model, and is often used in an

exploratory setting to learn more about a given dataset. In both of these senses, topic model-

ing is related to the classic problem of clustering, where we wish to find a “good” partition of a

given set of instances [Duda et al., 2000]. As discussed earlier, topic modeling and clustering also

share certain challenges such as the difficulty of evaluating solutions and the existence of multiple

meaningful solutions. In recent years there has been exciting research on augmenting traditional

clustering approaches with various types of partial supervision or user guidance. We now briefly

review this line of work, as it has helped to shape some of the directions investigated in this thesis.

3.2.1 Constrained clustering

Often when clustering, we have some idea what our desired clustering should look like. One

particular type of knowledge is a pairwise label: given a pair of instances, should they end up

in the same cluster, or not? In constrained clustering [Wagstaff et al., 2001, Basu et al., 2006,

Basu et al., 2008], this information is supplied in the form of Must-Link and Cannot-Link con-

straints, respectively. Candidate clustering solutions which violate these constraints are then pe-

nalized. An alternative approach [Xing et al., 2002] uses these types of pairwise labels to learn

a distance metric. The learned metric should place Must-Linked instances near one another, and

Cannot-Linked instances far apart. Clustering is then done according to the learned distance func-

tion.

Inverting the previous setting, we may know what our clustering should not look like. That is,

we may already know a high-quality clustering of the data, and we do not want the algorithm to tell

us what we already know. Conditional Information Bottleneck (CIB) [Gondek and Hofmann, 2004]
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optimizes an information-theoretic objective function [Tishby et al., 1999] conditioned on a pre-

viously known clustering. Informally, this approach tries to discover a clustering that “tells us

something new”, relative to the clustering we already know about. A related approach, Informa-

tion Bottleneck with Side Information [Chechik and Tishby, 2002], allows the user to supply ad-

ditional side information, labeled as either relevant or irrelevant. Again, an information-theoretic

approach attempts to maximize mutual information with respect to the relevant side information

while minimizing mutual information with respect to the irrelevant side information.

3.2.2 Interactive clustering

Other recent work is explicitly targets interactive clustering. One approach to the “multiple

valid clusterings” problem [Dasgupta and Ng, 2009, Dasgupta and Ng, 2010] is built upon spec-

tral clustering [Shi and Malik, 2000] as the base clustering method. Spectral clustering operates

on a similarity graph between items, and the resulting solutions are given in terms of eigenvectors

of the associated graph Laplacian. A binary clustering based on the second eigenvector1 is the

optimizer of a purely data-driven objective function. The eigenvectors themselves are orthogonal,

and therefore represent significantly different clusterings. By taking separate clusterings for each

of the top N eigenvectors and presenting them to the user, an appropriate clustering can be dis-

covered. An alternative approach [Bekkerman et al., 2007] uses “seed” words which are thought

to be highly informative with respect to the target clustering (but are not themselves “labeled”).

The algorithm then proceeds via information-theoretic biclustering, an approach which works by

simultaneously clustering the words (based on their appearance in the document clusters) and the

documents (based on which word clusters they contain). If the mutual information between the

seed words and the target document clustering is high, initializing this procedure from the seed

words should be more likely to result in the recovery of the target document clustering.

1The first eigenvector is constant over all items and therefore not useful for clustering.
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KEY IDEAS

� LDA is an extensible base model, yielding many application- and data-specific variants.

. LDA+X variants jointly model text documents and related data (e.g., labels or images).

. φ-side variants modify the generation of words (e.g., word order).

. θ-side variants modify the generation of topics (e.g., topic correlations).

� The goal of this work is to develop general methods for including domain knowledge.

� Recent clustering work incorporates constraints and user interaction - these ideas are also

applicable to topic modeling.
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Chapter 4

DeltaLDA

The work described in this chapter exploits prior knowledge at the document level. The ∆LDA

model [Andrzejewski et al., 2007] assumes that a corpus is generated using two sets of topics: a

shared set of topics used to model all documents, and an exclusive set of topics which can only

appear in a special subset of documents. Intuitively, the exclusive topics are forced to “explain”

the patterns present in the special subset of documents but absent from the corpus as a whole (this

difference is the “delta” in the model name). In the topic modeling taxonomy from Chapter 3,

∆LDA is a θ-side modification, including domain knowledge about documents into the generation

of the document-topic multinomial θ.

While the ∆LDA model is quite general, it was originally motivated by a statistical debugging

application. We therefore begin with a brief introduction to the statistical debugging dataset and

problem setting.

4.1 Cooperative Bug Isolation (CBI)

The Cooperative Bug Isolation Project (CBI) [Liblit, 2007] aims to improve understanding of

software failures (bugs) by recording data about program executions (runs) via special instrumen-

tation code woven into the original program code. A simplified example of this instrumentation is a

branch counter (Figure 4.1) which records which direction was actually taken at a given conditional

expression in the original program.

For practical reasons, these observations are only recorded probabilistically (subsampled) and

no ordering information is preserved. The instrumentation software deterministically adds a finite
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Figure 4.1: An example predicate used by CBI.

number of these recorders to the original program code, and for each execution (run) these predi-

cates are each associated with an event count telling us how many times that event was observed

during execution.

We use latent topic modeling to better understand this dataset. Although program behavior

may seem quite different from natural language text, both domains feature discrete count data

(word counts or predicate counts) with a natural grouping structure (document or program run).

Much as LDA can yield insights by showing us the latent topic patterns behind a text corpus, we

hope to discover the latent program behavior patterns behind a corpus of program runs. Table 4.1

shows a mapping from our previous text modeling domain to this statistical debugging domain.

Table 4.1: Schema mapping between text and statistical debugging.

Text Data CBI Data

Document Program run

Vocabulary Predicates

Word counts Predicate counts
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4.2 DeltaLDA

Suppose we have a buggy implementation of the UNIX utility grep, and we are interested in

using the CBI framework to understand the buggy behavior. We record the predicate counts for

many runs of our instrumented copy of grep, some of which crash or give incorrect output (fail)

and some of which run normally (succeed). Given this corpus of program runs, we can apply latent

topic modeling in order to discover underlying patterns of predicate activation across these runs.

One potential problem with this approach is that much of the statistical structure present in the

predicate counts may be associated with normal (i.e., non-buggy) program operation. This problem

is illustrated by the “buggy bars” synthetic dataset shown in Figure 4.2. Here the “vocabulary” is

a 5× 5 grid of 25 pixels, and the “word counts” for each document are represented by normalized

pixel intensity, with white being the highest and black being zero. Our synthetic documents will be

partitioned into two sets: successful and failing. In Figure 4.2a we see the ground truth topics used

to generate the synthetic data. Each of these topics assigns uniform probability to a subset of the

pixel vocabulary (a horizontal or vertical bar), and zero probability to the rest of the vocabulary.

The eight horizontal and vertical bar topics represent the normal usage patterns, and are associated

with hyperparameter α = 1 in all documents, while the three “x”-shaped topics represent weaker

bug patterns and are associated with hyperparameter α = 0.1 in failing documents only. A handful

of successful (left) and failing (right) documents generated by this synthetic data model are shown

in Figure 4.2b. To be more concrete, the α hyperparameters used to generate the document-topic

mixture weights θ are:

α =

 α(s)

α(f)

 =

 1 1 1 1 1 1 1 1 0 0 0

1 1 1 1 1 1 1 1 0.1 0.1 0.1

 . (4.1)

For a successful (non-failing) document, we generate θ by sampling from a Dirichlet using

the first row of values α(s). The 0 entries for the last 3 columns ensure that the corresponding θ

will place zero probability on those topics. Likewise for a failing document we use the second row

α(f), which has non-zero entries for the final 3 columns, allowing non-zero corresponding θ values.
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Restating the procedure, successful documents are generated by a mixture of the usage topics only,

while failing documents are generated by a mixture of both the usage topics and buggy topics.

We then try to recover the true topics with standard LDA, using the correct number of ground

truth topics (T = 11), and modeling failed runs only. Unfortunately, the more prominent usage

patterns overwhelm the buggy ones (Figure 4.2c), resulting in duplications of the usage topics.

(a) Ground truth usage and buggy topics used to generate the synthetic dataset.

(b) Example successful (left) and failing (right) runs generated by the synthetic data model.

(c) Topics recovered by standard LDA, which does not recover “weak” buggy topics.

(d) Topics recovered by ∆LDA, which exploits outcome labels to recover buggy topics.

Figure 4.2: The “buggy bars” synthetic dataset.

Note that we have side-information in the form of program failure or success for each individual

run. The ∆LDA model uses this side-information to enhance detection of buggy behavior patterns

by partitioning the set of T topics into a set of usage topics Tu and a set of buggy topics Tb. Similar

to the synthetic example, the usage topics are shared by all runs, and are meant to capture behavior

patterns which are related to normal program execution. The buggy topics are restricted to only

appear in the failing runs, and are therefore meant to capture failure-specific behavior patterns.

In order to capture our notions of shared and restricted topics, it is necessary to extend the

base LDA model. We achieve this restriction in ∆LDA by the use of an additional observed

outcome variable o ∈ {s, f}, which selects between separate document-topic Dirichlet priors α(s)
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(success) and α(f) (failure) for each individual run. For topics t in the restricted set of buggy

topics Tb, we enforce that α(s)
t = 0 and α(f)

t > 0. This corresponds to the α shown in (4.1) and

effectively prohibits the buggy topics from appearing in successful runs, as we intended. Figure 4.3

shows the ∆LDA graphical model, reflecting these modifications with an additional observed o

node selecting between the separate α(s) and α(f) hyperparameters, which in turn influence the

usage of the separate usage and buggy topic sets. That is, the probabilistic model is identical

to standard LDA, except that the document outcome label o determines whether the document-

topic multinomial θ is drawn from a Dirichlet with hyperparameter α(s) (which has zeros for the

Tb buggy topics) or α(f) (which has non-zero values for the Tb buggy topics). Letting oj be the

outcome variable associated with document j, the joint probability distribution is given by

P (w, z, φ, θ | α, β,d,o) ∝

(
T∏
t

p(φt|β)

)(
D∏
j

p(θj|α(oj))

)(
N∏
i

φzi(wi)θdi(zi)

)
(4.2)

where, as mentioned above, only the p(θj|α(o(d))) term has changed from standard LDA.

We derive the collapsed Gibbs sampling and (φ, θ) estimation equations under the new ∆LDA

model (see Appendix A). We find that the resulting equations are identical to their standard LDA

counterparts from Chapter 2, except that we substitute the appropriate value of α (α(s) or α(f))

depending on the document outcome flag o.

For the synthetic buggy bars dataset, the topics recovered by ∆LDA are shown in Figure 4.2d.

The addition of failure or success side information and the use of both shared and exclusive topics

allow ∆LDA to successfully recover the buggy patterns.

4.3 Experiments

Since we assume the success or failure of each individual run is observed, we are not interested

in predicting whether or not a program will crash or behave incorrectly. Instead, we are interested

in understanding failing runs in two ways. First, can we use our special buggy topics to cluster

runs by root cause of failure? Second, can we examine the high-probability predicates in the buggy
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Figure 4.3: The ∆LDA graphical model, with additional observed document outcome label o

selecting between separate “success” (αs) or “failure” (αf ) values for the hyperparameter α. The

α hyperparameter then controls the usage of the restricted “buggy” topics φb which are separated

out from the shared “usage” topics φu.

topics to find the root causes of failure within the code itself? Both of these criteria are directly

motivated by the potential for useful application in real-world debugging efforts.

Our dataset consists of CBI-instrumented runs from 4 different programs: exif

[EXIF Tag Parsing Library, ], grep [H. Do, 2005, Rothermel et al., 2006], gzip [H. Do, 2005,

Rothermel et al., 2006], and moss [Schleimer et al., 2003]. Table 4.2 summarizes important prop-

erties of these datasets: the number of lines of code in the original program, the number of in-

strumentation predicates for which we have observed counts, how many different successful and

failing runs we observe, and how many usage and bug topics we use in our model.

These programs contain known bugs, resulting from a mix of actual development and researcher

“sabotage” (i.e., intentionally adding bugs for research purposes). In addition to the subsampling

that is intrinsic to CBI instrumentation, we also discard uninformative predicates (e.g., predicates

which are always or never triggered during execution). Furthermore, document lengths are “nor-

malized” to 1000 by estimating a multinomial from the original counts and taking 1000 samples.

For each experiment we use fixed hyperparameters β = 0.1 and α = 0.5, setting α = 0 for

buggy topics in successful runs as described earlier. The number of buggy topics for each program

is chosen to be the ground truth number of bugs, and the number of usage topics is chosen to be

equal to the number of “use cases” for each program (i.e., how many distinct modes of operation
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Table 4.2: Statistical debugging datasets. For each program, the number of bug topics is set to the

ground truth number of bugs.

Runs Topics

Program Lines of Code Predicate Types Successful Failing Usage Bug

exif 10,611 20 352 30 7 2

grep 15,721 2,071 609 200 5 2

gzip 8,960 3,929 29 186 5 2

moss 35,223 1,982 1727 1228 14 8

are indicated by the command-line flags). The Gibbs sampler is run for 2000 iterations before

estimating φ and θ from the final sample.

4.3.1 Clustering runs by cause of failure

If there are multiple bugs present, it will be difficult to begin debugging without first isolating

the effects of the underlying bugs from one another. Because of this, the first goal is to parti-

tion failing runs by which bug caused the undesirable behavior. We cluster failed runs by their

document-topic mixing weights θ(d), partitioning on arg maxz∈Tb θ
(d)
z . We set |Tb| equal to the true

number of bugs present for each program, which is known for these controlled experiments. Our

clusterings are evaluated against ground truth using the Rand Index [Rand, 1971] for agreement be-

tween partitions, where a value of 1 indicates total agreement and 0 indicates total disagreement.

These results are found to be competitive with two previous statistical debugging approaches,

which we refer to as PLDI05 [Liblit et al., ] and ICML06 [Zheng et al., 2006] (Table 4.3).

To aid in our visual understanding of this partitioning, we show runs plotted by θ(d)
z for z ∈

Tb and labeled by their ground truth cause of failure in Figures 4.4a, 4.4b, and 4.4c. Visually,

these axis-aligned plots demonstrate that runs which suffer different root causes of failure are

“explained” by different buggy topics. In Figure 4.5 we have more than three bug topics, so

we apply a standard dimensionality reduction technique, Principal Components Analysis (PCA)
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[Hastie et al., 2001], in order to facilitate interpretation. These plots all provide compelling visual

evidence of the desired alignment between our learned buggy topics and true cause of failure for

each program run.
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Figure 4.4: Bug topics vs true bugs for ∆LDA.
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Table 4.3: Rand indices showing similarity between computed clusterings of failing runs and true

partitionings by cause of failure (complete agreement is 1, complete disagreement is 0.0).

∆LDA ICML06 PLDI05

exif 1.00 0.88 1.00

grep 0.97 0.71 0.77

gzip 0.89 1.00 1.00

moss 0.93 0.93 0.96

4.3.2 Identifying root causes of failure

A statistical debugging system could facilitate the debugging process by providing the user with

one or more “suspicious” predicates strongly associated with the failing runs. The second goal is

therefore to identify predicates which will help the user to discover the bug itself. Hopefully,

examining these predicates will provide the user with clues regarding the nature of the actual bug.

We rely upon expert assessments to determine the usefulness of significant predicates within

each buggy topic. For each buggy topic z, the predicates w were ranked by calculating P (z|w)

from P (w|z) using Bayes rule. This quantity was used instead of φz(w) = P (w|z) to avoid

prevalent but uninformative w which have high probability across all topics. For each topic z = i

and word w = j we define a confidence score Sij = mink 6=i P (z = i|w = j) − P (z = k|w = j).

For each topic z = i we present words ranked by Sij , omitting words for which Sij is less than

zero. Similar lists are formulated for the baseline methods ICML06 and PLDI05.

Evaluation of these ranked lists against the true bugs found ∆LDA to generally be superior

to the ICML06 baseline, and roughly comparable to the PLDI05 baseline. For each bug, highly

ranked predicates tend to occur in either “smoking gun” code which is a primary cause of failure,

or in closely related code where secondary effects of the bug manifest. For some difficult cases

(e.g., the true cause of failure was not covered by instrumentation), all methods failed to clearly

identify the root cause of failure.
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An interesting aspect of ∆LDA is that the usage topics often correspond to well-defined pat-

terns of program operation in interesting ways. For example, in gzip we observed that Topic 3

placed high probability on predicates located in functions associated with the fast compression

variant of the algorithm, and that Topic 3 itself had high probability in program runs which

used a command-line flag explicitly calling for the faster compression algorithm. Expert eval-

uations discovered meaningful patterns in the usage topics for other programs as well. This

suggests that it may be possible to identify correlations between usage topics and buggy topics

[Blei and Lafferty, 2006a], which could provide additional insights.

Later work [Dietz et al., 2009] models the path of execution taken through source code, out-

performing ∆LDA on the localization of defective code within programs. However, the full trace

information required for this approach is significantly more expensive to obtain than the subsam-

pled counts produced by CBI. Extending ∆LDA to take advantage of richer trace information

remains a potential avenue for future work.

4.4 Discussion

One advantage of ∆LDA is that the scores produced by PLDI05 have no meaningful

probabilistic interpretation, limiting their use in further analysis. Potential extensions could

put the probabilistic topics to practical use in debugging. Other software engineering work

[Linstead et al., 2007] applied Author-Topic models [Rosen-Zvi et al., 2004] directly to source

code. Learned topics are used to map different portions of a program to the developers with the

most relevant expertise. This type of analysis could be combined with the learned topics suggested

by ∆LDA in order to intelligently assign developers to bugs.

Furthermore, the unique nature of software admits much richer classes of prior knowl-

edge. In particular, static analysis of code [Liblit, 2008] has the potential to reveal interest-

ing relationships among predicates instrumented by the CBI [Liblit, 2007]. The backwards slice

[Horwitz et al., 1988] from a given line of code L finds all other lines of code which could have

influenced the outcome of L. If we know the actual point of failure F from a given program run, it

then stands to reason that code which lies in the backwards slice of F is more likely to contain the
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root cause of the failure and therefore good bug-predictors. In addition, software researchers have

discovered various factors associated with buggy code, including recent change activity and code

complexity [Graves et al., 2000, Munson and Khoshgoftaar, 1992]. This information could also be

profitably incorporated into our model. This type of word-level (i.e., φ-side) domain knowledge

could potentially be encoded into other models developed as part of this thesis (Chapters 5 and 7).

The principles of restricted and shared topics developed in ∆LDA can also be applied to nat-

ural language processing [Lacoste-Julien et al., 2008]. For example, user generated “tags”1 can

be combined with ∆LDA-like mechanisms [Ramage et al., 2009] to learn special topics related to

the tags. The idea of using shared or background components to enhance topic recovery was also

previously used to assign topics to broadcast news stories [Sista et al., 2002].

4.5 Summary

This chapter has presented the ∆LDA model and its successful application to the task of statis-

tical debugging. The division between a set of shared topics common to all documents and a set of

special topics restricted to appear in specially labeled documents represents an interesting and use-

ful type of domain knowledge. In statistical debugging, we have the knowledge that certain buggy

behavior patterns should manifest themselves in failing runs only, while another common set of

standard program behavior should appear in all runs. Exploiting this knowledge allows us to both

cluster failing runs by bug and to gain actionable insights into the nature of the bugs themselves.

