Latent Topic Feedback for Information Retrieval

David Andrzejewski David Buttler

Center for Applied Scientific Computing Lawrence Livermore National Laboratory (USA)

August 22, 2011

Andrzejewski and Buttler (LLNL)

Latent Topic Feedback for IR

BigCo Internal Document Navigation Portal

search

euro opposition

BigCo Internal Document Navigation Portal

euro opposition

search

Returned documents

Hurd in passionate Maastricht defense Financial Times - 14 May 91

Small companies may lose in EC deals Financial Times - 14 May 91

Russian President Yeltsin invited to G7 Financial Times - 24 Mar 92

•

BigCo Internal Document Navigation Portal

euro opposition

search

Returned documents

Hurd in passionate Maastricht defense Financial Times - 14 May 91

Small companies may lose in EC deals Financial Times - 14 May 91

Russian President Yeltsin invited to G7 Financial Times - 24 Mar 92

Related topics

debate

Tory Euro sceptics social chapter, Liberal Democrat mps, Labour, bill, Commons

Emu

economic monetary union Maastricht treaty, member states European, Europe, Community, Emu

Condition	Impaired IR technique
Non-expert user	keyword queries
Lack of metadata	faceted search
Specialized domain	WordNet
Small user base	query log mining, relevance feedback
Proprietary data	Crowdsourcing

- Private organizations
- Government agencies.

Condition	Impaired IR technique
Non-expert user	keyword queries
Lack of metadata	faceted search
Specialized domain	WordNet
Small user base	query log mining, relevance feedback
Proprietary data	Crowdsourcing

- Private organizations
- Government agencies

Condition	Impaired IR technique
Non-expert user	keyword queries
Lack of metadata	faceted search
Specialized domain	WordNet
Small user base	query log mining, relevance feedback
Proprietary data	Crowdsourcing

- Private organizations
- Government agencies.

Condition	Impaired IR technique
Non-expert user	keyword queries
Lack of metadata	faceted search
Specialized domain	WordNet
Small user base	query log mining, relevance feedback
Proprietary data	Crowdsourcing

- Private organizations
- Government agencies.

Condition	Impaired IR technique
Non-expert user	keyword queries
Lack of metadata	faceted search
Specialized domain	WordNet
Small user base	query log mining, relevance feedback
Proprietary data	Crowdsourcing

- Private organizations
- Government agencies.

Condition	Impaired IR technique
Non-expert user	keyword queries
Lack of metadata	faceted search
Specialized domain	WordNet
Small user base	query log mining, relevance feedback
Proprietary data	Crowdsourcing

- Private organizations
- Government agencies.

Condition	Impaired IR technique
Non-expert user	keyword queries
Lack of metadata	faceted search
Specialized domain	WordNet
Small user base	query log mining, relevance feedback
Proprietary data	Crowdsourcing

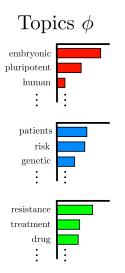
-

- Private organizations
- Government agencies

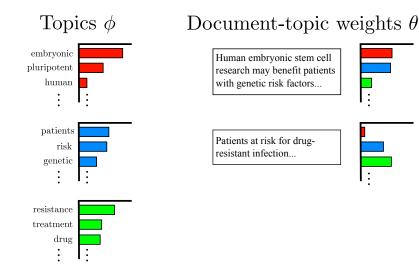
Condition	Impaired IR technique
Non-expert user	keyword queries
Lack of metadata	faceted search
Specialized domain	WordNet
Small user base	query log mining, relevance feedback
Proprietary data	Crowdsourcing

- Private organizations
- Government agencies

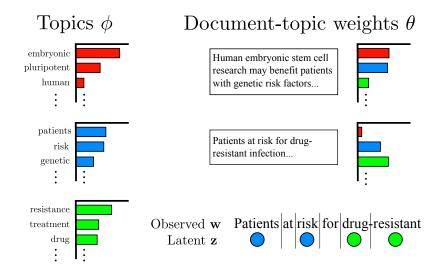
Topic modeling with Latent Dirichlet Allocation (LDA) Blei et al, JMLR 2003



Topic modeling with Latent Dirichlet Allocation (LDA) Blei et al, JMLR 2003



Topic modeling with Latent Dirichlet Allocation (LDA) Blei et al, JMLR 2003



Implicitly: language model smoothing (Wei & Croft, SIGIR 2006)

This approach: explicit user feedback on topics

- How to show topics?
- Which topics to show?
- How to use feedback?