The general idea of ∆LDA is also applicable to the text domain, where document labels can come

from a variety of sources such as user-generated annotations.

1Such as those found on the bookmark sharing site http://www.delicious.com.

http://www.delicious.com
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KEY IDEAS

� ∆LDA incorporates document label information into the document-topic distributions (θ-side)

. shared topics appear in all documents

. restricted topics appear only in specially labeled documents.

� The restricted topics capture patterns present only in the labeled documents.

� Topic modeling can be a useful tool in the statistical debugging domain.
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Chapter 5

Topic-in-set knowledge

This chapter describes a mechanism for adding “partial” supervision to LDA. Topic-in-set

knowledge [Andrzejewski and Zhu, 2009] allows the user to specify a z-label for each observed

word in the corpus. A z-label for observed word wi consists of a set C(i) of possible values for the

corresponding latent topic index zi, and can be thought of as a (hard or soft) constraint. The prob-

abilities of latent topic assignments z which violate these constraints are then penalized for a soft

constraint, or set to zero in the case of a hard constraint. By modifying the topic probabilities in

this way, this extension can be considered a θ-side modification of LDA as discussed in Chapter 3.

By carefully choosing these C(i), the user can encode various types of domain knowledge into

the model. A user could provide word sense labels by forcing two occurrences of the same word

(e.g., “Apple pie” and “Apple iPod”) to be explained by different topics. In this work we explore

an application where a domain expert provides “seed” words for a concept of interest, which are

then used to learn a topic built around the concept.

5.1 Collapsed Gibbs sampling with z-labels

The z-label constraints are enforced via a multiplicative penalty in the collapsed Gibbs sam-

pling equation. We recall the sampling equation for standard LDA [Griffiths and Steyvers, 2004]

P (zi = v|z−i,w, α, β) ∝

(
n

(d)
−i,v + α∑T

u (n
(d)
−i,u + α)

)(
n

(wi)
−i,v + β∑W

w′(n
(w′)
−i,v + β)

)
(5.1)

where n(d)
−i,v is the number of times topic v is used in document d, and n(wi)

−i,v is the number of times

word wi is generated by topic v. The −i notation signifies that the counts are taken omitting the
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value of zi. For convenience, we define qiv to be this unnormalized collapsed Gibbs sampling

probability of assigning zi = v.

qiv =

(
n

(d)
−i,v + α∑T

u (n
(d)
−i,u + α)

)(
n

(wi)
−i,v + β∑W

w′(n
(w′)
−i,v + β)

)
. (5.2)

Next, let C(i) be the set of possible z-labels for latent topic zi. We set a hard constraint by

modifying the Gibbs sampling equation with an indicator function δ(v ∈ C(i)), which takes on

value 1 if v ∈ C(i) and is 0 otherwise:

P (zi = v|z−i,w, α, β) ∝ qivδ(v ∈ C(i)) (5.3)

If we wish to restrict zi to a single value (e.g., zi = 5), this can be accomplished by setting

C(i) = {5}. Likewise, we can restrict zi to a subset of values {1, 2, 3} by setting C(i) = {1, 2, 3}.

Finally, for unconstrained zi we simply set C(i) = {1, 2, ..., T}, in which case our modified sam-

pling (5.3) reduces to the standard Gibbs sampling (5.1).

Note that this formulation gives us a highly flexible method for inserting prior domain knowl-

edge into the inference of latent topics, allowing us to set C(i) independently for every single

word wi in the corpus. This effect would be impossible to achieve by setting certain topic-

specific asymmetric β vectors to zero, as is done with α in the ∆LDA model (Chapter 4,

[Andrzejewski et al., 2007]).

This hard constraint model could also be relaxed. Let 0 ≤ η ≤ 1 be the strength of our

constraint, where η = 1 recovers the hard constraint (5.3) and η = 0 recovers unconstrained

sampling (5.1). Then we can modify the Gibbs sampling equation as follows:

P (zi = v|z−i,w, α, β) ∝ qiv
(
ηδ(v ∈ C(i)) + 1− η

)
. (5.4)
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5.2 Experiments

5.2.1 Concept expansion

We now demonstrate some example applications for this type of partial supervision. For these

experiments, symmetric hyperparameters α = 0.5 and β = 0.1 are used and all MCMC chains are

run for 2000 samples before estimating φ and θ from the final sample.

The first experiment uses z-labels to do concept expansion, where we begin with some seed

terms of a predefined concept and we wish to use topic modeling to expand the concept and find

other related terms. For example, a biological expert may be interested in the concept translation.

The expert can then provide a set of seed words which are strongly related to this concept; here we

assume the seed word set {translation, trna, anticodon, ribosome}. We add the hard constraint that

zi = 0 for all occurrences of these four words in our corpus of approximately 9,000 yeast-related

abstracts from PubMed.

We run LDA with the number of topics T = 100, both with and without the z-label knowl-

edge on the seed words. Table 5.1 shows the most probable words in selected topics from both

runs. Table 5.1a shows Topic 0 from the constrained run, while Table 5.1b shows the topics which

contained seed words among the top 50 most probable words from the unconstrained run.

These top words are annotated for relevance to the target concept (translation) by an outside

biological expert. The words in Table 5.1 are then bolded if they are one of the original seed words,

italicized if they are judged as relevant, and left undecorated otherwise. From a quick glance, we

can see that Topic 0 from the constrained run contains more relevant terms than Topic 43 from

the standard LDA run. Topic 31 has a similar number of relevant terms, but taken together we

can see that the emphasis of Topic 31 is slightly off-target, more focused on mRNA turnover than

translation. Likewise, Topic 73 seems more focused on the ribosome itself than the process of

translation. Overall, these results demonstrate the effectiveness of z-label information for guiding

topic models towards a user-seeded concept.
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Table 5.1: Standard LDA and z-label topics learned from a corpus of PubMed abstracts, where the

goal is to learn topics related to translation. Concept seed words are bolded, other words judged

relevant to the target concept are italicized.

(a) Topic 0 with z-label

Topic 0

translation, ribosomal, trna, rrna, initiation, ribosome, protein, ribosomes, is, fac-

tor, processing, translational, nucleolar, pre-rrna, synthesis, small, 60s, eukaryotic,

biogenesis, subunit, trnas, subunits, large, nucleolus, factors, 40, synthetase, free,

modification, rna, depletion, eif-2, initiator, 40s, ef-3, anticodon, maturation, 18s,

eif2, mature, eif4e, associated, synthetases, aminoacylation, snornas, assembly, eif4g,

elongation

(b) Standard LDA Topics

Topic 31

mrna, translation, initiation, mrnas, rna, transcripts, 3, transcript, polya, factor, 5,

translational, decay, codon, decapping, factors, degradation, end, termination, eu-

karyotic, polyadenylation, cap, required, efficiency, synthesis, show, codons, abun-

dance, rnas, aug, nmd, messenger, turnover, rna-binding, processing, eif2, eif4e,

eif4g, cf, occurs, pab1p, cleavage, eif5, cerevisiae, major, primary, rapid, tail, effi-

cient, upf1p, eif-2

Topic 43

type, is, wild, yeast, trna, synthetase, both, methionine, synthetases, class, trnas,

enzyme, whereas, cytoplasmic, because, direct, efficiency, presence, modification,

aminoacylation, anticodon, either, eukaryotic, between, different, specific, discussed,

results, similar, some, met, compared, aminoacyl-trna, able, initiator, sam, not, free,

however, recognition, several, arc1p, fully, same, forms, leads, identical, responsible,

found, only, well

Topic 73

ribosomal, rrna, protein, is, processing, ribosome, ribosomes, rna, nucleolar, pre-

rrna, rnase, small, biogenesis, depletion, subunits, 60s, subunit, large, synthesis, matu-

ration, nucleolus, associated, essential, assembly, components, translation, involved,

rnas, found, component, mature, rp, 40s, accumulation, 18s, 40, particles, snornas,

factors, precursor, during, primary, rrnas, 35s, has, 21s, specifically, results, ribonu-

cleoprotein, early
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5.2.2 Concept exploration

For our next experiment, we suppose that a user has chosen a set of terms and wishes to discover

different topics related to these terms. By constraining these terms to only appear in a restricted set

of topics, these terms will be concentrated in the set of topics. This modification may then have

indirect effects on the topic assignments of non-seed words, resulting in a significantly different

set of recovered topics.

To make this concrete, say we are interested in the location United King-

dom. We have the Reuters newswire corpus used for the CoNLL-2003 shared task

[Tjong Kim Sang and De Meulder, 2003]. This corpus contains manually annotated named

entity labels for persons (PER), locations (LOC), organizations (ORG), and miscellaneous

(MISC). In order to incorporate this information into our analysis, we pre-pend each tagged token

with its entity tag (e.g., “Saddam Hussein” becomes “[PER]Saddam [PER]Hussein”). We use this

additional information by seeding our United Kingdom topics with the following location-tagged

terms {britain, british, england, uk, u.k., wales, scotland, london}. Location-tagged occurrences

(e.g., “[LOC]England”) of these terms are then restricted to appear only in the first three topics. In

order to focus on our target location, we also restrict all other location-tagged tokens to not appear

in the first three topics. For this experiment we set T = 12, arrived at by trial-and-error in the

baseline (standard LDA) case.

The 50 most probable words for each topic are shown in Table 5.2 and Table 5.3, and tagged

entities are prefixed with their tags for easy identification. Table 5.2 shows the top words for the

first three topics of our z-label run. These three topics are all related to the target LOCATION

United Kingdom, but they also split nicely into business, cricket, and soccer. Words which are

highly relevant to each of these three concepts are bolded, italicized, and underlined, respectively.

In contrast, in Table 5.3 we show three topics from standard LDA which contain any of the

“United Kingdom” location terms (which are boxed) among the 50 most probable words for that

topic. We make several observations about these topics. First, standard LDA Topic 0 is mostly

concerned with political unrest in Russia, which is not particularly related to the target location.

Second, Topic 2 is similar to our previous business topic, but with a more US-oriented slant. Note
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that “dollar” appears with high probability in standard LDA Topic 2, but not in our z-label LDA

Topic 0. Standard LDA Topic 8 appears to be a mix of both soccer and cricket words. Therefore,

it seems that our topic-in-set knowledge helps in distilling topics related to the seed words.

Given this promising result, we attempted to repeat this experiment with some other nations

(United States, Germany, China), but without much success. When we tried to restrict these loca-

tion words to the first few topics, these topics tended to be used to explain other concepts unrelated

to the target location (often other sports). Germany and China location words simply do not occur

frequently enough in the corpus for z-label-LDA to “build” topics around them. While the United

States location words are more frequent, the results were also not very interesting.

5.3 Principled derivation

We have discussed z-label-LDA in purely procedural terms as a modification to the Gibbs

sampling algorithm. However, it is possible to derive z-label-LDA as a principled extension to

standard LDA by first converting LDA to an undirected graphical model and then adding clique

potentials which encode the penalties for violating z-labels. This notion is generalized further in

the LogicLDA model; we defer discussion of further details to Chapter 7.

5.4 Summary

This chapter has described Topic-in-set knowledge, a simple yet powerful type of domain

knowledge for topic modeling. Topic-in-set knowledge allows the user to influence the topic as-

signment zi of specific words in the corpus. By choosing a handful of “seed” words and constrain-

ing their corresponding latent topics to a single topic, LDA can be encouraged to build a topic

generalizing beyond the provided seed words.
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Table 5.2: z-label topics learned from an entity-tagged corpus of Reuters newswire articles. Topics

shown contain location-tagged terms from our United Kingdom location term list. Entity-tagged

tokens are pre-pended with their tags: PER for person, LOC for location, ORG for organization,

and MISC for miscellaneous. Words related to business are bolded, cricket italicized, and soccer

underlined.

Topic 0

million, company, ’s, year, shares, net, profit, half, group, [ORG]corp, market,

sales, share, percent, expected, business, loss, stock, results, forecast, companies,

deal, earnings, statement, price, [LOC]london , billion, [ORG]newsroom, indus-

try, newsroom, pay, pct, analysts, issue, services, analyst, profits, sale, added,

firm, [ORG]london, chief, quarter, investors, contract, note, tax, financial, months,

costs

Topic 1

[LOC]england , [LOC]london , [LOC]britain , cricket, [PER]m., overs, test, wick-

ets, scores, [PER]ahmed, [PER]paul, [PER]wasim, innings, [PER]a., [PER]akram,

[PER]mushtaq, day, one-day, [PER]mark, final, [LOC]scotland , [PER]waqar,

[MISC]series, [PER]croft, [PER]david, [PER]younis, match, [PER]ian, total,

[MISC]english, [PER]khan, [PER]mullally, bat, declared, fall, [PER]d., [PER]g.,

[PER]j., bowling, [PER]r., [PER]robert, [PER]s., [PER]steve, [PER]c. captain, golf,

tour, [PER]sohail, extras, [ORG]surrey

Topic 2

soccer, division, results, played, standings, league, matches, halftime, goals, at-

tendance, points, won, [ORG]st, drawn, saturday, [MISC]english, lost, premier,

[MISC]french, result, scorers, [MISC]dutch, [ORG]united, [MISC]scottish, sunday,

match, [LOC]london , [ORG]psv, tabulate, [ORG]hapoel, [ORG]sydney, friday,

summary, [ORG]ajax, [ORG]manchester, tabulated, [MISC]german, [ORG]munich,

[ORG]city , [MISC]european, [ORG]rangers, summaries, weekend, [ORG]fc,

[ORG]sheffield, wednesday, [ORG]borussia, [ORG]fortuna, [ORG]paris, tuesday
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Table 5.3: Standard LDA topics for an entity-tagged corpus of Reuters newswire articles. Topics

shown contain location-tagged terms from our United Kingdom location term list. Entity-tagged

tokens are pre-pended with their tags: PER for person, LOC for location, ORG for organization,

and MISC for miscellaneous. Words related to business are bolded, cricket italicized, and soccer

underlined.

Topic 0

police, ’s, people, killed, [MISC]russian, friday, spokesman, [LOC]moscow, told,

rebels, group, officials, [PER]yeltsin, arrested, found, miles, km, [PER]lebed, capital,

thursday, tuesday, [LOC]chechnya, news, saturday, town, authorities, airport, man,

government, state, agency, plane, reported, security, forces, city, monday, air, quoted,

students, region, area, local, [LOC]russia, [ORG]reuters, military, [LOC]london ,

held

Topic 2

percent, ’s, market, thursday, july, tonnes, week, year, lower, [LOC]u.s., rate,

prices, billion, cents, dollar, friday, trade, bank, closed, trading, higher, close, oil,

bond, fell, markets, index, points, rose, demand, june, rates, september, traders,

[ORG]newsroom, day, bonds, million, price, shares, budget, government, growth,

interest, monday, [LOC]london , economic, august, expected, rise

Topic 5

’s, match, team, win, play, season, [MISC]french, lead, home, year, players,

[MISC]cup, back, minutes, champion, victory, time, n’t, game, saturday, title, side,

set, made, wednesday, [LOC]england , league, run, club, top, good, final, scored,

coach, shot, world, left, [MISC]american, captain, [MISC]world, goal, start, won,

champions, round, winner, end, years, defeat, lost

Topic 8

division, [LOC]england , soccer, results, [LOC]london , [LOC]pakistan,

[MISC]english, matches, played, standings, league, points, [ORG]st, cricket, satur-

day, [PER]ahmed, won, [ORG]united, goals, [PER]wasim, [PER]akram, [PER]m.,

[MISC]scottish, [PER]mushtaq, drawn, innings, premier, lost, [PER]waqar, test,

[PER]croft, [PER]a., [PER]younis, declared, wickets, [ORG]hapoel, [PER]mullally,

[ORG]sydney, day, [ORG]manchester, [PER]khan, final, scores
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KEY IDEAS

� Topic-in-set knowledge allows the user to constrain individual zi.

� This mechanism can be used to build topics around “seed” words.
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Chapter 6

Dirichlet Forest priors

In standard LDA, the topic-word multinomial distributions φz = P (w|z) are drawn from a

Dirichlet prior with hyperparameter β. Being conjugate to the multinomial [Gelman et al., 2004],

the Dirichlet distribution is a mathematically convenient prior. To some extent, a user can encode

domain knowledge into this Dirichlet prior by setting the values in the β hyperparameter vector.

The values can be roughly thought of as psuedocounts, so a user can encode a belief that the word

“dog” is much more likely in a topic than the word “cat” by setting βdog � βcat.

The work presented in this chapter replaces the standard Dirichlet prior on topic-word

multinomial distributions φz = P (w|z) with a more expressive Dirichlet Forest Prior (DF)

[Andrzejewski et al., 2009]. In the framework of Chapter 3, the resulting model is a φ-side variant.

This extension allows the user to express rich, relational beliefs about the probabilities associated

with different words. For example, we may wish to say that for each topic z we should have

P (w = dog|z) ≈ P (w = cat|z), meaning that “dog” and “cat” should tend to have very simi-

lar probabilities within any given topic. Or we may wish to encode the opposite belief: for each

topic z we should not have both P (w = dog|z) and P (w = cat|z) be large, meaning that “dog”

and “cat” should never co-occur among the “Top N” most probable words for any given topic.

Borrowing names from the constrained clustering literature [Basu et al., 2008], we call these pref-

erences Must-Link and Cannot-Link, respectively. As we will demonstrate, these beliefs cannot be

encoded into a standard Dirichlet prior, motivating the development of the novel Dirichlet Forest

Prior. This prior can be used within LDA, yielding Dirichlet Forest Latent Dirichlet Allocation

(DF-LDA).
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6.1 Encoding Must-Link

While the Dirichlet prior has the advantage of conjugacy to our topic-word multinomial model,

it is restricted in the sense that all variables (i.e., word probabilities) share a common vari-

ance parameter and are mutually independent except for the constraint that they must sum to 1

[Mosimann, 1962]. These limitations prevent us from encoding the Must-Link preference between

a pair of words.

The Dirichlet Tree distribution [Dennis III, 1991, Minka, 1999] reparameterizes and general-

izes the standard Dirichlet distribution, while maintaining conjugacy to the multinomial. In the

Dirichlet Tree, the leaf nodes correspond to the multinomial probabilities. The root node is as-

signed probability mass 1, which then “flows” to its children in proportion to a sample from a

Dirichlet distribution parametrized by the outgoing edge weights. Each internal node then dis-

tributes the probability mass it receives to its children in the same way. Since we begin with mass

1, and the Dirichlet random variables governing redistribution to children are non-negative and

sum to 1, it is clear that the values which end up at the leaves will form a valid probability distribu-

tion. Figure 6.1a shows an example Dirichlet Tree over a vocabulary {A,B,C}, and Figure 6.1b

shows the result of a sample from this Dirichlet Tree. Also, note that we can express the standard

Dirichlet distribution as a Dirichlet Tree with depth 1 as shown in Figure 6.2.

BA C

ηβ

2β β

ηβ

(a) A Must-Link Dirichlet Tree.

0.09

0.420.58

0.91

φ=(0.53     0.38     0.09)
(b) A single sample from the Must-

Link Dirichlet Tree.