- Implicitly: language model smoothing (Wei & Croft, SIGIR 2006)
- This approach: explicit user feedback on topics
 - How to show topics?
 - 2 Which topics to show?
 - How to use feedback?

- Implicitly: language model smoothing (Wei & Croft, SIGIR 2006)
- This approach: explicit user feedback on topics
 - How to show topics?
 - Which topics to show?
 - How to use feedback?

- Implicitly: language model smoothing (Wei & Croft, SIGIR 2006)
- This approach: explicit user feedback on topics
 - How to show topics?
 - 2 Which topics to show?
 - How to use feedback?

- Implicitly: language model smoothing (Wei & Croft, SIGIR 2006)
- This approach: explicit user feedback on topics
 - How to show topics?
 - Which topics to show?
 - How to use feedback?

• "Top N" lists are hard to interpret

We combine several techniques

- topic label (Lau et al, COLING 2010)
- topic n-grams (Blei & Lafferty, arXiv 2009)
- capitalization recovery

Label	Terms
Topic 11	oil, gas, production, exploration sea, north, company, field, energy petroleum, companies
Petroleum	state oil company North Sea, natural gas production, exploration, field, energy

"Top N" lists are hard to interpret

• We combine several techniques

- topic label (Lau et al, COLING 2010)
- topic *n*-grams (Blei & Lafferty, arXiv 2009)
- capitalization recovery

Label	Terms
Topic 11	oil, gas, production, exploration sea, north, company, field, energy petroleum, companies
Petroleum	state oil company North Sea, natural gas production, exploration, field, energy

- "Top N" lists are hard to interpret
- We combine several techniques
 - topic label (Lau et al, COLING 2010)
 - topic *n*-grams (Blei & Lafferty, arXiv 2009)
 - capitalization recovery

Label	Terms
Topic 11	oil, gas, production, exploration sea, north, company, field, energy petroleum, companies
Petroleum	state oil company North Sea, natural gas production, exploration, field, energy

- "Top N" lists are hard to interpret
- We combine several techniques
 - topic label (Lau et al, COLING 2010)
 - topic *n*-grams (Blei & Lafferty, arXiv 2009)
 - capitalization recovery

Label	Terms
Topic 11	oil, gas, production, exploration sea, north, company, field, energy petroleum, companies
Petroleum	state oil company North Sea, natural gas production, exploration, field, energy

- "Top N" lists are hard to interpret
- We combine several techniques
 - topic label (Lau et al, COLING 2010)
 - topic *n*-grams (Blei & Lafferty, arXiv 2009)
 - capitalization recovery

Label	Terms
Topic 11	oil, gas, production, exploration sea, north, company, field, energy petroleum, companies
Petroleum	state oil company North <mark>S</mark> ea, natural gas production, exploration, field, energy

Question 2 - Which topics to show?

Problems

A) Too many topics to present them all (T > 100)

B) Incoherent "junk" topics

Problems

- A) Too many topics to present them all (T > 100)
- B) Incoherent "junk" topics
 - Topic 248 ve, year, II, time, don, good, lot, back years, things, make
 - Topic 18 january, february, december march, month, year, rose feb, sales, fell, increase

Problem A - Narrowing down the topics

• Pseudo-relevance feedback \rightarrow enriched topics E

- Topic covariance $\Sigma \rightarrow$ **related** topics *R*
- Top 2 docs, top 2 enriched, top 2 related \leq 12 topics shown

$$E = \bigcup_{d \in D_q} \text{k-argmax } \theta_d(t)$$

Problem A - Narrowing down the topics

- Pseudo-relevance feedback → enriched topics E
- Topic covariance $\Sigma \rightarrow$ **related** topics *R*
- Top 2 docs, top 2 enriched, top 2 related \leq 12 topics shown

$$E = \bigcup_{d \in D_q} \operatorname{k-argmax}_{t} \theta_d(t)$$
$$R = \bigcup_{t \in E} \operatorname{k-argmax}_{t' \notin E} \Sigma(t, t')$$

Problem A - Narrowing down the topics

- Pseudo-relevance feedback → enriched topics E
- Topic covariance $\Sigma \rightarrow$ **related** topics *R*
- Top 2 docs, top 2 enriched, top 2 related \leq 12 topics shown

$$E = \bigcup_{d \in D_q} \operatorname{k-argmax}_{t} \theta_d(t)$$
$$R = \bigcup_{t \in E} \operatorname{k-argmax}_{t' \notin E} \Sigma(t, t')$$

Problem B - Identifying junk topics Newman et al (JCDL 2010)

Word co-occurrences in Wikipedia \rightarrow topic PMI score

ncoherent topic

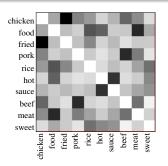
PMI = 0.63

Problem B - Identifying junk topics Newman et al (JCDL 2010)

Word co-occurrences in Wikipedia \rightarrow topic PMI score

Coherent topic

PMI = 3.85



ncoherent topic

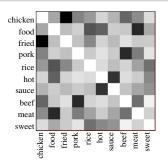
PMI = 0.63

Problem B - Identifying junk topics Newman et al (JCDL 2010)

Word co-occurrences in Wikipedia \rightarrow topic PMI score

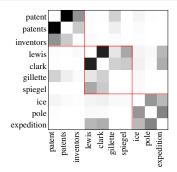
Coherent topic

PMI = 3.85



Incoherent topic

PMI = 0.63



Compute PMI scores for each topic t

$$PMI(t) = \frac{1}{k(k-1)} \sum_{(w,w') \in W_t} PMI(w,w')$$

- Compute PMI scores for each topic t
- **2** Worst PMI scores \rightarrow **dropped** topics *D*

$$PMI(t) = \frac{1}{k(k-1)} \sum_{(w,w') \in W_t} PMI(w,w')$$
$$D = \{t | t \in E \cup R \text{ and } PMI(t) < PMI_{25}\}$$

Andrzejewski and Buttler (LLNL)

Problem B - Discarding junk topics

Final topics shown

enriched and related, minus dropped $\rightarrow \{E \cup R\} \setminus D$

- Compute PMI scores for each topic t
- ❷ Worst PMI scores → dropped topics D

$$\mathcal{PMI}(t) = rac{1}{k(k-1)} \sum_{(w,w') \in W_t} \mathcal{PMI}(w,w')$$

 $\mathcal{D} = \{t | t \in E \cup R \text{ and } \mathcal{PMI}(t) < \mathcal{PMI}_{25}\}$

Problem B - Discarding junk topics

Final topics shown

enriched and related, minus dropped $\rightarrow \{E \cup R\} \setminus D$

- Compute PMI scores for each topic t
- ❷ Worst PMI scores → dropped topics D

$$\mathcal{PMI}(t) = rac{1}{k(k-1)} \sum_{(w,w') \in W_t} \mathcal{PMI}(w,w')$$

 $\mathcal{D} = \{t | t \in E \cup R \text{ and } \mathcal{PMI}(t) < \mathcal{PMI}_{25}\}$

Question 3 - How to incorporate feedback?

Mechanism should

- preserve original query intent
- incorporate the feedback
- "plug and play" with existing search technologies

Topic-driven query expansion

- Original query words q
- Top 10 topic words W_z

- preserve original query intent
- incorporate the feedback
- "plug and play" with existing search technologies

Topic-driven query expansion

- Original query words q
- Top 10 topic words W_z

- preserve original query intent
- incorporate the feedback
- "plug and play" with existing search technologies

Topic-driven query expansion

- Original query words q
- Top 10 topic words W_z

- preserve original query intent
- incorporate the feedback
- "plug and play" with existing search technologies

Topic-driven query expansion

- Original query words q
- Top 10 topic words W_z

- preserve original query intent
- incorporate the feedback
- "plug and play" with existing search technologies

Topic-driven query expansion

- Original query words q
- Top 10 topic words W_z

- preserve original query intent
- incorporate the feedback
- "plug and play" with existing search technologies

Topic-driven query expansion

- Original query words q
- Top 10 topic words W_z

• Corpus: 210K news articles (Financial Times, 1992-1994)

- Query: "euro opposition" (political opposition to the € currency union)
- Ground truth: 98 articles judged relevant

- Corpus: 210K news articles (Financial Times, 1992-1994)
- Query: "euro opposition" (political opposition to the € currency union)
- Ground truth: 98 articles judged relevant