Figure 6.1: An example Dirichlet Tree along with example sampled values.
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Figure 6.2: The standard Dirichlet as a Dirichlet Tree.

Formally, let γ(k) be the Dirichlet tree edge weight leading into node k. Let C(k) be the

immediate children of node k in the tree, L the leaves of the tree, I the internal nodes, and L(k)

the leaves in the subtree under k. To generate a sample φ ∼ DirichletTree(γ), one first draws

a multinomial at each internal node s ∈ I from Dirichlet(γC(s)), i.e., using the weights from s

to its children as the Dirichlet parameters. One can think of it as re-distributing the probability

mass reaching s by this multinomial (initially, the mass is 1 at the root). The probability φ(k) of

a word k ∈ L is then simply the product of the multinomial parameters on the edges from k to

the root, as shown in Figure 6.1a. It can be shown [Dennis III, 1991] that this procedure gives

DirichletTree(γ)

p(φ|γ) =

(
L∏
k

φ(k)γ
(k)−1

) I∏
s

Γ
(∑C(s)

k γ(k)
)

∏C(s)
k Γ (γ(k))

L(s)∑
k

φ(k)

∆(s)
 (6.1)

where Γ(·) is the standard gamma function, and the notation
∏L

k means
∏

k∈L. The function

∆(s) ≡ γ(s)−
∑

k∈C(s) γ
(k) is the difference between s’s in-degree and out-degree. When this dif-

ference ∆(s) = 0 for all internal nodes s ∈ I , the Dirichlet tree reduces to a Dirichlet distribution.

The Dirichlet tree distribution is conjugate to the multinomial, just like the Dirichlet distribu-

tion. It is possible to integrate out φ to get a distribution over word counts directly, similar to the

multivariate Pólya distribution:
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p(w|γ) =
∏I

s

(
Γ
(∑C(s)

k γ(k)
)

Γ
(∑C(s)

k (γ(k)+n(k))
)∏C(s)

k

Γ(γ(k)+n(k))
Γ(γ(k))

)
(6.2)

Here n(k) is the number of word tokens in w that appear in L(k).

This more flexible structure gives us the capability to encode our Must-Link preference. Say

that we wish to encode the preference Must-Link (A,B). Since each internal node distributes prob-

ability mass to its children according to its own Dirichlet, we can simply place words A and B

together under an internal node with very large outgoing edge weights. This Dirichlet Tree is

shown in Figure 6.1a, where the η parameter controls the “strength” of our Must-Link preference.

The larger η is, the more uniformly the probability mass arriving at the internal node will be dis-

tributed to the A and B leaf nodes. Also, note that setting η = 1 will result in ∆(s) = 0 for that

internal node, yielding a standard Dirichlet distribution with symmetric parameter β.

To see how this actually works, we take samples from this Dirichlet Tree with β = 1 and

η = 50. Figure 6.3a shows these samples plotted on the simplex where a point in the A corner

signifies a [1, 0, 0] sample, and a point on the centroid signifies [1
3
, 1

3
, 1

3
]. The distribution of the

points indicates that P (A) ≈ P (B), as we had hoped. Importantly, P (C) is still allowed to vary.

Figure 6.3b shows an attempt to recover this behavior with a standard Dirichlet with asymmet-

ric parameter vector [50, 50, 1]. While P (A) ≈ P (B), we can see that P (C) is unintentionally

constrained as well, resulting in the tight cluster of points at the bottom edge of the simplex.

More generally, notice that the semantics of our Must-Link definition are intrinsically transi-

tive. That is, if we want P (A) ≈ P (B) and P (B) ≈ P (C), this implies that we want P (A) ≈

P (C). Therefore, to construct a Dirichlet Tree encoding all Must-Link preferences, we consider

an undirected graph where words are nodes and pairwise Must-Link preferences are edges. We

then take the transitive closure of this graph and, for each connected component, place the words

under an internal node s with incoming edge weight |L(s)|β, where | · | represents the set size.

The outgoing edges from s to the word leaves then each have weight ηβ. This procedure yields

the Dirichlet Tree shown in Figure 6.1a. For η = 1, this preserves the standard Dirichlet since

∆(s) = 0 for all internal nodes s, since each internal node s will have |L(s)| outgoing edges with
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A B

C

(a) Samples from the Must-Link Dirichlet Tree

with parameters β = 1 and constraint strength

η = 50.

A B

C

(b) Samples from a standard Dirichlet Must-Link

attempt with parameters β = [50, 50, 1].

Figure 6.3: Simplex plots of multinomial distributions for Must-Link and standard Dirichlet.

weight β and 1 incoming edge with weight |L(s)|β. For η > 1, the re-distribution of probability

mass at an internal node s will have increasing concentration ηβ but the same all-1 base-measure.

This tends to redistribute the mass evenly in the transitive closure represented by s, as shown in

Figure 6.3a. Importantly, the mass reaching s is independent of η, and can still have a large vari-

ance. This properly encodes the fact that we want Must-Linked words to have similar, but not

always large, probabilities. Otherwise, Must-Linked words would be forced to appear with large

probability in all topics, which is the clearly undesirable scenario shown in our standard Dirichlet

simplex Figure 6.3b.

6.2 Encoding Cannot-Link

We now turn to the more difficult case of Cannot-Link preferences. Since we were able to

encode Must-Link by putting words under a low-variance internal node, can we simply put Cannot-

Linked words beneath a high-variance internal node? The answer is no, for two reasons. First,

Cannot-Link is not an inherently transitive preference. If we want P (A) and P (B) to never have

large probabilities in the same topic, and likewise for P (B) nad P (C), it clearly does not follow

that we want to prohibit P (A) and P (C) from having large probabilities in the same topic. Placing
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connected components of the Cannot-Link graph transitive closure under internal nodes would

therefore create unintended Cannot-Links between words. The second, and more subtle, issue

is that a high-variance Dirichlet distribution is achieved by using very small parameter values.

These small values can easily be overwhelmed by data, giving us a very weak prior. To illustrate

this second issue, we examine a Beta distribution with parameters a = b = 0.1 in Figure 6.4a.

This “spiky” distribution appears to fulfill our goal of putting high probability on outcomes where

P (A) 6≈ P (B). However, after observing a single A and a single B, our initial preference for

P (A) 6≈ P (B) has been overruled by the data, as the posterior shown in Figure 6.4b indicates.

(a) Beta distribution with a = b = 0.1 (b) Beta distribution with a = b = 1.1

Figure 6.4: Example Beta distributions with different hyperparameters.

To build up our solution to this problem, we again form an undirected graph with words as

nodes and Cannot-Link preferences as edges. If words are in the same connected component in

the transitive closure of the Must-Link graph, they are considered to “collapse” to a single node in

the Cannot-Link graph. This formalizes the notion that Must-Link (A,B) and Cannot-Link (B,C)

imply Cannot-Link (A,C). Note that individual connected components of this graph are effectively

independent of one another for the purposes of encoding our Cannot-Link preferences.

For example, Cannot-Link (A,B) and Cannot-Link (B,C) give us a Cannot-Link graph with

a single connected component as shown in Figure 6.5a. We now consider this single connected
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component r, and take the complement graph of this subgraph by removing all present edges and

adding edges where none were present (Figure 6.5b).

Let there be Q(r) maximal cliques Mr1 . . .MrQ(r) in this complement graph. Here Q(r) = 2

with Mr1 = {A,C} and Mr2 = {B}. In the following, we will simply call these “cliques”, but it

is important to remember that they are maximal cliques of the complement graph, not the original

Cannot-Link-graph. These cliques are the alternative form to Cannot-Links, with the following

semantics: Each clique (e.g., Mr1 = {A,C}) is the maximal subset of words in the connected

component that can “occur together”. That is, these words are allowed to simultaneously have

large probabilities (subject to normalization) in a given topic without violating any Cannot-Link

preferences. By the maximality of these cliques, allowing any word outside the clique (e.g., “B”)

to also have a large probability will violate at least one Cannot-Link (in this example 2).

A

C

B

(a) A connected component of the

Cannot-Link graph.

A

C

B

(b) The complement graph of this

connected component.

Figure 6.5: Identifying maximal compatible cliques in the complement of the Cannot-Link graph.

We now discuss the encoding of the Cannot-Link preferences for this connected component r

in isolation. Our approach is to create a mixture model of Q(r) Dirichlet subtrees, one for each

clique. For each topic, exactly one subtree is selected according to probability

P (r) ∝ |Mrq|, q = 1 . . . Q(r). (6.3)
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Conceptually, the selected subtree indexed by q tends to redistribute nearly all probability mass

to the words within Mrq. Since there is no mass left for other cliques, it is impossible for a word

outside clique Mrq to have a large probability. Therefore, no Cannot-Link will be violated. In

reality, the subtrees are soft rather than hard, because Cannot-Links are only preferences. The

Dirichlet subtree for Mrq is structured as follows. The subtree’s root connects to an internal node

s with weight η|Mrq|β. The node s connects to words in Mrq, with weight β. The subtree’s root

also directly connects to words not in Mrq (but in the connected component r) with weight β.

This will send most probability mass down to s, and then flexibly redistribute it among words in

Mrq. For example, Figure 6.6a and Figure 6.6b show the Dirichlet subtrees for Mr1 = {A,C} and

Mr2 = {B} respectively. Samples from this mixture model are shown in Figure 6.7, representing

multinomials in which no Cannot-Link is violated. Such behavior is not achievable by a Dirichlet

distribution, or a single Dirichlet tree.

CA B

β

β

2ηβ

β

(a) Dirichlet Tree choosing {A,C}.
B A C

β ββ

ηβ

(b) Dirichlet Tree choosing {B}.

Figure 6.6: Cannot-Link mixture components and samples.

Finally, although in the worst case the number of maximal cliques Q(r) in a connected compo-

nent of size |r| can grow exponentially as O(3|r|/3) [Griggs et al., 1988], in the subsequent experi-

mentsQ(r) is no larger than 3, due in part to Must-Linked words “collapsing” to a single node in the
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A B

C

Figure 6.7: Samples from the Cannot-Link mixture of Dirichlet Trees.

Cannot-Link graph. The maximal cliques are discovered via the Bron-Kerbosch branch-and-bound

algorithm [Bron and Kerbosch, 1973].

6.3 The Dirichlet Forest prior

We now bring these ideas together. First, we take the transitive closure of the Must-Link graph

in order to find our Must-Link connected components. Next, we build the Cannot-Link graph

where nodes represent either single words or Must-Link connected components. Note that the

domain knowledge must be “consistent” in that no pairs of words are simultaneously Cannot-

Linked and Must-Linked (either explicitly or implicitly through Must-Link transitive closure).

Let R be the number of connected components in the Cannot-Link-graph. Our Dirichlet Forest

consists of
∏R

r=1 Q
(r) Dirichlet trees, represented by the template in Figure 6.8. Each Dirichlet

tree has R branches beneath the root, one for each connected component. The trees differ in which

subtrees they include under these branches. For the r-th branch, there are Q(r) possible Dirich-

let subtrees, corresponding to cliques Mr1 . . .MrQ(r) . Therefore, a tree in the forest is uniquely

identified by an index vector q = (q(1) . . . q(R)), where q(r) ∈ {1 . . . Q(r)}.

To draw a Dirichlet tree q from the prior DirichletForest(β, η), we select the subtrees inde-

pendently because the R connected components are independent with respect to Cannot-Links:
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M1q

Q (1)

...
η∗ η∗

Must−Link

= or
word

...

MRq

Q (R)

...

η∗

other w

connected
...

... ...

η∗

other w

connected
component 1

(1)

component R

(R)

Figure 6.8: Template of Dirichlet trees in the Dirichlet Forest. For each connected component,

there is a “stack” of potential subtree structures. Sampling the vector q = q(1) . . . q(R) corresponds

to choosing a subtree from each stack.

P (q) =
∏R

r=1 P (q(r)). Each q(r) is sampled according to (6.3), and corresponds to choosing a

solid box for the r-th branch in Figure 6.8. The structure of the subtree within the solid box has

been defined in Section 6.2. The black nodes may be a single word, or a Must-Link transitive clo-

sure. In the latter case, the node has the subtree structure shown in the dotted box. The edge weight

leading to most nodes k is γ(k) = |L(k)|β, where L(k) is the set of leaves under k. However, for

edges coming out of a Must-Link internal node or going into a Cannot-Link internal node, their

weights are multiplied by the strength parameter η. These edges are marked by “η∗” in Figure 6.8.

The sampled Dirichlet tree q is then used to sample a multinomial φ ∼ Dirichlet(q). Note,

as before, when η = 1 the Dirichlet tree reduces to the Dirichlet distribution with symmetric

parameter β. Thus standard LDA is a special case of Dirichlet Forest LDA.

We now define the complete Dirichlet Forest model, integrating out (“collapsing”) θ and φ. Let

n
(d)
j be the number of word tokens in document d that are assigned to topic j. The z’s are generated

the same as in LDA:

p(z|α) =

(
Γ(Tα)

Γ(α)T

)D D∏
d=1

∏T
j=1 Γ(n

(d)
j + α)

Γ(n
(d)
· + Tα)

. (6.4)
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There is one Dirichlet tree qj per topic j = 1 . . . T , sampled from the Dirichlet Forest prior

P (qj) =
∏R

r=1 P (q
(r)
j ). Each Dirichlet tree qj implicitly defines its tree edge weights γ(·)

j us-

ing β, η, and its tree structure Lj, Ij, Cj(·). Let n(k)
j be the number of word tokens in the corpus

assigned to topic j that appear under the node k in the Dirichlet tree qj . The probability of gen-

erating the corpus w, given the trees q1:T ≡ q1 . . .qT and the topic assignment z, can be derived

using (6.2): P (w|q1:T , z, β, η) =

T∏
j=1

Ij∏
s

 Γ
(∑Cj(s)

k γ
(k)
j

)
Γ
(∑Cj(s)

k (γ
(k)
j + n

(k)
j )
) Cj(s)∏

k

Γ(γ
(k)
j + n

(k)
j )

Γ(γ
(k)
j )

 . (6.5)

Finally, the complete generative model is

p(w, z,q1:T |α, β, η) = p(w|q1:T , z, β, η)p(z|α)
T∏
j=1

p(qj).

6.4 Inference and estimation

Because a Dirichlet Forest is a mixture of Dirichlet trees, which are conjugate to multinomials,

we can efficiently perform inference by Markov Chain Monte Carlo (MCMC). Specifically, we

use collapsed Gibbs sampling similar to Griffiths and Steyvers [2004]. However, in our case the

MCMC state is defined by both the topic labels z and the tree indices q1:T . An MCMC iteration in

our case consists of a sweep through both z and q1:T . We present the conditional probabilities for

collapsed Gibbs sampling below, the derivation of these equations is provided in Appendix B.

6.4.1 Sampling z

Let n(d)
−i,j be the number of word tokens in document d assigned to topic j, excluding the word

at position i. Similarly, let n(k)
−i,j be the number of word tokens in the corpus that are under node k

in topic j’s Dirichlet tree, excluding the word at position i. For candidate topic labels v = 1 . . . T ,

we have
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P (zi = v|z−i,q1:T ,w) ∝ (n
(d)
−i,v + α)

Iv(↑i)∏
s

γ
(Cv(s↓i))
v + n

(Cv(s↓i))
−i,v∑Cv(s)

k

(
γ

(k)
v + n

(k)
−i,v

) (6.6)

where Iv(↑ i) denotes the subset of internal nodes in topic v’s Dirichlet tree that are ancestors of

leaf wi, and Cv(s↓i) is the unique node that is s’s immediate child and an ancestor of wi (including

wi itself).

6.4.2 Sampling q

Since the connected components are independent, sampling the tree qj factors into sampling

the cliques for each connected component q(r)
j . For candidate cliques q′ = 1 . . . Q(r), we have

p(q
(r)
j = q′|z,q−j,q(−r)

j ,w) ∝

Mrq′∑
k

βk

 Ij,r=q′∏
s

 Γ
(∑Cj(s)

k γ
(k)
j

)
Γ
(∑Cj(s)

k (γ
(k)
j + n

(k)
j )
) Cj(s)∏

k

Γ(γ
(k)
j + n

(k)
j )

Γ(γ
(k)
j )


(6.7)

where Ij,r=q′ denotes the internal nodes below the r-th branch of tree qj , when clique Mrq′ is

selected.

6.4.3 Estimating φ and θ

After running MCMC for sufficient iterations, we follow standard practice

(e.g. [Griffiths and Steyvers, 2004]) and use the last sample (z,q1:T ) to estimate φ and θ.

Because a Dirichlet tree is a conjugate distribution, its posterior is another Dirichlet tree with the

same structure, but with edge weights updated. The posterior for the Dirichlet tree of the j-th

topic is γpost(k)
j = γ

(k)
j + n

(k)
j , where the counts n(k)

j are collected from z,q1:T ,w. We estimate φj

by the first moment under this posterior [Minka, 1999]

φ̂j(w) =

Ij(↑w)∏
s

γpost
(Cj(s↓w))
j∑Cj(s)

s′ γpost
(s′)
j

. (6.8)

The parameter θ is estimated the same way as in standard LDA
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θ̂d(j) =
n

(d)
j + α

n
(d)
· + Tα

. (6.9)

6.5 Experiments

By using large values for the strength parameter η, we should be able to encourage learned

topics to conform to our preferences. More interestingly, the learned topics should change in other,

indirect ways as a result of the Dirichlet Forest Prior. For example, Cannot-Link (A,B) should

encourage A and B to appear with high probabilities in separate topics, but we might also expect to

see other statistically associated words be placed in topics differently as well. In Section 6.5.1 we

construct small, simple synthetic datasets and perform inference multiple times in order to clearly

observe the effects of the constraints. In Sections 6.5.2 and 6.5.3 we apply the Dirichlet Forest

prior to real text corpora in order to understand how it can be used to influence the learned topics.

6.5.1 Synthetic data

Here we study the effect of our Dirichlet Forest Prior on very simple datasets. We use varying

values of η in order to observe the progression from standard Dirichlet (η = 1) to “hard” con-

straints (large η). Previous studies often take the last MCMC sample (z and q1:T ), and discuss

the topics φ1:T derived from that sample. Because of the stochastic nature of MCMC, we argue

that more insight can be gained if multiple independent MCMC samples are considered. In prac-

tice, for each dataset, and each DF with a different η, we run a long MCMC chain with 200,000

iterations of burn-in, and take out a sample every 10,000 iterations afterward, for a total of 200

samples. We have some indication that our chain is well-mixed, as we observe that samples with

“label switching” (i.e., equivalent up to label permutation) occur with near equal frequency, and

all expected modes are observed. For each sample, we estimate its topics φ1:T with Equation (6.8).