- Corpus: 210K news articles (Financial Times, 1992-1994)
- Query: "euro opposition" (political opposition to the € currency union)
- Ground truth: 98 articles judged relevant

Label	Terms	PMI percentile
debate	Tory Euro sceptics social chapter, Liberal Democrat mps, Labour, bill, Commons	47
business	PERSONAL FILE Born years ago, past years man, time, job, career	2
Emu	economic monetary union Maastricht treaty, member states European, Europe, Community, Emu	63
George	President George Bush, White House Mr Clinton, administration Democratic, Republican, Washington	60

Andrzejewski and Buttler (LLNL)

Label	Terms	PMI percentile
debate	Tory Euro sceptics social chapter, Liberal Democrat mps, Labour, bill, Commons	47
business	PERSONAL FILE Born years ago, past years man, time, job, career	2
Emu	economic monetary union Maastricht treaty, member states European, Europe, Community, Emu	63
George	President George Bush, White House Mr Clinton, administration Democratic, Republican, Washington	60

Andrzejewski and Buttler (LLNL)

Label	Terms	PMI percentile
debate	Tory Euro sceptics social chapter, Liberal Democrat mps, Labour, bill, Commons	47
business	PERSONAL FILE Born years ago, past years man, time, job, career	2
Emu	economic monetary union Maastricht treaty, member states European, Europe, Community, Emu	63
George	President George Bush, White House Mr Clinton, administration Democratic, Republican, Washington	60

Andrzejewski and Buttler (LLNL)

Label	Terms	PMI percentile
debate	Tory Euro sceptics social chapter, Liberal Democrat mps, Labour, bill, Commons	47
business	PERSONAL FILE Born years ago, past years man, time, job, career	2
Emu	economic monetary union Maastricht treaty, member states European, Europe, Community, Emu	63
George	President George Bush, White House Mr Clinton, administration Democratic, Republican, Washington	60

Label	Terms	PMI percentile
debate	Tory Euro sceptics social chapter, Liberal Democrat mps, Labour, bill, Commons	47
business	PERSONAL FILE Born years ago, past years man, time, job, career	2
Emu	economic monetary union Maastricht treaty, member states European, Europe, Community, Emu	63
George	President George Bush, White House Mr Clinton, administration Democratic, Republican, Washington	60

Andrzejewski and Buttler (LLNL)

Indri weighted query operator

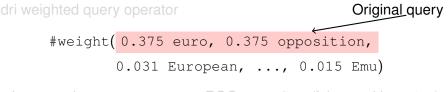
Original query

Topic expansion

ROC curve (true/false positive rates)

Measure	Gain
NDCG15	+0.22
NDCG	+0.07
MAP	+0.02

Measure	Gain
NDCG15 NDCG	+0.22 +0.07
MAP	+0.07 $+0.02$



Topic expansion

ROC curve (true/false positive rates)

Measure	Gain
NDCG15	+0.22
NDCG	+0.07
MAP	+0.02

Indri weighted query operator

Original query

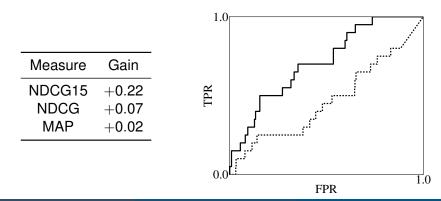
Gain
+0.22
+0.07 +0.02

Indri weighted query operator

Original query

Topic expansion

ROC curve (true/false positive rates)



Andrzejewski and Buttler (LLNL)

- 6 newswire corpora, 814K documents total
- Learn T = 500 topics per corpus
- 850 queries total (some overlap)
- Assume user will select "right" topic (if presented)

- Avg number of topics shown = 7.76
- $P(h) \approx 40\%, P(s|h) \approx 40\% \rightarrow P(h \land s) = 15.6\%$
- Adding related topics helps:
- (else P(h∧.s) = 10.9%, avg shown = 2.70)
- Discarding dropped does not hurt (else $P(h \land s) = 16.8\%$, avg shown = 9.7%

- 6 newswire corpora, 814K documents total
- Learn T = 500 topics per corpus
- 850 queries total (some overlap)
- Assume user will select "right" topic (if presented)

- Avg number of topics shown = 7.76
- $P(h) \approx 40\%, P(s|h) \approx 40\% \rightarrow P(h \wedge s) = 15.6\%$
- Adding related topics helps:
- (else P(h∧.s) = 10.9%, avg shown = 2.70)
- Discarding dropped does not hurt (else P(h \cdots) = 16.8%, avg shown = 9.79

Experimental results

TREC datasets

- 6 newswire corpora, 814K documents total
- Learn T = 500 topics per corpus
- 850 queries total (some overlap)
- Assume user will select "right" topic (if presented)

- Avg number of topics shown = 7.76
- $P(h) \approx 40\%, P(s|h) \approx 40\% \rightarrow P(h \land s) = 15.6\%$
- Adding related topics helps:
- (else P(h∧.s) = 10.9%, avg shown = 2.70)
- Discarding dropped does not hurk (else P(h∧s) = 16.8%, avg shown = 9.7%)

Experimental results

TREC datasets

- 6 newswire corpora, 814K documents total
- Learn T = 500 topics per corpus
- 850 queries total (some overlap)
- Assume user will select "right" topic (if presented)

- Avg number of topics shown = 7.76
- $P(h) \approx 40\%, P(s|h) \approx 40\% \rightarrow P(h \land s) = 15.6\%$
- Adding related topics helps:
- (else P(h∧.s) = 10.9%, avg shown = 2.70)
- Discarding dropped does not hud: (else $P(h \land s) = 16.8\%$, avg shown = 9.79

- 6 newswire corpora, 814K documents total
- Learn T = 500 topics per corpus
- 850 queries total (some overlap)
- Assume user will select "right" topic (if presented)

- Avg number of topics shown = 7.76
- $P(h) \approx 40\%, P(s|h) \approx 40\% \rightarrow P(h \land s) = 15.6\%$
- Adding related topics helps
- (else P(h∧s) = 10.9%, avg shown = 2.70)
- Discarding dropped does not hud: (else $P(h \land s) = 16.8\%$, avg shown = 9.7%

- 6 newswire corpora, 814K documents total
- Learn T = 500 topics per corpus
- 850 queries total (some overlap)
- Assume user will select "right" topic (if presented)

- Avg number of topics shown = 7.76
- $P(h) \approx 40\%, P(s|h) \approx 40\% \rightarrow P(h \land s) = 15.6\%$
- Adding related topics helps
- (else $P(h \land s) = 10.9\%$, avg shown = 2.70)
- Discarding dropped does not hurt (else P(h ∧ s) = 16.8%, avg shown = 9.7

- 6 newswire corpora, 814K documents total
- Learn T = 500 topics per corpus
- 850 queries total (some overlap)
- Assume user will select "right" topic (if presented)

- Avg number of topics shown = 7.76
- $P(h) \approx 40\%, P(s|h) \approx 40\% \rightarrow P(h \land s) = 15.6\%$
- Adding related topics helps
- (else $P(h \land s) = 10.9\%$, avg shown = 2.70)
- Discarding dropped does not hurt (else P(h ∧ s) = 16.8%, avg shown = 9.3

- 6 newswire corpora, 814K documents total
- Learn T = 500 topics per corpus
- 850 queries total (some overlap)
- Assume user will select "right" topic (if presented)

• Summary (*h* = a *helpful* topic exists, *s* = we show it to the user)

- Avg number of topics shown = 7.76
- $P(h) \approx 40\%, P(s|h) \approx 40\% \rightarrow P(h \land s) = 15.6\%$
- (else $P(h \land s) = 10.9\%$, avg shown = 2.70)
- Discarding dropped does not hurt

(else $P(h \land s) = 16.8\%$, avg shown = 9.79)

- 6 newswire corpora, 814K documents total
- Learn T = 500 topics per corpus
- 850 queries total (some overlap)
- Assume user will select "right" topic (if presented)

• Summary (*h* = a *helpful* topic exists, *s* = we show it to the user)

- Avg number of topics shown = 7.76
- $P(h) \approx 40\%, P(s|h) \approx 40\% \rightarrow P(h \land s) = 15.6\%$
- (else $P(h \land s) = 10.9\%$, avg shown = 2.70)
- Discarding dropped does not hurt

(else $P(h \land s) = 16.8\%$, avg shown = 9.79)