We then greedily align the φ’s from different samples, i.e., permute the T topic labels to remove

the label switching effect. Within a dataset, we perform PCA on the baseline (η = 1) φ and project

all samples into the resulting space to obtain a common visualization, dithering points to show

overlap.
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SynData1: Must-Link (B,C)

This corpus consists of six documents containing a vocabulary of five words: A,B,C,D,E. The

documents themselves are shown in Figure 6.9a. We run standard LDA with T = 2, α = 0.5, β =

0.01 and examine the permutation-aligned φ samples as described above. Figure 6.9b shows the φ

values for idealized prototypes of the clusters shown in the PCA φ plots. Originally the MCMC

samples are roughly evenly split among these three different sets of topics, as can be seen in

Figure 6.9c. We then add the preference Must-Link (B,C) and repeat the experiment with η = 10

(Figure 6.9d) and η = 50 (Figure 6.9e). Examining the plots in Figure 6.9 as η increases, we can

see that cluster 3 becomes increasingly likely. Not only are B and C present in a topic together (as

the preference enforces), but A and D are “pulled” along as well by their statistical associations

with B and C, even though our supplied domain knowledge did not reference A or D.
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Documents

ABAB

CDCD

EEEE

ABAB

CDCD

EEEE

(a) Corpus

Cluster P (A|z) P (B|z) P (C|z) P (D|z) P (E|z)

1 φ1 0.5 0.5 0 0 0

φ2 0 0 0.25 0.25 0.5

2 φ1 0.25 0.25 0 0 0.5

φ2 0 0 0.5 0.5 0

3 φ1 0.25 0.25 0.25 0.25 0

φ2 0 0 0 0 1

(b) Topics

η=1

1 2

3

(c)

η=10

1 2

3

(d)

η=50

1 2

3

(e)

Figure 6.9: Corpus and topic clusters for SynData1. Panels 6.9c, 6.9d, and 6.9e show the results

of multiple inference runs as constraint strength η increases. For large η, the resulting topics φ

concentrate around cluster 3, which is in agreement with our domain knowledge.
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SynData2: Cannot-Link (A,B)

This corpus consists of six documents containing a vocabulary of four words, shown in Fig-

ure 6.10a. We run LDA with T = 3, α = 1, β = 0.01. Figure 6.10b shows the values for three

of the resulting six φ clusters shown Figure 6.10c. Adding Cannot-Link (A,B), we see cluster 2

disappear as η increases (Figure 6.10d and Figure 6.10e). This makes sense because A and B

co-occur in φ1 of cluster 2, violating the preference. Like cluster 1 and 6, the clusters not shown

in Figure 6.10b (clusters 3,4, and 5) also obey our Cannot-Link preference and are preserved as η

increases.
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Documents

ABCCABCC

ABDDABDD

ABCCABCC

ABDDABDD

(a) Corpus

Cluster P (A|z) P (B|z) P (C|z) P (D|z)

1 φ1 0 0.5 0 0.5

φ2 1 0 0 0

φ3 0 0 1 0

2 φ1 0.5 0.5 0 0

φ2 0 0 1 0

φ3 0 0 0 1

. . . . . . . . . . . . . . . . . .

6 φ1 0 0 0.5 0.5

φ2 1 0 0 0

φ3 0 1 0 0

(b) Topics

η=1

1

2
3

4 5

(c)

η=500

1

2
3

4 5

(d)

η=1500

1

2
3

4 5

(e)

Figure 6.10: Corpus and topic clusters for SynData2. Panels 6.10c, 6.10d, and 6.10e show the

results of multiple inference runs as constraint strength η increases. For large η, the resulting

topics φ avoid cluster 2, which conflicts with our domain knowledge.
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SynData3: Isolate (B)

This corpus consists of four documents containing a vocabulary of three words, shown in Fig-

ure 6.11a. We run LDA with T = 2, α = 1, β = 0.01. Figure 6.11b shows the values of the

resulting three φ clusters shown Figure 6.11c. We wish to Isolate B into its own topic, so we add

Cannot-Link (A,B) and Cannot-Link (B,C). As η increases, Figure 6.11d and Figure 6.11e show

that samples do concentrate in cluster 1, where B is isolated in its own topic.

Documents

ABC

ABC

ABC

(a) Corpus

Cluster P (A|z) P (B|z) P (C|z)

1 φ1 0.5 0 0.5

φ2 0 1 0

2 φ1 0.5 0.5 0

φ2 0 0 1

3 φ1 0 0.5 0.5

φ2 1 0 0

(b) Topics

η=1

1

2

3

(c)

η=500

1

2

3

(d)

η=1000

1

2

3

(e)

Figure 6.11: Corpus and topic clusters for SynData3. Panels 6.11c, 6.11d, and 6.11e show the

results of multiple inference runs as constraint strength η increases. For large η, the resulting

topics φ concentrate around cluster 1, which is in agreement with our domain knowledge.
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SynData4: Split (AB,CD)

This corpus consists of six documents containing a vocabulary of six words, shown in Fig-

ure 6.12a. We first run LDA with T = 3, α = 0.5, β = 0.01. The plot is not shown, but nearly all

samples result in the three topics shown in Figure 6.12b. Now say we wish to break out (A,B) into

one topic, and (B,C) into another. First, we increase T to four topics, yielding the clusters shown

in Figure 6.12c. In order to Split AB from CD, we apply Must-Link (A,B), Must-Link (C,D), and

finally Cannot-Link (B,C). For simplicity, Figure 6.12b shows only cluster 7 from Figure 6.12c.

We note that the other various topic combination clusters violate our Split preferences. As η in-

creases in Figure 6.12d and Figure 6.12e, we can see the samples gravitate towards cluster 7, the

only cluster satisfying the constraints.
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Documents

ABCDEEEE

ABCDFFFF

ABCDEEEE

ABCDFFFF

ABCDEEEE

ABCDFFFF

(a) Corpus

Cluster P (A|z) P (B|z) P (C|z) P (D|z) P (E|z) P (F |z)

T = 3 φ1 0.25 0.25 0.25 0.25 0 0

(not φ2 0 0 0 0 1 0

shown) φ3 0 0 0 0 0 1

7 φ1 0.5 0.5 0 0 0 0

φ2 0 0 0.5 0.5 0 0

φ3 0 0 0 0 1 0

φ4 0 0 0 0 0 1

(b) Topics

η=1

1
2 3

4 5

6
7

(c)

η=100

1
2 3

4 5

6
7

(d)

η=500

1
2 3

4 5

6
7

(e)

Figure 6.12: Corpus and topic clusters for SynData4. Panels 6.12c, 6.12d, and 6.12e show the

results of multiple inference runs as constraint strength η increases. For large η, the resulting

topics φ concentrate around cluster 7, which is in agreement with our domain knowledge.
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6.5.2 Wish corpus

We now consider interactive topic modeling with the Dirichlet Forest Prior. The corpus

consists of a collection of 89,574 New Year’s wishes submitted to The Times Square Al-

liance [Goldberg et al., 2009]. Each wish is treated as a document, downcased but without stop-

word removal. For each step in this interactive example, we set α = 0.5, β = 0.1, η = 1000, and

run MCMC for 2000 iterations before estimating the topics from the final sample. The domain

knowledge encoded into the Dirichlet Forest prior accumulates along the steps (i.e., a Cannot-Link

applied in Step 2 remains in effect for Steps 3 and 4).

Step 1: We begin by running standard LDA with T = 15. In the learned topics (Table 6.1)

we can see that many of the most probable words in the topics are conventional (“to”, “and”)

or corpus-specific (“wish”, “2008”) stopwords (i.e., commonly occurring and/or uninformative

terms), which obscure the meanings of the topics.

Step 2: We then manually create a 50-word stopword list, and issue an Isolate preference. This

is compiled into Must-Links among this set and Cannot-Links between this set and all other words

in the top 50 for all topics. To absorb the newly Isolated terms, T is also increased from 15 to 16.

We then run inference for LDA with a Dirichlet Forest prior encoding these preferences. Table 6.2

shows the set of learned topics, which now contains two distinct stopword topics. Importantly,

with the stopwords explained by these two topics, the top words for the other topics become much

more meaningful.

Step 3: One topic (marked as MIXED in Table 6.2) conflates two distinct concepts: enter

college and cure disease (see the top eight words: {go, school, cancer, into, well, free, cure,

college}). To correct this mixed topic, we issue a Split ({go, school, into, college}, {cancer,

free, cure, well}) operation in order to separate the concepts. This is compiled into Must-Links

within each quadruple, and a Cannot-Link between them. T is then further increased from 16 to

18 in order to accommodate the two concepts. After running DF-LDA and examining the topics

(Table 6.3), we can see one of the topics clearly takes on the college concept. Significantly, this

new topic also picks up related words which we did not explicitly encode into our prior {job, good,

graduate, accepted, . . .}. Another topic does likewise for the cure concept (many wishes are like
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Table 6.1: High-probability words for standard LDA topics, with uninformative terms highlighted

in red.

Topic Top words sorted by φ = p(word|topic)

0 love i you me and will forever that with hope

1 and health for happiness family good my friends

2 year new happy a this have and everyone years

3 that is it you we be t are as not s will can

4 my to get job a for school husband s that into

5 to more of be and no money stop live people

6 to our the home for of from end safe all come

7 to my be i find want with love life meet man

8 a and healthy my for happy to be have baby

9 a 2008 in for better be to great job president

10 i wish that would for could will my lose can

11 peace and for love all on world earth happiness

12 may god in all your the you s of bless 2008

13 the in to of world best win 2008 go lottery

14 me a com this please at you call 4 if 2 www
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Table 6.2: High-probability words for each topic after applying Isolate to stopwords. The topics

marked Isolate have absorbed most of the stopwords, while the topic marked MIXED seems to

contain words from two distinct concepts.

Topic Top words sorted by φ = p(word|topic)

0 love forever marry happy together mom back

1 health happiness good family friends prosperity

2 life best live happy long great time ever wonderful

3 out not up do as so what work don was like

MIXED go school cancer into well free cure college

5 no people stop less day every each take children

6 home safe end troops iraq bring war husband house

7 love peace true happiness hope joy everyone dreams

8 happy healthy family baby safe prosperous everyone

9 better job hope president paul great ron than person

10 make money lose weight meet finally by lots hope

Isolate and to for a the year in new all my 2008

12 god bless jesus loved know everyone love who loves

13 peace world earth win lottery around save

14 com call if 4 2 www u visit 1 3 email yahoo

Isolate i to wish my for and a be that the in
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Table 6.3: High-probability words for each topic after applying Split to school/cancer topic. The

topics marked Split contain the concepts which were previously mixed. The two topics marked

LOVE both seem to cover the same concept.

Topic Top words sorted by φ = p(word|topic)

LOVE love forever happy together marry fall

1 health happiness family good friends

2 life happy best live love long time

3 as not do so what like much don was

4 out make money house up work grow able

5 people no stop less day every each take

6 home safe end troops iraq bring war husband

7 love peace happiness true everyone joy

8 happy healthy family baby safe prosperous

9 better president hope paul ron than person

LOVE lose meet man hope boyfriend weight finally

Isolate and to for a the year in new all my 2008

12 god bless jesus loved everyone know loves

13 peace world earth win lottery around save

14 com call if 4 www 2 u visit 1 email yahoo 3

Isolate i to wish my for and a be that the in me get

Split job go school great into good college

Split mom husband cancer hope free son well
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Table 6.4: High-probability words for final topics after applying Merge to love topics. The two

previously separate topics have been combined into the topic marked Merge

Topic Top words sorted by φ = p(word|topic)

Merge love lose weight together forever marry meet

success health happiness family good friends prosperity

life life happy best live time long wishes ever years

- as do not what someone so like don much he

money out make money up house work able pay own lots

people no people stop less day every each other another

iraq home safe end troops iraq bring war return

joy love true peace happiness dreams joy everyone

family happy healthy family baby safe prosperous

vote better hope president paul ron than person bush

Isolate and to for a the year in new all my

god god bless jesus everyone loved know heart christ

peace peace world earth win lottery around save

spam com call if u 4 www 2 3 visit 1

Isolate i to wish my for and a be that the

Split job go great school into good college hope move

Split mom hope cancer free husband son well dad cure
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{mom, stays, cancer, free}), again picking up related, but un-encoded, terms ({hope, surgery, cure,

pain. . .}). Other topics have only minor changes.

Step 4: Two topics seem to both correspond to romance concepts (marked as LOVE in Ta-

ble 6.3). We apply Merge ({love, forever, marry, together, loves}, {meet, boyfriend, married,

girlfriend, wedding}), which is compiled into Must-Links between these words. We decrease T

from 18 to 17 in order to accommodate the merging of two topics into one. After running DF-LDA

and examining the topics (Table 6.4), we can see that one of the romance topics disappears, and

the remaining one corresponds to the merged romance topic. An interesting artifact of this merged

topic is the continued presence of the terms “lose” and “weight”, which were not part of our Merge

preference but which have strong statistical associations with our Merge terms in the corpus. This

is due to the prevalent wishes of the form “lose weight and meet a boyfriend”, etc. Again, other

previous topics survive with only minor changes.

The results of this interactive topic modeling process show how a user can examine the topics,

and iteratively use the Dirichlet Forest prior to refine the topics such that they align well with

user-interpretable concepts. Examining the final learned topics (Table 6.4) and the original ones

(Table 6.1), we can see that the final ones give us better insights into the common themes of

people’s New Year’s wishes.

6.5.3 Yeast corpus

Whereas the previous experiment illustrates the utility of our approach in an interactive setting,

we now consider a case in which we use background knowledge from an ontology to guide topic

modeling. Here our prior knowledge is based on six concepts. The concepts transcription, trans-

lation and replication characterize three important processes that are carried out at the molecular

level. The concepts initiation, elongation and termination describe phases of the three aforemen-

tioned processes. Combinations of concepts from these two sets correspond to concepts in the

Gene Ontology (e.g., GO:0006414 is translational elongation, and GO:0006352 is transcription

initiation).
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We guide our topic modeling using Must-Links among a small set of words for each con-

cept. Moreover, we use Cannot-Links among words to specify that we prefer (i) transcription,

translation and replication to be represented in separate topics, and (ii) initiation, elongation and

termination to be represented in separate topics. In higher-level terms, these preferences can be

thought of as two three-way Split operations: Split (transcription, translation, replication) and

Split (initiation, elongation, termination). Note that we do not set any preferences between the

process topics and the phase topics, however.

The corpus that we use for our experiments consists of 18,193 abstracts selected from the

MEDLINE database for their relevance to yeast genes. We induce topic models using DF-LDA

to encode the Must-Links and Cannot-Links described above, and use standard LDA as a control.

We set T = 100, α = 0.5, β = 0.1, η = 5000. For each word that we use to seed a concept,

Table 6.5 shows the topics that include it among their 50 most probable words. The middle part of

the table shows the topic-word relationships for ordinary LDA and the right part of the table shows

the relationships for DF-LDA.

We make several observations about the DF-LDA topics versus the standard LDA topics. First,

each concept is represented by a small number of topics and the Must-Link words for each topic all

occur as highly probable words in these topics. Second, the Cannot-Link preferences are obeyed in

the final topics. Third, the topics use the process and phase topics compositionally. For example,

DF-LDA Topic 4 represents transcription initiation and DF Topic 8 represents replication initia-

tion. Moreover, the topics that are significantly influenced by the prior typically include highly

relevant terms among their most probable words. For example, the top words in DF Topic 4 in-

clude “TATA”, “TFIID”, “promoter”, and “recruitment” which are all specifically germane to the

composite concept of transcription initiation. In the case of standard LDA, the seed concept words

are dispersed across a greater number of topics, and highly related words, such as “cycle” and

“division” often do not fall into the same topic. Many of the topics induced by ordinary LDA are

semantically coherent, but the specific concepts suggested by our prior do not naturally emerge

without using DF-LDA.
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Table 6.5: Yeast corpus topics. The left column shows the seed words in the DF-LDA model.

The middle columns indicate the topics in which at least two seed words are among the 50 highest

probability words for LDA, the “o” column gives the number of other topics (not shared by another

word). Finally, the right columns show the same topic-word relationships for the DF model.

LDA DF

1 2 3 4 5 6 7 8 o 1 2 3 4 5 6 7 8 9 10

transcription • • • 1 • • •

transcriptional • • • 2 • • •

template • 1 • • •

translation • • • •

translational • • •

tRNA 1 • •

replication • 2 • • •

cycle • • • • •

division • 3 • • •

initiation • • • • • • • • •

start • • • • • • •

assembly • • 7 • • • •

elongation • • 1 •

termination • • •

disassembly •

release 2 •

stop • •
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This experiment shows how using a controlled knowledge base (like the Gene Ontology) to

encode concepts into a Dirichlet Forest prior can result in interesting topics which are well-aligned

with the knowledge base concepts. Importantly, the learned topics both obey the encoded pref-

erences and extend these concepts to other related terms by exploiting statistical patterns in the

text.

6.6 Summary

This chapter has demonstrated a novel mechanism for encoding domain knowledge and prior

beliefs into topic modeling. Unlike any existing approaches, the Dirichlet Forest prior allows

the expression of constraints among sets of words. Our experiments show the usefulness of this

approach in settings where the domain knowledge comes from both user interaction as well as

pre-existing knowledge base. The Dirichlet Forest also retains beneficial conjugacy properties

with respect to the multinomial distribution, enabling the use of Collapsed Gibbs sampling for

inference.

KEY IDEAS

� The Dirichlet Forest prior on φ allows pairwise constraints on words.

. Must-Link (A,B)→ A and B should have similar probability in each topic.

. Cannot-Link (A,B)→ A and B should not both have high probability in the same topic.

� Specific pairwise constraints can come from a variety of sources:

. user feedback,

. existing knowledge bases.

� The Dirichlet Forest prior allows inference via Collapsed Gibbs sampling.
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Chapter 7

LogicLDA

This chapter presents LogicLDA, a model which allows the user to express domain knowledge

in First-Order Logic (FOL). This formulation generalizes many existing LDA variants, and enables

the inclusion of novel forms of domain knowledge. The generality of FOL allows the extension of

LDA along all three dimensions discussed in Chapter 3: LDA+X, φ-side, and θ-side.

This extension builds on recent research in probabilistic logic modeling such as Markov Logic

Networks (MLN) [Richardson and Domingos, 2006]. LogicLDA can be viewed as an instance of

a Hybrid Markov Logic Network (HMLN) [Wang and Domingos, 2008], which is a generalization

of a MLN. However, existing work in this direction has not integrated topic modeling with FOL.

Furthermore, the topic modeling aspects of LogicLDA preclude the use of specialized inference

techniques developed for MLNs. This is a significant problem because inference can become in-

tractable for certain types of domain knowledge. In order to make LogicLDA practical, we present

a scalable stochastic inference scheme based on mirror descent [Beck and Teboulle, 2003]. This

approach may also be useful for MAP inference in MLNs, providing a more scalable alternative

to existing techniques such as MaxWalkSAT (MWS) [Selman et al., 1995] and Integer Linear Pro-

gramming (ILP) [Riedel, 2008].

7.1 The LogicLDA model

We now describe the LogicLDA model. As mentioned earlier in Chapter 5, we begin by repre-

senting the standard LDA model in terms of an undirected factor graph which is more natural for
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LogicLDA. We then briefly review some important logic terms and concepts. Finally, we present

the full LogicLDA model, unifying topic modeling and logical modeling.

7.1.1 Undirected LDA

Consider the Latent Dirichlet Allocation (LDA) directed graphical model in Figure 7.1a. Note

that the presentation is slightly different than the model shown in Chapter 2 in that the document d

is represented explicitly, instead of via a document “plate”. We can mechanically convert this to an

undirected graphical model or Markov Random Field (MRF) by adding edges between co-parents

[Koller and Friedman, 2009], resulting in the model shown in Figure 7.1b. In this representation,

the conditional probability tables and distributions previously defined for each node and its par-

ents are replaced with potential functions for each clique of nodes. This can be represented more

explicitly by converting the undirected model to the factor graph shown in Figure 7.1c. In this rep-

resentation, each maximal clique is now associated with a special factor node (the black squares),

and the former clique members are now connected to that factor. Each factor is then associated

with a potential function of its neighboring variable nodes. The probability of a specific configura-

tion of all variables (θ, φ,d, z,w) is now given by multiplying the values of the potential functions

and normalizing. We simply take each potential function to be equal to the original conditional

probability it is replacing. The Dirichlet priors on θ and φ are represented by fα(α, θ(d)) and

fβ(β, φz), respectively. The document-topic multinomial terms are expressed by fθ(θ(d), zi), while

the topic-word multinomial contribution is represented by fφ(φ, zi, wi).

fα(α, θ(d)) =
T∏
z

(θ(d)
z )(αz−1) (7.1)

fβ(β, φz) =
V∏
w

(φ(w)
z )(βw−1) (7.2)

fθ(θ
(d), zi) =θ(d)

zi
(7.3)

fφ(φ, zi, wi) =φ(wi)
zi

(7.4)
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(a) Standard LDA graphical model. (b) Undirected LDA graphical model.

(c) LDA factor graph.

Figure 7.1: Conversion of LDA to a factor graph representation. In each diagram, filled circles

represent observed variables, empty circles are associated with latent variables or model hyperpa-

rameters, and plates indicate repeating structure. The black squares in Figure 7.1c are the factor

nodes, and are associated with the potential functions given in Equations 7.1, 7.2, 7.3, and 7.4.
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Taking the products of all potential functions, it is straightforward to see that the distribution

encoded by this factor graph is exactly equal to the distribution encoded by the original LDA

directed graphical model. This point should be emphasized: the model itself is exactly the same,

we simply have a new representation with which to work. This new representation will prove

convenient for development of LogicLDA.

7.1.2 Logic background

LogicLDA allows the user to express domain knowledge in the language of First-Order Logic

(FOL). We begin by briefly defining some basic logic terms and concepts [Russell and Norvig, 2003,

Richardson and Domingos, 2006].

• Constants are symbols that represent an actual object in the problem domain, such as the

word “saxophone” or the value 3.

• Variables are symbols (such as x) that can take on values from the set of constants.

• Predicates are symbols that express relations, and evaluate to true or false for different ar-

guments. For example, isNoun(saxophone) would be true, while greaterThan(3, 5) would

be false.

• Functions are symbols that express mappings. For example, the function wordAt(i) could

return the word present at position i in our corpus. Functions can be composed with predi-

cates in useful ways. Ifw3 = “saxophone”, then isNoun(wordAt(3)) becomes isNoun(saxophone)),

which evaluates to true.

• Terms are any expressions that refer to objects in our domain. This includes constants,

variables, or functions applied to sets of terms. For example, wordAt(3) or x or “saxophone”.

• Atoms are predicates applied to terms, such as isNoun(wordAt(3)). Atoms are also known

as Literals. They can also be referred to as negative or positive literals if they are negated or

not, respectively.
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• Formulas are constructed from atoms using logical connectives (∧,∨,¬,⇒). Variables

appearing in a formula must be quantified, either universally (∀) or existentially (∃). For

example, the formula ∀x greaterThan(x, 5) ⇒ isNoun(wordAt(x)) asserts that all words

after the fifth word in our corpus are nouns.

• Clauses are formulas consisting of a disjunction of literals. A conjunction of clauses is said

to be in Conjunctive Normal Form or CNF.

• Ground terms, atoms, or formulas contain no variables. For example, isNoun(x) is not

grounded, but isNoun(saxophone) is.

Markov Logic Networks (MLNs) [Richardson and Domingos, 2006] are a class of graphical

models which operate over this type of logical domain. A “possible world” consists of a set of bi-

nary truth assignments for all possible ground predicates. A particular MLN instance then assigns

probabilities to all possible worlds.

In order to incorporate logic into LDA, we must represent key LDA variables within this frame-

work. We define the following logical variables and predicates:

• Z(i, t) is true if the hidden topic zi = t, and false otherwise.

• W(i, v) is true if word wi = v, and false otherwise.

• D(i, j) is true if di = j, and false otherwise.

For the predicates defined above, each of the variables (i, t, v, and j) ranges over a set of

integers. For example, the corpus index i takes on values in [1, . . . , N ]. Similarly, the latent topic

variable t ∈ [1, . . . , T ], the vocabulary word variable v ∈ [1, . . . ,W ], and the document index

j ∈ [1, . . . , D].

Importantly, note that for a given index i, the predicate W(i, v) must be true for exactly one

value of v and false for all others. Likewise, for an index i, Z(i, t) and D(i, j) are each true for

exactly one topic t and document j, respectively. These types of special predicate arguments are

called “mutually exclusive and exhaustive” [Kok et al., 2009].
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Crucially, LogicLDA can incorporate other observed variables. For example, we may wish

to analyze a Congressional debate corpus where each speech is a document. In this case we can

define a predicate Speaker(di,Rep), which is true if the speaker for document di is a member of

the Republican political party. We will use o to collectively denote these other observed variables.

7.1.3 LogicLDA model

The key to LogicLDA is to allow domain knowledge specified in FOL to influence the values

of the hidden topics z, which, in turn, influence the recovered topic-word multinomials φ and

document-topic multinomials θ. Returning to our Congressional debate corpus, we may specify

the rule

∀i : W(i, taxes) ∧ Speaker(di,Rep)⇒ Z(i, 77), (7.5)

which states that for any word wi =“taxes” that appears in a speech by a Republican, it should

be in topic zi = 77 (note that this need not be a hard constraint). This rule will have the effect

of encouraging the directly affected words to be assigned to Topic 77, but this change may also

influence the topic recovery in other indirect ways. For example, words statistically associated with

“taxes” in Republican speeches (e.g., {cuts, growth, stimulate}) may also come to be associated

with Topic 77

We now describe the LogicLDA modeling process. First, the domain expert specifies the back-

ground knowledge by defining a weighted FOL knowledge base KB, which is then converted into

Conjunctive Normal Form: KB = {(λ1, ψ1), . . . , (λL, ψL)}. The KB consists of L pairs, where

each ψl represents a FOL rule, and λl ≥ 0 is its weight which the domain expert can set to adjust

the importance of individual rules.

The knowledge base KB is tied to our probabilistic model via its groundings. For each FOL

rule ψl, letG(ψl) be the set of groundings, each mapping the free variables in ψl to a specific value.

For the “taxes” example above, G consists of all N propositional rules where i ∈ [1, . . . , N ]. For

each grounding g ∈ G(ψl), we define an indicator function
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Figure 7.2: LogicLDA factor graph with “mega” logic factor (indicated by arrow) connected to d,

z, w, o.

1g(z,w,d,o) =

 1, if g is true under z and observed w,d,o

0, otherwise
(7.6)

For example, if w100=“taxes”, Speaker(d100,Rep) = true, and z100 = 88, then the grounding

g = (W(100, taxes) ∧ Speaker(d100,Rep)⇒ Z(100, 77)) will have 1g(z,w,d,o) = 0 because of

the mismatch in z100.

To combine logic and LDA, we define a Markov Random Field over latent topic assignments

z, topic-word multinomials φ, and document-topic multinomials θ, treating words w, documents

d, and side information o as observed. Specifically, in this Markov Random Field the conditional

probability P (z, φ, θ | α, β,w,d,o, KB) is proportional to

exp

 L∑
l

∑
g∈G(ψl)

λl1g(z,w,d,o)

( T∏
t

p(φt|β)

)(
D∏
j

p(θj|α)

)(
N∏
i

φzi(wi)θdi(zi)

)
. (7.7)

This Markov Random Field has two parts, one from logic (the first term in (7.7)), and one from

LDA (the other terms in (7.7) which are identical to (2.1)). Every satisfied grounding of FOL rule

ψl contributes exp(λl) to the potential function. Note that in general, the FOL rules couple all the

components of z, although the actual dependencies will be determined by the particular forms of

the FOL rules. We can represent the Markov Random Field for LogicLDA as a factor graph with
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an additional “mega factor node” added to the factor graph representation of standard LDA. This

new factor graph is shown in Figure 7.2.

The first term in (7.7) is equivalent to a Markov Logic Net-

work [Richardson and Domingos, 2006], while the remaining terms in (7.7) come from the

LDA model. Similar to Syntactic Topic Models [Boyd-Graber and Blei, 2008], LogicLDA can

therefore be interpreted as a Product of Experts model [Hinton, 2002] where the model probability

is the product of the individual MLN and LDA contributions.

Another perspective is that LogicLDA consists of an MLN augmented with continuous vari-

ables (θ, φ) and associated potential functions. This combination has been proposed in the MLN

community under the name of Hybrid Markov Logic Networks [Wang and Domingos, 2008]. How-

ever, to our knowledge previous HMLN research has not combined logic with LDA. Furthermore,

the general inference technique proposed for HMLNs would be impractically inefficient for Logi-

cLDA.

7.2 Inference

We now turn to the question of inference in LogicLDA. Ultimately, we are interested in learn-

ing the most likely φ and θ in a LogicLDA model. However, as in standard LDA, the latent topic

assignments z cannot be marginalized out in practice due to their combinatorial nature. We in-

stead aim to find the maximum a posteriori estimate of z, φ, θ jointly. This can be formulated as

maximizing the logarithm of the unnormalized probability (7.7):

argmax
z,φ,θ

L∑
l

∑
g∈G(ψl)

λl1g(z,w,d,o) +
T∑
t

log p(φt|β) +
D∑
j

log p(θj|α) +
N∑
i

log φzi(wi)θdi(zi)

(7.8)

We will see that the inclusion of logic will present unique challenges due to the addition of the

ground formula potential functions. These challenges motivate the development of our scalable

inference procedure, called Alternating Optimization with Mirror Descent (Mir). However we
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begin by presenting several baseline approaches which arise as natural extensions of existing LDA

and MLN inference techniques.

7.2.1 Collapsed Gibbs Sampling (CGS)

Earlier in this thesis we have relied on Collapsed Gibbs Sampling to do inference in our topic

models. Given the discrete nature of MLNs, Gibbs sampling is an established inference approach

for these models as well. Therefore it is quite natural to consider the possibility of doing Gibbs

sampling for the joint LogicLDA model.

Let n(−i)
jt be the number of word tokens in document j assigned to topic t omitting the word

token at position i. Likewise let n(−i)
tw be the number of occurrences of word w assigned to topic

t throughout the entire corpus, again omitting the word token at position i. The collapsed Gibbs

sampler then iteratively re-samples zi at each corpus position i, with the probability of candidate

topic assignment zi = t given by P (zi = t|z−i,w,d,o, KB, α, β) ∝

(
n

(−i)
dit

+ αt∑T
t′(n

(−i)
dit′

+ αt′)

)(
n

(−i)
twi

+ βwi∑W
w′(n

(−i)
tw′ + βw′)

)
exp

∑
l

∑
g∈G(ψl)
gi 6=∅

λl1g(z−i ∪ {zi = t})

, (7.9)

where the first two terms are the simple count ratios from LDA collapsed Gibbs sam-

pling [Griffiths and Steyvers, 2004], and the the final term is the MLN Gibbs sampling equa-

tion [Richardson and Domingos, 2006]. For a derivation of this equation see Appendix C.

While Gibbs sampling is not aimed at maximizing the objective (7.8), the hope is that the

Markov chain will explore some high probability regions of the z space. We initialize this sam-

pler using the final sample from standard LDA, and keep the sample which maximizes (7.8). A

drawback of this approach is the potential for poor mixing in the presence of highly weighted logic

rules [Poon and Domingos, 2006].
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7.2.2 MaxWalkSAT (MWS)

A naı̈ve way to introduce logic into LDA is the following: perform standard LDA inference

(e.g., with collapsed Gibbs sampling), and then post-process the latent topic vector z in order

to maximize the weight of satisfied ground logic clauses. This post-processing corresponds to

optimizing the MLN objective only (the first term in (7.8)). This can be done using a weighted

satisfiability solver such as MaxWalkSAT (MWS) [Selman et al., 1995], which has previously been

used to do MAP inference in MLNs [Domingos and Lowd, 2009].

MWS is a simple but effective stochastic local search algorithm sketched in Algorithm 1. It first

selects a currently unsatisfied ground rule, and then attempts to satisfy it by flipping the truth state

of a single atom in the clause1. With probability p, the atom to flip within the grounding is chosen

randomly, otherwise the atom is chosen greedily to maximize the global impact ∆KB on the overall

logic objective. In our case, a local step involves flipping a single Z(i, t), which is equivalent to

changing the value of a single zi. The impact of a local move setting zi = t can be calculated

as ∆KB(i, t) =
∑

l

∑
g∈G(ψl)

λl1g(z−i ∪ {zi = t}), where z−i is z excluding position i. The

process is repeated for a prescribed number of iterations, and we keep the best (highest satisfied

weight) assignment z found by MWS. While the simplicity of this method is appealing, it does

not allow for any interaction between the logical rules and the learned topics. Consequently, the

logic post-processing step may actually decrease the joint LogicLDA objective (7.8) by selecting

a z configuration deemed unlikely by the LDA parameters (φ, θ).

7.2.3 Alternating Optimization with MWS+LDA (M+L)

We can take a more principled approach to integrating the logic and LDA objective by alter-

nating between optimizing (7.8) with respect to the multinomial parameters φ, θ while holding z

fixed, and vice versa. The outline of this approach is shown in Algorithm 2.

The optimal φ, θ for fixed z can be easily found in closed-form as the MAP estimate of the

Dirichlet posterior

1Since our KB is in CNF, each ground formula must be a disjunction, therefore flipping a single atom is guaranteed
to satisfy a previously unsatisfied formula.



96

Algorithm 1: MaxWalkSAT weighted satisfiability solver.
Input: Weighted ground formulas G, random step probability p

Output: Best assignment z∗

(z, z∗) = Initialize assignment

foreach i = 1, . . . ,maxiter do
sample unsatisfied g ∈ G

sample u ∼ [0, 1]

if u < p then
z← randomly flip atom in g

else
z← greedily flip atom in g according to global objective function change ∆

end

if G(z) > G(z∗) then
z∗ ← z

end

end

return z∗
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φt(w) ∝ max (ntw + β − 1, ε) (7.10)

θj(t) ∝ max (njt + α− 1, ε) (7.11)

where ntw is the number of times word w is assigned to topic t in hidden topic assignments z.

Similarly, njt is the number of times topic t is assigned to a word in document j. The lower

bound ε > 0 is a small constant to ensure positivity of multinomial elements, a technical condition

required by Dirichlet distributions.

Optimizing z while holding φ, θ fixed is more difficult. One can divide z into an “easy part”

and a “difficult part.” The easy part consists of all zi which only appear in trivial groundings. For

example, if the knowledge base consists of only one rule ψ1 = (∀i : W(i, apple)⇒ Z(i, 1)), then

the majority of the zi’s (those with wi 6= apple) appear in groundings which are trivially true.

These zi’s only appear in the last term in (7.8). Consequently, the optimizer is simply

zi = argmax
t=1...T

log(φt(wi)θdi(t)). (7.12)

The difficult part of z consists of those zi appearing in non-trivial groundings, subsequently in

the first term of (7.8). For our simple rule (assign occurrences of “apple” to Topic 1), this division

is shown in Figure 7.3. We denote the “hard” part zKB, and its optimization is performed in

the inner loop of Algorithm 2. We can optimize it with MWS+LDA, a form of MWS modified

to incorporate the LDA objective in the greedy selection criterion. The algorithm proceeds as

in MaxWalkSAT, randomly sampling an unsatisfied clause and satisfying it via either a greedy

or a random step. However, greedy steps are now evaluated using ∆ = ∆KB + ∆LDA, where

∆LDA(i, t) = log (φt(wi)θdi(zi)), which balances the gain from satisfying a logic clause and the

gain of a topic assignment given the current φ and θ parameters, explicitly aiming to maximize the

objective (7.8).
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Figure 7.3: Separating out the “hard” cases (zKB = {. . . , 17, 20, 21, . . .}) for the simple rule

W(i, apple)⇒ Z(i, 1).

Algorithm 2: Alternating optimization for LogicLDA.
Input: w,d,o, α, β,KB

Output: (z∗, φ∗, θ∗)

(z, φ, θ) = Initialize from standard LDA

foreach n = 1, 2, . . . , Nouter do
φ, θ ←MAP estimates via (7.10) and (7.11)

set z \ zKB ← argmax assignment via (7.12)

foreach m = 1, . . . , Ninner do
zKB ← with M+L or Mir

end

end

return (z, φ, θ)
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7.2.4 Alternating Optimization with Mirror Descent (Mir)

Optimizing the zKB component of the original optimization problem (7.8) is challenging due

to the fact that the summations over groundings G(ψl) are potentially combinatorial. For exam-

ple, on a corpus with length N , an FOL rule with k universally quantified variables will produce

Nk groundings. The previously discussed approach for optimizing zKB, Alternating Optimiza-

tion with MWS+LDA, requires enumerating these groundings, and may therefore run into scal-

ability problems for certain knowledge bases. This explosion resulting from propositionalization

is a well-known problem in the MLN community, and has been the subject of considerable re-

search [Poon et al., 2008, Riedel, 2008, Singla and Domingos, 2008, Kersting et al., 2009].

For instance, one can usually greatly reduce the problem size by considering only non-trivial

rule groundings [Shavlik and Natarajan, 2009]. As an example, the rule in Equation 7.5 is trivially

true for all indices i such that wi 6= taxes, and these indices can be excluded from logic-related

computation. Unfortunately, even after this pre-processing, we may still have an unacceptably

large number of groundings.

Furthermore, the inclusion of the LDA terms and the scale of our domain prevent us from

directly taking advantage of many techniques developed for MLNs. For example, lifted infer-

ence [Singla and Domingos, 2008, Kersting et al., 2009] approaches perform message-passing ef-

ficiently by aggregating nodes which are known to send and receive identical messages due to the

special graph structure induced by propositionalization. However, the symmetries exploited by

these approaches are broken in LogicLDA by the LDA terms, and the discovery of these sym-

metries requires initial computation over the full groundings, which may be infeasible. Lazy in-

ference [Poon et al., 2008] is a clever caching strategy that takes advantage of the fact that, for

many statistical relational learning (SRL) problems, the ground predicates are “sparse” (e.g., the

academic advisor-advisee Advises(x, y) predicate is false for most (x, y)). Unfortunately this in-

sight does not apply to the query predicate Z(i, t), which must be true for exactly one t for each i,

lessening the usefulness this technique for LogicLDA inference.

Instead, we use stochastic gradient descent to optimize zKB, dropping a new and more scalable

approach into the inner loop of Algorithm 2. The key idea is to first relax (7.8) into a continuous
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optimization problem, and then randomly sample groundings from the knowledge base, such that

each sampled grounding provides a stochastic gradient to the relaxed problem. Thus, we are no

longer limited by the (potentially overwhelming) size of the groundings. We now describe this

approach in terms of three steps.