- 6 newswire corpora, 814K documents total
- Learn T = 500 topics per corpus
- 850 queries total (some overlap)
- Assume user will select "right" topic (if presented)

• Summary (*h* = a *helpful* topic exists, *s* = we show it to the user)

- Avg number of topics shown = 7.76
- $P(h) \approx 40\%, P(s|h) \approx 40\% \rightarrow P(h \land s) = 15.6\%$

(else $P(h \land s) = 10.9\%$, avg shown = 2.70)

Discarding dropped does not hurt

(else $P(h \land s) = 16.8\%$, avg shown = 9.79)

- 6 newswire corpora, 814K documents total
- Learn T = 500 topics per corpus
- 850 queries total (some overlap)
- Assume user will select "right" topic (if presented)

- Avg number of topics shown = 7.76
- $P(h) \approx 40\%, P(s|h) \approx 40\% \rightarrow P(h \land s) = 15.6\%$
- Adding related topics helps (else P(h ∧ s) = 10.9%, avg shown = 2.70)
- Discarding dropped does not hurt (else P(h ∧ s) = 16.8%, avg shown = 9.79)

- 6 newswire corpora, 814K documents total
- Learn T = 500 topics per corpus
- 850 queries total (some overlap)
- Assume user will select "right" topic (if presented)

- Avg number of topics shown = 7.76
- $P(h) \approx 40\%, P(s|h) \approx 40\% \rightarrow P(h \land s) = 15.6\%$
- Adding **related** topics helps (else $P(h \land s) = 10.9\%$, avg shown = 2.70)
- Discarding dropped does not hurt (else P(h ∧ s) = 16.8%, avg shown = 9.79)

Even when topics do not improve NDCG and friends

they still may be useful/informative.

Even when topics do *not* improve NDCG and friends . . . they still may be useful/informative.

Conclusions

- Explicit topic feedback can improve relevance
- Selection approach can find relevant topics

Future work

- Better topics? (fancier topic models / user guidance)
- Better topic selection? (user modeling, learning to rank)
- Validate assumptions and presentation strategy (user study)
- Compare / combine with implicit topic usage

Conclusions

- Explicit topic feedback can improve relevance
- Selection approach can find relevant topics
- Future work
 - Better topics? (fancier topic models / user guidance)
 - Better topic selection? (user modeling, learning to rank)
 - Validate assumptions and presentation strategy (user study)
 - Compare / combine with implicit topic usage

- Explicit topic feedback can improve relevance
- Selection approach can find relevant topics
- Future work
 - Better topics? (fancier topic models / user guidance)
 - Better topic selection? (user modeling, learning to rank)
 - Validate assumptions and presentation strategy (user study)
 - Compare / combine with implicit topic usage

- Explicit topic feedback can improve relevance
- Selection approach can find relevant topics

Future work

- Better topics? (fancier topic models / user guidance)
- Better topic selection? (user modeling, learning to rank)
- Validate assumptions and presentation strategy (user study)
- Compare / combine with implicit topic usage

- Explicit topic feedback can improve relevance
- Selection approach can find relevant topics
- Future work
 - Better topics? (fancier topic models / user guidance)
 - Better topic selection? (user modeling, learning to rank)
 - Validate assumptions and presentation strategy (user study)
 - Compare / combine with implicit topic usage

- Explicit topic feedback can improve relevance
- Selection approach can find relevant topics
- Future work
 - Better topics? (fancier topic models / user guidance)
 - Better topic selection? (user modeling, learning to rank)
 - Validate assumptions and presentation strategy (user study)
 - Compare / combine with implicit topic usage

- Explicit topic feedback can improve relevance
- Selection approach can find relevant topics
- Future work
 - Better topics? (fancier topic models / user guidance)
 - Better topic selection? (user modeling, learning to rank)
 - Validate assumptions and presentation strategy (user study)

Compare / combine with implicit topic usage

- Explicit topic feedback can improve relevance
- Selection approach can find relevant topics
- Future work
 - Better topics? (fancier topic models / user guidance)
 - Better topic selection? (user modeling, learning to rank)
 - Validate assumptions and presentation strategy (user study)
 - Compare / combine with implicit topic usage

highway funds

Submit

BUDGET ASKS \$47.8 BILLION: NOT

AUTHOR: AUTHORNAME | INSTITUTION: AFFILIATIONS | PUBLICATION PUBLISHED BY | DATE: PUBLICATION DATE | ABSTRACT »

ORANGE COUNTY FOCUS: BREA: CITY STAFF LAUDED AS COUNCIL OKS BUDGET

AUTHOR: AUTHORNAME | INSTITUTION: AFFILIATIONS | PUBLICATION PUBLISHED BY | DATE: PUBLICATION DATE |

GOVERNOR'S ADEQUATE, HE SAYS, CITING RESTRICTIONS

Topics

Refine Query

Your Query: highway funds

q=highway+funds&defType=dismax

Executing query now...