7.2.4.1 Step 1: represent 1g as a polynomial

The first step is a new representation for the logic grounding indicator function 1g. Because

we assume the knowledge base KB is in Conjunctive Normal Form, each non-trivial grounding

g consists of a disjunction of Z(i, t) atoms (positive or negative), whose logical complement ¬g

is therefore a conjunction of Z(i, t) atoms (each negated from the original grounding g). In order

to avoid double-counting events in our polynomial, let (·)+ be an operator that returns a logical

formula equivalent to its argument where we replace all negated atoms ¬Z(i, t) with equivalent

disjunctions over positive atoms Z(i, 1)∨ . . .∨Z(i, t−1)∨Z(i, t+ 1)∨ . . .∨Z(i, T ), and eliminate

any duplicate atoms. Next, let gi be the set of atoms in g which involve index i. For example, if

g = Z(0, 1) ∨ Z(0, 2) ∨ Z(1, 0), then g0 = {Z(0, 1), Z(0, 2)}. Finally, we define zit ∈ {0, 1} to be

equal to 1 if Z(i, t) is true and 0 otherwise. We can now replace each Z(i, t) with zit in 1g in order

to yield the polynomial

1g(z) = 1−
∏
gi 6=∅

 ∑
Z(i,t)∈(¬gi)+

zit

 . (7.13)

Note the observed variables w,d,o are no longer in (7.13) because g is a non-trivial grounding

where the disjunction of w,d,o atoms is always false.

7.2.4.2 Step 2: relax zit to continuous values

The second step is to relax the binary variables zit ∈ {0, 1} to continuous values zit ∈ [0, 1],

with the constraint
∑

t zit = 1 for all i. Under this relaxation, Equation (7.13) takes on values in the
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interval [0, 1], which can be interpreted as the expectation of the original Boolean indicator func-

tion, with the relaxed zit representing multinomial probabilities. With this, we have a continuous

optimization problem over zKB (dropping terms that are constant w.r.t. zKB in (7.8)):

argmax
z∈R|zKB |

L∑
l

∑
g∈G(ψl)

λl1g(z) +
∑
i

∑
t

zit log φt(wi)θdi(t) s.t. zit ≥ 0,
T∑
t

zit = 1.

(7.14)

Critically, this relaxation allows us to use gradient methods on (7.14). However a potentially

huge number of groundings in ∪kG(ψk) may still render the full gradient impractical to compute.

7.2.4.3 Step 3: stochastic gradient descent

The third step therefore turns to stochastic gradient descent for scalability. Specifically we

use the Entropic Mirror Descent Algorithm (EMDA) [Beck and Teboulle, 2003], of which the Ex-

ponentiated Gradient (EG) [Kivinen and Warmuth, 1997] algorithm is a special case. Unlike ap-

proaches [Collins et al., 2008] which randomly sample training examples to produce a stochastic

approximation to the gradient, we randomly sample terms in (7.14). A term f is either the polyno-

mial 1g(z) on a particular grounding g, or an LDA term
∑

t zit log φt(wi)θdi(t) for some index i.

We use a weighted sampling scheme. Let Λ be a length L+1 weight vector, where Λl = λl|G(ψl)|

for l = 1 . . . L, and the entry ΛL+1 = |zKB| represents the LDA part. To sample individual terms,

we first choose one of the L+ 1 entries according to weights Λ. If an FOL rule ψl was chosen, we

then sample a grounding g ∈ G(ψl) uniformly. If the LDA part was chosen, we uniformly sample

an index i from zKB. Once a term f is sampled, we take its gradient ∇f and perform a mirror

descent update with step size η

zit ←
zit exp (η∇zitf)∑
t′ zit′ exp (η∇zit′

f)
. (7.15)

The process of sampling terms and taking gradient steps is repeated until convergence, or for a

prescribed number of iterations. Finally, we recover a hard zKB assignment by

zi = argmax
t

zit. (7.16)
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The key advantage of this approach is that it requires only a means to sample groundings g for each

rule ψk, and can avoid fully grounding the FOL rules. Our experiments show that this stochastic

gradient descent approach is effective at satisfying the FOL knowledge base and optimizing the

objective (7.14), when many MLN inference approaches fail due to problem size.

Finally, if groundings do not cross document boundaries (i.e., (gi 6= ∅ ∧ gj 6= ∅) ⇒

(di = dj)), additional scalability can be achieved by parallelizing the zKB inner loop of Algo-

rithm 2 across partitions of the documents, similar to Approximate Distributed LDA (AD-LDA)

[Newman et al., 2008].

7.3 Experiments

We conduct experiments on seven datasets, summarized in Table 7.1. We compare the

four LogicLDA inference methods: CGS, MWS, M+L, and Mir, as well as two simple base-

lines: topic modeling alone (LDA, using our own implementation of a collapsed Gibbs sam-

pler) [Griffiths and Steyvers, 2004], and logic alone (Alchemy, using the Alchemy MLN software

package) [Kok et al., 2009]. Our experiments demonstrate that: i) LogicLDA successfully incor-

porates logic into topic modeling, and ii) Mir is a scalable and high quality inference method for

LogicLDA that works when other inference methods fail.

In all experiments, we set the parameters as follows. The logic rule weights λ are set to

make the scale of the logic contribution comparable to the LDA contribution in the objective func-

tion (7.8). For the Mir inner loop in Algorithm 2, at iteration m we set step size ηm =
√

Ninner

Ninner+m
.

We fix Dirichlet parameters to α = 50/T and β = 0.01.

We now present the seven datasets and their associated KBs, and qualitatively assess the Log-

icLDA results on them. Table 7.1 contains information about the datasets themselves, as well as

the total number of non-trivial groundings | ∪k G(ψk)| for the given KB.

7.3.1 Synthetic Must-Links and Cannot-Links (S1, S2)

These two small synthetic datasets (N < 50 tokens) are designed to demonstrate the ability of

LogicLDA to encode Must-Link and Cannot-Link preferences, similar to Chapter 6. Here we take
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Table 7.1: Descriptive statistics for LogicLDA experimental datasets: total length of corpus (in

words) N , size of vocabulary W , number of documents D, number of topics T , and total number

of non-trivial rule groundings | ∪k G(ψk)|.

Dataset N W D T | ∪k G(ψk)|

S1 16 3 4 2 64

S2 32 4 4 3 192

Mac 153986 3652 2000 20 4388860

Comp 482634 8285 5000 20 6295

Con 422229 6156 2740 25 99847

Pol 733072 13196 2000 20 1204960000

HDG 2903640 13817 21352 100 47236814

Must-Link to mean that occurrences of a pair of words should be assigned to the same topic, while

a Cannot-Link indicates that pairs of words should not be assigned to the same topic. In S1 we learn

T = 2 topics, the vocabulary is {apple, banana, motorcycle}, and we encode Must-Link (apple,

banana) with the KB: W(i, apple) ∧ W(j, banana) ⇒ (Z(i, t) ⇔ Z(j, t)). For the synthetic corpus,

this KB results 64 in non-trivial groundings. Here and below, all FOL variables are universally

quantified. Similarly, in S2 we learn T = 3 topics, our vocabulary is {good, bad, song, album}

and we encode Cannot-Link (good, bad) as W(i, good) ∧ W(j, bad) ⇒ (¬Z(i, t) ∨ ¬Z(j, t)) (192

non-trivial groundings). Example documents for each of the two corpora are shown in Table 7.2

(within a corpus these documents types are simply repeated). We set α = 1 and observe that all

LogicLDA inference methods are able to correctly enforce these KBs, while standard LDA often

fails to do so.

7.3.2 Mac vs PC (Mac)

This dataset consists of the comp.sys.ibm.pc.hardware and comp.sys.mac.hardware groups

from the 20 newsgroups dataset [Lang, 1995] (N = 2 × 105, D = 2000). Despite this natural
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Table 7.2: Synthetic documents for S1 and S2 corpora.

Corpus Synthetic documents

S1
apple motorcycle

banana motorcycle

S2
good bad song song good bad song song

good bad album album good bad album album

split, the standard LDA topics tend to mix the words “pc” and “mac” in the same topic fairly often.

An example is shown in the first column of Table 7.3. We learn T = 20 topics, and in order to

recover topics which are more aligned with the newsgroup labels, we construct a Cannot-Link rule

on “mac” and “pc”: W(i,mac) ∧ W(j, pc)⇒ (¬Z(i, t) ∨ ¬Z(j, t)) (4× 106 non-trivial groundings).

All LogicLDA inference methods are able to discover interesting topics which obey the Cannot-

Link constraint, uncovering interesting and specialized Mac-related terms such as {lc, ii, quadra,

lciii}. An example pair of separate topics learned by LogicLDA is shown in the second and third

columns in Table 7.3.

7.3.3 Comp.* newsgroups (Comp)

This dataset is also a subset of the 20 newsgroups collection, and consists of online posts made

to comp.* news groups (making it a superset of the “Mac vs PC” dataset; N = 5×105, D = 8285).

Standard LDA topics mix “hardware” and “software” in the same topics, but a user may wish to

construct two separate topics for these terms. We learn T = 20 topics and our KB consists

of rules to construct separate topics using {hardware, machine, memory, cpu} and {software,

program, version, shareware} as seed word sets: (W(i, hardware) ∨ . . . ∨ W(i, cpu)) ⇒ Z(i, 0)

and (W(i, software) ∨ . . . ∨ W(i, shareware)) ⇒ Z(i, 1) (6295 non-trivial groundings). The topics

found by LogicLDA inference methods nicely align with our intended concepts: in addition to the

seed words, Topic 0 tends to consist of other purely hardware-related terms: {drive, disk, ide, bus,
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Table 7.3: Learned topics for the Mac dataset.

Standard LDA

mac, only, some, scsi2, chip, scsi1, used, ibm, use, 32bit

software, mode, pc, not, so, color, since

about, up, does, chips, fast, print

LogicLDA “mac”

mac, apple, has, new, does, internal, lc, ii, external, macs

out, powerbook, box own, print, other, printer, such

macintosh, article, apples, some, iisi

LogicLDA “pc”

software, hardware, use, etc, some, will, pc, used, one

data, may, standard, not, each, two, ibm

most, other, send, see, between, programs, ie
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install}, while new terms in Topic 1 are software-oriented: {code, image, data, analysis}. Example

learned topics are shown in Table 7.4.

Table 7.4: Learned topics for the Comp dataset.

Standard LDA

will, not, all, may, information, should, group, such, more

other, software, no, some, been, about, see, list

questions, number, has, them, already, hardware, need

LogicLDA “hardware”

drive, disk, memory, scsi, hard, hardware, drives

controller, ide, cpu, system, floppy, bios, data, hd

disks, bus, tape, interface, install, cdrom, feature, scsi2, dma

LogicLDA “software”

program, software, version, data, image, o, graphics

line, code, simple, processing, ca, inc, point, center

currently, shareware, points, 3d, analysis, model, sgi, digital, include

7.3.4 Congress (Con)

This dataset consists of floor-debate transcripts from the United States House of Representa-

tives (N = 4 × 105, D = 2740) [Thomas et al., 2006]. We learn T = 25 topics with the goal

of discovering interesting political themes. Each speech is considered to be a document, and is

labeled with the political party of the speaker: Speaker(d,Rep) or Speaker(d,Dem). We define

the predicate HasWord(d, w) to be true if word w appears in document d, and define the following

KB:

W(i, chairman) ∨ W(i, yield) ∨ W(i,madam)⇒Z(i, 0)

Speaker(d,Rep) ∧ HasWord(d, taxes) ∧ D(i, d)⇒Z(i, 1) ∨ Z(i, 2) ∨ Z(i, 3)

Speaker(d,Dem) ∧ HasWord(d,workers) ∧ D(i, d)⇒Z(i, 4) ∨ Z(i, 5) ∨ Z(i, 6).

The first rule pulls uninteresting procedure words (as in “Mr. Chairman, I want to thank the

gentlewoman for yielding...” ), which pollute many standard LDA topics, into their own Topic 0.
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The other two rules aim to discover multiple interesting political topics associated with Rep on

“taxes” and Dem on “workers”. The KB has a total of approximately 105 non-trivial ground-

ings. As intended, Topic 0 is able to pull in other procedural words such as {gentleman, thank,

colleague}, while topics other than Topic 0 appear much more meaningful without the proce-

dural words. The special Rep +“taxes” topics uncover interesting themes: {budget, billion,

deficit, health, education, security, jobs, economy, growth}, and Dem + “workers” topics un-

cover {pension, benefits, security, osha, safety, prices, gas}. This KB demonstrates how easy it is

for LogicLDA to pull in side information to influence topic discovery.

7.3.5 Polarity (Pol)

This dataset consists of movie reviews (N = 7 × 105, D = 2000) [Pang and Lee, 2004]. In-

terestingly, the synonyms “movie” and “film” appear with slightly different frequencies in positive

and negative reviews, with “film” being overrepresented in the positive reviews and “movie” being

overrepresented in the negative reviews. However, standard LDA tends to mix “movie” and “film”

within the same topics. To simulate an analyst who wishes to study this further, we learn T = 20

topics with a Cannot-Link rule W(i,movie)∧ W(j,film)⇒ (¬Z(i, t)∨¬Z(j, t)) (1.2× 109 ground-

ings). The size of the groundings is too large for all methods except Mir, which is able to discover

topics obeying the KB. Figure 7.4 shows a word cloud2 comparison between a standard LDA

topic which mixes “movie” and “film,” and a pair of Mir topics which contain “film” or “movie”

only. The separate Mir topics appear to reveal sentiment differences associated with the two words.

For example, the “movie” topic contains terms such as “bad”, “worst”, and “boring”. In contrast,

the “film” topic contains the words “great”, “best”, and “interesting”.

7.3.6 Human development genes (HDG)

This dataset consists of PubMed abstracts related to stem cells, and is further filtered down to

documents containing the terms “human”, “development”, and “gene” (N = 3×106, D = 2×105).

The goal of this experiment is to discover topics centered around six concepts related to the basic

2http://www.wordle.net

http://www.wordle.net
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(a) LDA movie+film topic (b) LogicLDA movie topic (c) LogicLDA film topic

Figure 7.4: Comparison of topics before and after applying LogicLDA on the polarity dataset

biology of human development. These concepts were specified by a biological expert who provided

a handful of “seed” words, stems, and n-grams for each concept, as shown in Table 7.5. The goal

of this experiment is to learn topics which are aligned with the target concepts that are of interest to

the biological expert. The most probable words for each topic could then be used to help determine

whether experimentally interesting genes are related to the target concept.

In order to use the provided terms, we begin by doing a small amount of manual “query ex-

pansion”, scanning the vocabulary for terms sharing the same stem. This process yields the results

shown in Table 7.6.

In order to assess the quality of the learned topics, our biological expert provides relevance

judgments for recovered terms. The ultimate purpose of these topics is to aid in understanding

relationships between genes and concepts, so we use the following relevance guideline: “Would

knowing that this word is (statistically) associated with a gene increase your belief that the gene

is related to the target concept?”. For each target concept, we show the total number of words

annotated as relevant in Table 7.7. In order to lessen annotation cost, note that only a subset of the

vocabulary is annotated in this way. Later in this section we explain how the subset to be annotated

is chosen.

As a naı̈ve baseline, we first use standard LDA to learn T = 50 topics. For each target concept,

we select the standard LDA topic containing the largest number of seed terms in the top 50 most

probable words. The aligned topics are shown in Table 7.8, and while they are roughly aligned
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Table 7.5: Concepts and terms provided by a biological expert.

Concept Provided terms

neural neur dendro(cyte), glia, synapse, neural crest

embryo human embryonic stem cell, inner cell mass, pluripotent

blood hematopoietic, blood, endothel(ium)

gastrulation organizer, gastru(late)

cardiac heart, ventricle, auricle, aorta

limb limb, blastema, zeugopod, autopod, stylopod

Table 7.6: Manual “expansion” of expert-provided terms shown in Table 7.5.

Concept Expanded terms

neural

oligodendrocyte, oligodendrocytes, oligodendrocytespecific, oligodendrogenesis

oligodendroglia, oligodendroglial oligodendroglioma, oligodendrogliomas

neuro, neural, neuron, dendrocyte, glia, glial, synapse, synapses, synaptic, neural crest

embryo
human embryonic stem cell, inner cell mass, pluripotent, embryonic stem cell

human embryonic, inner cell

blood hematopoietic, blood, endothelium

gastrulation
organizer, gastrulate, postgastrulation, pregastrulation

midgastrulation, gastrulation, gastrulating

cardiac heart, ventricle, auricle, aorta, ventricles, ventricular, leftventricular

limb limb, blastema, blastemas, blastemal, zeugopod, autopod, stylopod
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Table 7.7: Number of terms annotated as relevant for each target concept. Note that the vocabulary

may contain terms which would also be annotated as relevant, but for which we have no annotation.

Concept Number of relevant terms

neural 58

embryo 16

blood 47

gastrulation 15

cardiac 36

limb 15
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with the concepts we notice different types of irrelevant terms as well. For example, the highest-

overlap neural topic contains the terms “disease” and “disorder”, which are not aligned with the

developmental biology interests of the user. Further down the list are other clinical terms such as

{schizophrenia, abnormal, sclerosis}.

A more directed way to use the expert knowledge would be to create “seed word” rules of

the form W(i, hematopoietic) ⇒ Z(i, 2), as in Section 7.3.3 and Chapter 5. However, some of the

expert-supplied terms are in fact n-grams (e.g., “inner cell mass”). These too can be handled in a

principled way within FOL via rules such as:

W(i, inner) ∧ W(i+ 1, cell) ∧ W(i+ 2,mass)⇒ Z(i, 1)

W(i− 1, inner) ∧ W(i, cell) ∧ W(i+ 1,mass)⇒ Z(i, 1)

W(i− 2, inner) ∧ W(i− 1, cell) ∧ W(i,mass)⇒ Z(i, 1).

We construct these rules for all seed terms shown in Table 7.6 and run LogicLDA inference

via Collapsed Gibbs Sampling. In order to discourage non-concept words from being assigned to

the special concept topics, we also associate the concept topics with a smaller α value3. Learned

topics along with relevance annotations are shown in Table 7.9, and we can see that the words tend

to be strongly related to the target concept.

In order to further improve the quality of the learned topics, we can incorporate additional

domain knowledge. As mentioned above, many of the non-relevant terms are instead related to

various diseases or disorders. It is therefore a natural approach to seed a separate disease topic

in order to draw these terms away from our concept topics. We define this topic with seed words

{patient, disease, parasite, chronic, virus, condition, disorder, symptom}.

Furthermore, we enforce that this new disease topic (Topic 7) not co-occur in the same sentence

as our developmental biology topics. We define the vector of sentence indices s = s1, . . . , sN

3The concept topics have α = 0.005, versus the standard α = 50/T for all other topics.
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Table 7.8: High-probability terms from standard LDA topics chosen according to their overlap

between the top 50 most probable terms and each set of concept seed terms. Seed terms and terms

labeled as relevant are shown in bold.

neural embryo blood gastrulation cardiac limb

brain cells growth estrogen development development

system differentiation receptor endometrial muscle muscle

nervous bone factor aromatase heart heart

neurons stem receptors endometrium zebrafish zebrafish

neuronal cell endothelial progesterone cardiac cardiac

central hematopoietic factors uterine skeletal skeletal

development human vascular tamoxifen embryonic embryonic

s marrow hormone implantation defects defects

neural blood pituitary estrogens neural neural

human vitro angiogenesis estradiol gene gene

gene culture human receptor embryos embryos

disease progenitor development endometriosis homeobox homeobox

function stromal ligand stromal limb limb

cortex lineage transforming steroid formation formation

spinal differentiated effects breast developing developing

disorders embryonic binding uterus function function

developing vivo ligands women required required

motor progenitors hypoxia cycle mouse mouse

cerebral cultures insulin-like suture expression expression

glial transplantation proliferation menstrual human human

peripheral formation fibroblast antiestrogen early early

cortical potential epidermal phase expressed expressed

cord erythroid vivo secretory failure failure
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Table 7.9: LogicLDA topics learned using seed term rules. Seed terms and terms labeled as relevant

are shown in bold.

neural embryo blood gastrulation cardiac limb

neural cells blood mesoderm muscle limb

crest stem hematopoietic xenopus heart shh

glial cell hypertension embryos cardiac hox

synaptic embryonic pressure formation skeletal hedgehog

tube es angiotensin endoderm ventricular patterning

myelin marrow ace anterior hypertrophy homeobox

neuron human erythroid gastrulation muscles sonic

astrocytes bone ii patterning myogenic hh

nervous myeloid hypertensive dorsal myosin fgf8

cns progenitors endothelium zebrafish myocardial bud

oligodendrocytes progenitor globin embryo hearts hindbrain

schwann ckit ang plate left genes

glia cd34 renin axis myod vertebrate

oligodendrocyte hematopoiesis system ectoderm failure limbs

system mast gata1 ventral myogenesis signaling

synapses pu1 shr posterior myocytes mesenchyme

pax3 differentiation id early myoblasts pharyngeal

ncam stromal et1 notochord myocardium arch

myelination pluripotent epo vertebrate cardiomyocytes posterior

mbp bm betaglobin specification cardiomyopathy anterior

synapse potential red bmp muscular embryos

spinal primitive peripheral mesodermal atrial formation

plp adult enzyme signaling smooth craniofacial

gfap lif at1 induction heavy chick

central hsc reninangiotensin nodal aorta otic
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analogously to d, likewise we define a logical predicate S(i, s) which is true if si = s. For disease

Topic 7 and each development concept Topics 1, . . . , 6, we define the “exclusion” rule

S(i, s) ∧ S(j, s) ∧ Z(i, 7)⇒ ¬(Z(j, 1) ∨ Z(j, 2) ∨ Z(j, 3) ∨ Z(j, 4) ∨ Z(j, 5) ∨ Z(j, 6)).

This rule raises two important points. First, this rule demonstrates how easy it is to include

completely new sources of information such as sentence boundaries. Second, this rule raises po-

tential scalability issues. If the total number of sentences is S and the maximum sentence length is

M , this rule yields O(SM2) non-trivial groundings.

For the quantitative inference experiments discussed in Section 7.3.7, we only instantiate this

rule for development concept 2 (blood). In Table 7.8 we can see that this topic contains the non-

relevant disease terms “pressure” and “hypertension”. After adding our sentence exclusion logic,

these terms no longer appear in Topic 2.

We also wish to ensure that the concepts are aligned with the biologist’s interest in develop-

ment. We define a development Topic 6 using seed words {differentiation, maturation, formation,

differentiates, develops}. For each target concept topic t, we then define an “inclusion” rule

Sentence(i, i1, . . . , iSk
) ∧ ¬Z(i1, 6) ∧ . . . ∧ ¬Z(iSk

, 6)⇒ ¬Z(i, t)

where Sentence is true if its corpus index variable arguments constitute a single complete sen-

tence4. In English, this rule says: “If the development topic does not occur in a given sentence, the

biological concept Topic t cannot occur in that sentence either.”

For each of the KBs shown in Table 7.10, we perform 10 inference runs with different random

number seeds, using collapsed Gibbs sampling for LDA and Alternating Optimization with Mirror

Descent for all otherKBs. For each target concept, we select the union of the top 50 most probable

words for the associated topic over all random seeds and KBs. This set of words is then annotated

for relevance by the biological expert. Using these judgements as positive labels, Table 7.11 shows

the mean accuracy of the top 50 most probable words over 10 runs for eachKB and target concept.
4This means the we require separate instantiations of this rule for each possible sentence length, or we must allow

predicates to take a set of variables as an argument.
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Table 7.10: The different KBs used for the relevance assessment experiment. Each rule type is

instantiated for all biological concept topics.

KB Rule types

INCL+EXCL Seed, inclusion, exclusion

INCL Seed, inclusion

EXCL Seed, exclusion

SEED Seed

LDA No logic (choose topics according to seed word overlap)
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Table 7.11: Mean accuracy of top 50 terms for each KB and target concept, taken over 10 runs

with different random seeds. For each target concept, bolded entries are statistically significantly

better with p < 0.001 according to Tukey’s Honestly Significant Difference (HSD) test.

LogicLDA KBs

INCL+EXCL INCL EXCL SEED LDA

neural 0.59 0.57 0.54 0.54 0.31

embryo 0.24 0.24 0.23 0.23 0.07

blood 0.46 0.47 0.40 0.39 0.13

gastrulation 0.18 0.18 0.16 0.16 0.00

cardiac 0.36 0.37 0.34 0.35 0.08

limb 0.18 0.18 0.15 0.14 0.09

These results show that all LogicLDA approaches outperform our standard LDA baseline, and that

KBs using the inclusion rule outperform all others on blood.

In order to get a more detailed picture of this performance, we can plot the precision and recall

of the top n most probable words for each topic, as n = 1, . . . , 50. We only take up to the 50 most

probable words for each topic because words beyond this threshold may not be labeled. Precision

is the proportion of returned words which are actually relevant, while recall is the proportion of

relevant words which are actually returned. The plots for a single random seed run are shown in

Figure 7.5, and tend to show an advantage for KBs which make use of the sentence inclusion rule.

This biological text mining application has shown the advantage of LogicLDA versus standard

LDA for discovering terms related to a target concept. In general, the topics learned using seed

rules found more relevant terms than the LDA baseline. The addition of our sentence inclusion rule

enhances topic quality even further, as measured by both top 50 word accuracy and on precision

recall plots. These results highlight the usefulness of logical domain knowledge in adapting topic

modeling to a specific task.
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(a) neural concept. (b) embryo concept.

(c) blood concept. (d) gastrulation concept.

(e) cardiac concept. (f) limb concept.

Figure 7.5: Precision-recall plots from a single inference run for eachKB and target concept, taken

up to the top 50 most probable words. Note that not all words in the vocabulary are annotated.
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7.3.7 Evaluation of inference

We now present results on the quantitative performance of the different inference methods.

The criterion we use is the objective function (7.8), which combines logic and LDA terms. A good

inference method should attain a large objective function value, because this indicates the recovery

of a latent topic assignment z which reflects both corpus statistics (via the LDA terms) and the

logical domain knowledge (via the MLN terms). Furthermore, we would prefer an approach which

does well across different datasets and KBs, including cases where there are many non-trivial rule

groundings. The goal of this experiment is to evaluate the performance of the presented inference

approaches with respect to these two criteria.

Table 7.12 shows the objective function (7.8) values for (z, φ, θ) found by each inference

method for each dataset+KB. For each entry, we perform 10 trials with different random seeds

(note that every method is stochastic in nature), and report the mean and standard deviation. An

entry of NC (Not Complete) indicates that each single trial failed to complete within 24 hours on

a compute server with 2.33 GHz CPU and 16 GB RAM. Only three out of 10 Alchemy-on-Mac

trials completed in 24 hours.

The results in Table 7.12 further demonstrate that: i) All four LogicLDA inference methods

are better at optimizing the joint logic and LDA objective (7.8) than topic modeling alone (LDA)

or logic alone (Alchemy), and therefore better at integrating FOL into topic modeling. ii) Mir is

the only logic inference method able to handle the larger Pol and HDG datasets, and its objective

values are consistently among the best of all methods. We conclude that Mir for LogicLDA is a

viable and valuable method for combining logic into topic modeling.

7.4 Encoding LDA variants

We have presented LogicLDA, a framework for the inclusion of domain knowledge in topic

modeling via FOL. To demonstrate its flexibility, it is illustrative to show how several prior LDA

extensions can be (approximately) re-formulated with LogicLDA5:

5It should be pointed out, however, that LogicLDA as presented is for inference only. We assume that rule weights
are user-supplied, not learned.
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Table 7.12: Comparison of different inference methods for LogicLDA, LDA, and Alchemy on the

objective function (7.8). Each row corresponds to a dataset+KB, and the first column contains

the objective function magnitude. Parenthesized values are standard deviations over 10 trials with

different random seeds, and NC indicates a failed run. The best results for each dataset+KB are

bolded (significance p < 10−6 using Tukey’s Honestly Significant Difference (HSD) test).

LogicLDA

Mir M+L CGS MWS LDA Alchemy

S1 ×10 8.64(1.35) 9.08(0.00) 9.08(0.00) 8.19(1.80) 3.83(4.00) 1.43(0.80)

S2 ×102 3.44(0.05) 3.49(0.03) 3.47(0.06) 3.49(0.03) 2.17(1.51) 2.72(0.08)

Mac ×105 3.35(0.01) 3.36(0.01) 2.48(0.03) 2.49(0.02) 2.24(0.19) −5.77NC(0.00)

Comp ×106 2.48(0.00) 2.48(0.00) 2.20(0.01) 0.15(0.10) −0.84(0.10) NC

Con ×105 18.52(0.16) 19.04(0.04) 16.68(0.05) −3.79(0.81) −4.07(0.79) NC

Pol ×108 9.63(0.00) NC NC NC 9.56(0.15) NC

HDG ×106 116.80(0.03) NC NC NC 64.04(1.66) NC



120

7.4.1 Concept-Topic Model

The Concept-Topic Model [Chemudugunta et al., 2008] ties special concept topics to specific

concepts by constraining these special topics to only emit words from carefully chosen subsets

of the vocabulary. For a given concept, let the special words be wc1, wc2, . . . , wcn and the special

topic be t. Then the rule ∀i Z(i, t) ⇒ (W(i, wc1) ∨ W(i, wc2) ∨ . . . ∨ W(i, wcn)) encodes the desired

constraint.

7.4.2 Hidden Topic Markov Model

The Hidden Topic Markov Model (HTMM) [Gruber et al., 2007] enforces the condition that

the same topic be used for an entire sentence and allows topic transitions only between sentences,

encoding the assumption that words within a sentence are topically coherent. Using the sentence

predicate S(i, s) previously discussed in the experiments, we can express this as ∀i, j, s, t S(i, s)∧

S(j, s) ∧ Z(i, t) ⇒ Z(j, t). The probabilities of inter-sentence topic transitions can be set by care-

fully choosing weights for rules of the form ∀i, s S(i, s) ∧ ¬S(i+ 1, s) ∧ Z(i, t)⇒ Z(i+ 1, t′) for

all transition pairs (t, t′).

7.4.3 Restricted topic models

∆LDA [Andrzejewski et al., 2007], Discriminative LDA [Lacoste-Julien et al., 2008], and La-

beled LDA [Ramage et al., 2009] employ special “restricted” topics which can be used only in

specially labeled documents, with the intention that these special topics model document aspects

associated with the document label. If topic t should only be used in documents with label `, we

can encode this constraint as ∀i, d Z(i, t) ∧ D(i, d)⇒ HasLabel(d, `).

7.5 Summary

The LogicLDA model provides a general mechanism for expressing domain knowledge. Log-

ical rules can induce dependencies between topic assignments, as well as exploit arbitrary side

information. We have shown several examples of how a user might guide the recovery of topics
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over different datasets and knowledge bases. One potential pitfall of LogicLDA is the threat of a

combinatorial explosion in the number of ground clauses. The quantitative experiments show that

the scalable Mir inference algorithm is applicable where other inference methods fail.

KEY IDEAS

� LogicLDA enables the user to specify domain knowledge in First-Order Logic (FOL):

. Generalizes some existing LDA variants,

. Allows relational dependencies among zi,

. Captures side information (e.g., document labels or sentence information).

� Inference can be difficult due to combinatorial explosion of ground clauses.

� Alternating Optimization with Mirror Descent scales to cases where other methods fail.
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Chapter 8

Conclusion

This thesis has presented general mechanisms for incorporating domain knowledge into topic

modeling. Like standard unsupervised clustering, purely unsupervised topic modeling may not

recover an underlying structure that is relevant to the user. However, the goal of many topic mod-

eling applications is to explore or better understand a dataset, and these requirements are not always

adequately addressed by the standard supervised machine learning setting. Topic modeling with

domain knowledge allows the user to combine unsupervised pattern discovery with prior knowl-

edge or preferences about the patterns to be discovered.

8.1 Summary

In Chapter 1 we introduced the fundamental concepts of topic modeling, and Chapter 2 covered

specific details of Latent Dirichlet Allocation (LDA). Chapter 3 discussed existing variations on

the base LDA model, and defined loose categories for these extensions depending on which aspect

of LDA they modified. We now return to this framework in order to summarize the contributions

of the thesis. Table 8.1 shows the models developed in this thesis along with their relationships to

the model categories defined in Chapter 3.
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Table 8.1: Models developed in this thesis, viewed in the context of the LDA variant categories

introduced in Chapter 3. For each model, the check marks indicate which aspects of LDA are

modified with domain knowledge.

Variant

family
Diagram ∆LDA

Topic-in-

set

Dirichlet

Forest
LogicLDA

LDA+X

φ-side

θ-side
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Chapter 4 introduced ∆LDA, which encodes domain knowledge about special restricted topics

which the user expects to observe only in a subset of the documents. Influencing the document-

topic distribution θ in this way places this application in the θ-side family of models. We apply

∆LDA to a statistical debugging dataset, where a single document corresponds to a program exe-

cution, and we have document labels indicating whether the run was successful or not. By creating

special “buggy” topics restricted to appear in failing runs only, we are able to cluster runs by root

cause of failure and gain insights into the individual bugs.

In Chapter 5, we described Topic-in-set knowledge, which allows finer-grained control over

the individual zi topic assignments. Similar to ∆LDA, this mechanism can be used to restrict

topics from appearing in certain documents, encoding θ-side preferences. Topic-in-set knowledge

can also be used in a φ-side context to influence which topics can be associated with particular

vocabulary words. We explore a simple yet effective approach where certain “seed” words related

to a target concept are encouraged to be assigned to a given topic. Other related terms are then

pulled into this topic by statistical association with the seed words. This yields both an expanded

set of terms related to the target concept and the associations between the concept and individual

documents.

The Dirichlet Forest prior is the subject of Chapter 6. φ-side domain knowledge can be encoded

by using this distribution in place of the standard Dirichlet prior on the topic-word multinomial φ.

The Dirichlet Forest prior generalizes the Dirichlet, allowing the encoding of constraints about re-

lationships among the vocabulary words. A Must-Link constraint between a pair of words encour-

ages their probabilities to be similar within each topic, while a Cannot-Link constraint discourages

a pair of words from both having large probabilities within any given topic. These constraints

can be further combined into high-level composite operations, such as Split, Merge, and Isolate.

We demonstrate how domain knowledge can improve topic quality in two distinct settings. In the

first, domain knowledge is constructed in an interactive context, with the user iteratively learning

topics, adding domain knowledge, and re-learning topics. In the second, the domain knowledge is

supplied off-line from an existing structured knowledge source.
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Finally, we discussed LogicLDA in Chapter 7. LogicLDA allows the user to express domain

knowledge as a knowledge base (KB) of weighted rules in first-order logic (FOL). The mecha-

nism used is equivalent to a Markov Logic Network (MLN), and the resulting LogicLDA model

can be considered to be the product of a stand-alone LDA model and a stand-alone MLN model.

The inferred topic assignment z is chosen to maximize an objective function consisting of the LDA

and MLN components of LogicLDA. Depending on the user-defined weights associated with these

rules, z will therefore reflect the statistical properties of the corpus (due to the LDA component),

while at the same time attempting to satisfy the user-defined rules (due to the MLN component).

FOL is general, and can be used to incorporate various types of side information (including doc-

ument labels, sentence boundaries, and syntactic parses), allowing LogicLDA to express domain

knowledge across all three of our informal categories (LDA+X, φ-side, and θ-side) as well as to

generalize some existing LDA variants.

We apply LogicLDA to a biological text mining task motivated by the informatics needs of a

biological researcher. In this application we begin with “seed” words for a set of target biological

concepts. While the use of seed words significantly improves the relevance of the learned topics

(versus a standard LDA baseline), we still notice the presence of related but off-concept words in

our topics. Furthermore, these off-concept words are themselves somewhat semantically coherent

(e.g., we see words related to blood disease in our blood topic). In order to refine our topics further,

we exploit our knowledge of sentence boundaries, seeding a disease topic and forbidding it to co-

occur within the same sentence as our target biological topic. The resulting topics are indeed more

relevant. This rule highlights the flexibility of FOL, both in terms of the types of constraints it can

express and the ease with which side information can be incorporated.

8.2 Software

In order to improve the usefulness of topic modeling for researchers and practitioners alike,

inference source code for topic modeling with domain knowledge has been made available on the
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web. Table 8.2 summarizes the availability of implementations for the models presented in this

thesis.

Table 8.2: Released research code.

Model Implementation Availability

∆LDA Python C extension http://mloss.org/software/view/161/

http://pages.cs.wisc.edu/∼andrzeje/research/delta lda.html

Topic-in-set1 Python C extension http://github.com/davidandrzej/pSSLDA

http://pages.cs.wisc.edu/∼andrzeje/research/zl lda.html

Dirichlet Forest Python C++ extension http://mloss.org/software/view/204/

http://pages.cs.wisc.edu/∼andrzeje/research/df lda.html

LogicLDA Java (in submission)

8.3 Conclusion and future directions

Unsupervised data modeling techniques can fill an important application niche for users strug-

gling to make sense of datasets in the absence of a clear supervised learning task. However, as in

clustering, unsupervised topic modeling approaches may not discover underlying structure which

is truly relevant or helpful to the user. Therefore in this thesis we have developed techniques al-

lowing users to augment topic modeling with domain knowledge. These approaches help prevent

topic modeling from being a “black box”, giving the user the tools to help adapt topic modeling to

their particular application. This line of work aims to make the most of both human and machine

resources in order to discover important and useful topics in data. While the models presented here

represent significant advances towards this goal, there are still many interesting opportunities for

further improvement.

1This implementation allows parallelized inference following the approach of Approximate Distributed LDA (AD-
LDA) [Newman et al., 2008].

http://mloss.org/software/view/161/
http://pages.cs.wisc.edu/~andrzeje/research/delta_lda.html
http://github.com/davidandrzej/pSSLDA
http://pages.cs.wisc.edu/~andrzeje/research/zl_lda.html
http://mloss.org/software/view/204/
http://pages.cs.wisc.edu/~andrzeje/research/df_lda.html
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While the inclusion of user preferences or constraints can be a powerful tool, it is not without

cost in user effort and time. In order to make the most of user input, it may be advantageous to

examine recent advances in active learning [Settles, 2008], in which the system makes specific

feedback requests to the user which are carefully chosen to maximize the value of user feedback.

In an exploratory data analysis setting, it could be quite beneficial to have the system itself suggest

candidate topic refinements to the user. The adaptation of existing active learning strategies to

topic modeling presents unique challenges, in part due to recent human studies [Chang et al., 2009]

suggesting that the purely data-driven objective functions commonly used to evaluate topic models

(e.g., held-aside log-likelihood as discussed in Chapter 1) are not necessarily good proxies for

human interpretability.

The combination of logic and topic modeling provides interesting directions for future work.

The definition of additional query atoms other than Z(i, t) (as in MLNs) could allow the formula-

tion of relational inference problems in LogicLDA. For example, we could define an unobserved

predicate Citation(d, d′) to be true if document d cites document d′. Another potential direction

is to add predicates and rules encoding syntactic knowledge, such as dependency parse informa-

tion. For example, we may wish to have the fact that wi is the nominal subject of wj influence the

topic assignments zi, zj .

We could also incorporate user guidance in situations where we have multi-modal data. For

example, in a biological setting we may have both experimental data and scientific text related to

a set of genes. While latent variable modeling is a powerful mechanism for jointly modeling the

data, it would be useful to have a general framework for capturing user preferences with respect to

the connections or interactions across the data types. In our simple example, the user may believe

that genes with similar text representations are more likely to share biological function. A system

incorporating preferences across data types could be especially helpful in cases where one type

of data is more easily comprehensible to the user, allowing the guidance of model learning using

intuitions based on the more familiar type of data.
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Appendix A: Collapsed Gibbs sampling derivation for ∆LDA

This appendix describes the derivation of the collapsed Gibbs sampling equations for the

∆LDA model. We proceed along similar lines to collapsed Gibbs sampling for standard LDA,

noting important points at which the two models differ.

In order to use this model, we must be able to do inference to calculate the posterior P (z|w)

P (z|w) =
P (w, z)∑
z P (w, z)

. (A.1)

Here, and for the rest of this derivation, we are assuming that all probabilities are implicitly

conditioned on the model hyperparameters (α, β) as well as the observed document success or

failure labels o.

Unfortunately the sum in the denominator is intractable (for corpus length N and T topics we

have NT possible z), but we can approximate this posterior distribution with Gibbs sampling. This

involves making draws from P (zi = j|z−i,w) for each value of i in sequence to generate samples

from P (z|w). This Gibbs sampling equation can be derived as follows

P (zi = j|z−i,w) =
P (zi = j, z−i,w)∑
k P (zi = k, z−i,w)

. (A.2)

This requires computing the full joint for a given value of z and the observed w. The full joint

P (z,w) can be expressed as

P (w, z) = P (w|z)P (z). (A.3)

Substituting in the multinomials and their the Dirichlet priors gives us

P (w|z) =
∏
i∈T

∫
P (φi|β)

∏
j∈W

P (wj|φi)n
j
i dφi (A.4)

P (z) =
∏
d∈D

∫
P (θ(d)|α)

∏
j∈T

P (zj|θ(d))n
d
j dθ(d) (A.5)
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where n values are counts derived from the given vectors. nji is the number of times word i is

assigned to topic j, and ndj is the number of times topic j occurs in document d.

However recall that for ∆LDA, different documents use different α hyperparameters depending

on the observed success or failure variable o ∈ {s, f}. Let Tf be the set of topics available for

the failing runs (i.e., all buggy and all usage topics), while Ts is the set of topics available for the

succeeding runs (i.e., usage topics only). Likewise, the set of succeeding documents (od = s) is

referred to as Ds and the set of failing documents (od = f ) are called Df . Since the θ across

documents are conditionally independent of one another given α, we can rewrite our equation as

P (z) =
∏

o∈{s,f}

[∏
d∈Do

∫
P (θ|αo)

∏
j∈To

P (zj|θ)n
d
j dθ

]
. (A.6)

Dirichlet-multinomial conjugacy allows us to integrate out1 the Dirichlet priors for each term.

This operation results in a distribution known as the multivariate Pólya distribution

P (w|z) =
∏
i∈Tf

[
Γ(|W |β)

Γ(|W |β + n∗i )

∏
j∈W

Γ(nji + β)

Γ(β)

]
, (A.7)

P (z) =
∏

o∈{s,f}

[∏
d∈Do

Γ(
∑To

k αok)

Γ(
∑To

k αok + nd∗)

∏
i∈To

Γ(ndi + αoi)

Γ(αoi)

]
. (A.8)

In the above ∗ serves as a wild card, meaning that n∗i is the count of all words assigned to topic

i and nd∗ is the count of all words contained in document d. We then re-arrange the equations

P (z) =
∏

o∈{b,g}

( Γ(
∑To

k αok)∏
k∈To Γ(αok)

)|Do| Do∏
d

∏To
i Γ(ndi + αoi)

Γ(
∑To

k αok + nd∗)

 , (A.9)

P (w|z) =

(
Γ(|W |β)

Γ(β)|W |

)|Tf |∏
i∈Tf

∏|W |
j Γ(nji + β)

Γ(|W |β + n∗i )
. (A.10)

Now we need to further modify these equations to account for “pulling out” one specific word-

topic pair in order to calculate P (zi = j, z−i,w). It is useful to consider which terms will be

1This is the “collapsed” aspect of collapsed Gibbs sampling.
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unchanged by the assignment to zi, because those can be pulled out of the sum in the denominator,

and will cancel with the numerator. First we break up each of the two components of the equation

into two convenient parts: the part dealing with word i, and everything else.

P (zi = j, z−i,w) =
∏

o∈{s,f}

(Γ(
∑To

k αok)∏To
k Γ(αok)

)|Do|
 ∏
d∈Do\di

∏To
t Γ(nd−i,t + αot)

Γ(
∑To

k αok + nd−i,∗)

 (A.11)

 ∏Todi
t6=j Γ(ndi−i,t + αodi t)

Γ(
∑Todi

k αodik + ndi−i,∗ + 1)

Γ(ndi−i,j + 1 + αodi i)

 (A.12)

(
Γ(|W |β)

Γ(β)|W |

)|Tf | Tf∏
t6=j

∏|W |
w Γ(nw−i,t + β)

Γ(|W |β + n∗−i,t)

∏
w∈W

Γ(nw−i,t + β)

 (A.13)

(
Γ(nwi

−i,j + 1 + β)

Γ(n∗−i,j + 1 + |W |β)

W∏
w 6=wi

Γ(nw−i,t + β)

)
(A.14)

Here di refers to the document containing word i, and Ti and αodi i refer to the topic set and

Dirichlet hyperparameters associated with that document (depending on the value of odi for that

document). All n counts with the subscript −i are taken for the rest of the sequence (omitting i).

Next, we use the fact that Γ(n) = (n − 1)Γ(n − 1) to push the Γ terms containing +1 back

into the “everything else” products. This product is then insensitive to the j value assigned to zi,

allowing them to cancel out. This re-arrangement and cancellation leaves us with the following

equation

P (zi = j|z−i,w) ∝
(

nwi
−i,j + β

n∗−i,j + β|W |

) nd−i,j + αodij

nd−i,∗ +
∑Todi

k αodik

 . (A.15)

The above expression is then evaluated for every possible value of j to get the normalizing

factor. Note that for topics j such that αodij = 0 the count nd−i,j should also be 0, meaning that

that topic will never be assigned to this word. This equation then allows us to do collapsed Gibbs

sampling using easily obtainable count values.

This equation is quite similar to the collapsed Gibbs sampling equation for standard LDA,

except that when sampling position i we use the value of α dictated by the document outcome
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label odi . This additional flexibility is what enables us to encode domain knowledge into the αo

vectors, as in ∆LDA (Chapter 4). Furthermore, in this derivation we o can take on two different

values, but allowing arbitrarily many values does not affect the end result. For example, we could

say that o ∈ {s, f, c} indicates success, failure (bad output), or crash (program termination).

For topic-specific β, the derivation would proceed along very similar lines. This would result

in the specific βwi
in the numerator and the sum over all βk in the denominator, and could be used

to encode topic-word domain knowledge (as is done in the Concept-Topic model).
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Appendix B: Collapsed Gibbs sampling for Dirichlet Forest LDA

This appendix contains the derivations for the Collapsed Gibbs Sampling equations for LDA

with Dirichlet Forest priors. We assume that all Must-Links and Cannot-Links have been provided,

the corresponding graphs have been constructed, and the maximal cliques of the complements of

the Cannot-Link connected components have been found, as described in Chapter 6.

Our sampling procedure consists of:

1. For each word wi in the corpus

Sample zi ∼ P (zi|z−i,q,w)

2. For each topic u = 0, ..., T − 1

For each Cannot-Link graph connected components r = 0, ..., R− 1

Sample q(r)
u ∼ P (q

(r)
u |z,q(−v)

−u ,w)

B.1 Sampling z

First, we show how to sample each zi value. The necessary equation we wish to derive is

P (zi = v|z−i,q,w) =
P (zi = v, z−i,q,w)∑
k P (zi = k, z−i,q,w)

. (B.1)

Since the numerator on the right-hand side is a full joint, we begin with simplifying the terms

from (C.1).

The standard Dirichlet prior P (θ|α) can be integrated out for each term, resulting in the multi-

variate Pólya distribution:

P (z) =
D∏
d

Γ(
∑T

u αu)

Γ(
∑T

u (αu + n
(d)
u )

T∏
u

Γ(n
(d)
u + αu)

Γ(αu)
. (B.2)

Given q, we have fully specified Dirichlet Tree priors for each topic multinomial φ. These can

also be collapsed, resulting in a slightly different equation:
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P (w|z,q) =
T∏
u

Ω(qu) (B.3)

Ω(qu) =
∏

j∈t′(qu)

Γ(
∑

k∈s(j) γk)

Γ(
∑

k∈s(j)(γk + n
(k)
u ))

∏
k∈s(j)

Γ(γk + n
(k)
u )

Γ(γk)
. (B.4)

(B.5)

The counts mean that n(k)
u is the number of words emitted by topic u which are contained in

the subtree rooted at k, or the number of times word k was emitted by topic u, if k is a leaf node.

The new notation t′(qu) means non-terminal nodes in the Dirichlet Tree constructed by vector qu.

This notational shorthand means that within the function Ω(qu), all tree structure and edge values

are taken with respect to the tree constructed by the vector qu.

We first re-arrange (B.2), assuming that our standard Dirichlet priors are the same for all doc-

uments.

P (z) =

(
Γ(
∑T

u αu)∏T
u Γ(αu)

)|D| D∏
d

∏T
u Γ(n

(d)
u + αu)

Γ(
∑T

u (αu + n
(d)
u ))

(B.6)

Now we need to modify these equations to account for “pulling out” one specific word-topic

pair in order to calculate P (zi = v, z−i,q,w). It is useful to consider which terms will be un-

changed by the assignment to zi, because in the full conditional expression these can be pulled out

of the sum in the denominator, and will cancel with the numerator. First we break up each of the

components of this equation into two convenient parts: the part dealing with topic assignment for

word i, and everything else.
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P (zi = v, z−i,w,q) =

(
Γ(
∑T

u αu)∏T
u Γ(αu)

)D( D∏
d6=di

∏T
u Γ(n

(d)
−i,u + αu)

Γ(
∑T

u (αu + n
(d)
−i,u)))

)
(B.7)([ ∏T

u6=v Γ(n
(di)
−i,u + αu)

Γ(
∑T

u (αu + n
(di)
−i,u) + 1)

]
Γ(n

(di)
−i,v + 1 + αv)

)
(B.8)(

T∏
u6=v

Ω(qu)

)
Ω(qv,−i) (B.9)

T∏
u

R∏
r

|M
rq

(r)
u
|∑Q(r)

q′ |Mrq′ |
(B.10)

(B.11)

Here, Ω(qv,−i) is defined as

Ω(qv,−i) =

 ∏
j∈t′(yv)\a(wi)

Γ(
∑

k∈s(j) γk)

Γ(
∑

k∈s(j)(γk + n
(k)
−i,u))

∏
k∈s(j)

Γ(γk + n
(k)
−i,u)

Γ(γk)

 (B.12)

 ∏
j∈a(wi)

Γ(
∑

k∈s(j) γk)

Γ(
∑

k∈s(j)(γk + n
(k)
−i,u + 1))

∏
k∈s(j)

Γ(γk + n
(k)
−i,u + 1)

Γ(γk)

 . (B.13)

(B.14)

Here all n counts with the subscript −i are taken for the rest of the sequence (omitting i). We

also introduce the notation a(wi), which is the set of all interior nodes which are ancestors of wi.

We also define a(wi, j) to be the sole element in a(wi)∩s(j), which is the child of node j which is

also an ancestor of wi. The tree structure guarantees that if j ∈ a(wi) then it must be true that s(j)

contains exactly one ancestor of wi (or wi itself). Therefore a(wi, j) is well defined for j ∈ a(wi).

Next, we use the identity Γ(n) = (n− 1)Γ(n− 1) to push the Γ terms containing +1 back into

the “everything else” products. Note that these products are then insensitive to the v value assigned

to zi, allowing them to cancel out. This subsequent re-arrangement and cancellation leaves us with

the following equation:
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P (zi = v|z−i,w,q) ∝

(
n

(d)
−i,v + αv∑T

u (n
(d)
−i,u + αu)

) ∏
j∈a(wi)

γa(wi,j) + n
a(wi,j)
−i,v∑

k∈s(j)(γk + n
(k)
−i,v)

 . (B.15)

Note that the a(·) terms in this expression are implicitly taken with respect to the Dirichlet Tree

constructed by selection vector qv.

B.2 Sampling q

In order to sample from P (q
(c)
v |q(−c)

v ,q−v, z,w) we need to again break apart our joint P (w,q, z)

into two parts. As before, we will facilitate cancellations by ensuring that these two parts corre-

spond to terms affected by the value of q(c)
v , and everything else.

P (q(c)
v = m|q−v,q(−c)

v ,w, z) =
P (q

(c)
v = m,q

(−c)
v ,q−v,w, z)∑

a P (q
(c)
v = a,q

(−c)
v ,q−v,w, z)

(B.16)

Decomposing the full joint P (q,w, z) as before, we get

P (q(c)
v = m,q(−c)

v ,q−v,w, z) =

(
Γ(
∑T

u αu)∏T
u Γ(αu)

)|D|( D∏
d

∏T
u Γ(n

(d)
u + αu)

Γ(
∑T

u (αu + n
(d)
u ))

)
(B.17)(

T∏
u6=v

Ω(qu)

)
Ω(q(c)

v = m,q(−c)
v ) (B.18)

T∏
u

R∏
r

|M
rq

(r)
u
|∑Q(r)

q′ |Mrq′ |
. (B.19)

(B.20)

Here we introduce the new function Ω(q
(c)
v = m,q

(−c)
v ), defined as:
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Ω(q(c)
v = m,q(−c)

v ) =

 ∏
j∈t′(q(−c)

v )

Γ(
∑

k∈s(j) γk)

Γ(
∑

k∈s(j)(γk + n
(k)
v ))

∏
k∈s(j)

Γ(γk + n
(k)
v )

Γ(γk)

 (B.21)

 ∏
j∈t′(q(c)v )

Γ(
∑

k∈s(j) γk)

Γ(
∑

k∈s(j)(γk + n
(k)
v ))

∏
k∈s(j)

Γ(γk + n
(k)
v )

Γ(γk)

 . (B.22)

(B.23)

Here t′(q(−c)
v ) refers the set of all non-terminals in the Dirichlet Tree defined by qv, except those

contained in the subtree determined by element q(c)
v . We then define t′(q(c)

v ) to be the set of non-

terminals in the Dirichlet Tree contained in the subtree determined by element q(c). Since our

construction procedure ensures that the different agreeable subtrees are always disjoint, this is

always a valid decomposition.

We then observe that the product over t′(q(c)
v ) in Ω(q

(c)
v = m,q

(−c)
v ) and the |M

cq
(c)
v
| term are

the only terms in (B.20) which will be affected by the value of q(c)
v , meaning that everything else

will cancel out. After these cancellations, our final sampling equation for each element of q is then

given by

P (q(c)
v = m|q(−c)

v ,q−v, z,w) ∝ |Mrm|

 ∏
j∈t′(q(c)v )

Γ(
∑

k∈s(j) γk)

Γ(
∑

k∈s(j)(γk + n
(k)
v ))

∏
k∈s(j)

Γ(γk + n
(k)
v )

Γ(γk)


(B.24)

where the edge values and subtree structures are determined by q(c)
v = m.
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Appendix C: Collapsed Gibbs sampling derivation for
LogicLDA

In this appendix, we show the derivation of the collapsed Gibbs sampler for the LogicLDA

model. We begin with the full joint distribution, using the function DCM to stand in for the

Dirichlet-Compound Multinomials present in the collapsed LDA distribution.

DCMα(w, z) =
D∏
d

Γ(
∑T

u αu)

Γ(
∑T

u (αu + n
(d)
u )

T∏
u

Γ(n
(d)
u + αu)

Γ(αu)
(C.1)

DCMβ(w, z) =
T∏
u

Γ(
∑W

j βu)

Γ(
∑W

j (βj + n
(j)
u )

W∏
j

Γ(n
(j)
u + βj)

Γ(βj)
(C.2)

P (w, z|α, β, L, η) =
1

Z
DCMα(w, z)DCMβ(w, z) exp (

L∑
`

ηf`(w, z)) (C.3)

(C.4)

The full conditional probability used for Gibbs sampling is

P (zi = v|z−i,w) =
P (zi = v, z−i,w)∑
k P (zi = k, z−i,w)

. (C.5)

The numerator on the right-hand side is the full joint from (C.1). Expanding the DCM terms,

we further decompose the equation into two components: one affected by the value of zi, and one

insensitive to it.
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P (zi = v|z−i,w) =
1

Z

(
Γ(
∑T

u α)∏T
u Γ(α)

)D( D∏
d 6=di

∏T
u Γ(n

(d)
−i,u + α)

Γ(
∑T

u (α + n
(d)
−i,u))

)
(C.6)([ ∏T

u6=v Γ(n
(di)
−i,u + α)

Γ(
∑T

u (α + n
(di)
−i,u) + 1)

]
Γ(n

(di)
−i,v + 1 + α)

)
(C.7)(

Γ(
∑W

k β)∏W
k Γ(β)

)T ( T∏
u6=v

∏W
k Γ(n

(k)
−i,u + β)

Γ(
∑T

u (β + n
(k)
−i,u))

)
(C.8)([ ∏W

k 6=wi
Γ(n

(k)
−i,v + β)

Γ(
∑W

k (β + n
(k)
−i,v) + 1)

]
Γ(n

(wi)
−i,v + 1 + β)

)
(C.9)

exp (

L−i∑
`

ηf`(zi = v, z−i,w)) (C.10)

exp (

Li∑
`

ηf`(zi = v, z−i,w)) (C.11)

(C.12)

Here Li are the logical formulas whose value depends in zi, L−i = L \ Li, and the count

variables n have the same interpretation as elsewhere in this document. We can see that all of the

terms unaffected by zi will cancel out of (C.5). Applying the identity Γ(n) = (n− 1)Γ(n− 1), we

are left with the desired Gibbs sampling equation

P (zi = v|z−i,w) ∝

(
n

(d)
−i,v + α∑T

u (n
(d)
−i,u + α)

)(
n

(wi)
−i,v + β∑W

w′(n
(w′)
−i,v + β)

)
exp (

Li∑
`

ηf`(zi = v, z−i,w)).

(C.13)
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