O Topic: 408

- car pool lanes
- car pool, san diego
- traffic, freeway, road, highway

O Topic: 76

estimated cost million

Web demo: Kevin Lawrence (Florida A&M)

This work was performed under the auspices of the U.S.

highway funds

Submit

GOVERNOR'S BUDGET ASKS \$47.8 BILLION; NOT ADEQUATE, HE SAYS, CITING RESTRICTIONS

AUTHOR: <u>AUTHORNAME</u> | INSTITUTION: <u>AFFILIATIONS</u> | PUBLICATION <u>PUBLISHED BY</u> | DATE: PUBLICATION DATE | <u>ABSTRACT</u> »

ORANGE COUNTY FOCUS: BREA; CITY STAFF LAUDED AS COUNCIL OKS BUDGET

AUTHOR: AUTHORNAME | INSTITUTION: AFFILIATIONS | PUBLICATION PUBLISHED BY | DATE: PUBLICATION DATE | ABSTRACT \gg

Topics

Refine Query

Your Query: highway funds

q=highway+funds&defType=dismax

Executing query now...

O Topic: 408

- car pool lanes
- car pool, san diego
- traffic, freeway, road, highway

O Topic: 76

estimated cost million

Acknowledgments

- Web demo: Kevin Lawrence (Florida A&M)
- This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-PRES-491932

• Short answer: no (well, I couldn't get it to work...)

• Linear / logistic regression

Feature	Interpretation
$PMI(t)$ $Entropy(P(d t))$ $\log(P(q t))$ $\log(\sum_{d \in D_q} \theta_d(t))$	topic quality document-concentration of topic query probability under the topic topic probability across top documents

- Short answer: no (well, I couldn't get it to work...)
- Linear / logistic regression

Feature	Interpretation
$\begin{array}{c} PMI(t) \\ Entropy(P(d t)) \\ \log(P(q t)) \\ \log(\sum_{d \in D_q} \theta_d(t)) \end{array}$	topic quality document-concentration of topic query probability under the topic topic probability across top documents

- Short answer: no (well, I couldn't get it to work...)
- Linear / logistic regression

Feature	Interpretation
$\begin{array}{c} PMI(t) \\ Entropy(P(d t)) \\ \log(P(q t)) \\ \log(\sum_{d \in D_q} \theta_d(t)) \end{array}$	topic quality document-concentration of topic query probability under the topic topic probability across top documents

- Short answer: no (well, I couldn't get it to work...)
- Linear / logistic regression

Feature	Interpretation
$\begin{array}{c} PMI(t) \\ Entropy(P(d t)) \\ \log(P(q t)) \\ \log(\sum_{d \in D_q} \theta_d(t)) \end{array}$	topic quality document-concentration of topic query probability under the topic topic probability across top documents

• Could also allow user to mark topic as not relevant

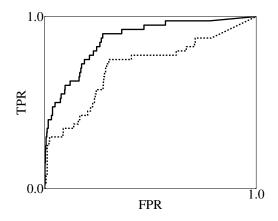
- Use Indri #not operator to form new query
- Intuitively appealing, but did not seem to help in experiments...

- Could also allow user to mark topic as not relevant
- Use Indri #not operator to form new query
- Intuitively appealing, but did not seem to help in experiments...

- Could also allow user to mark topic as not relevant
- Use Indri #not operator to form new query
- Intuitively appealing, but did not seem to help in experiments...

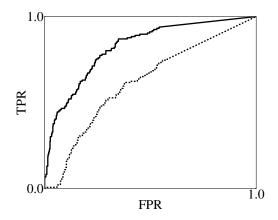
"law enforcement dogs"

Label	Terms
heroin	seized kg cocaine, drug traffickers, kg heroin, police, arrested, drugs, marijuana



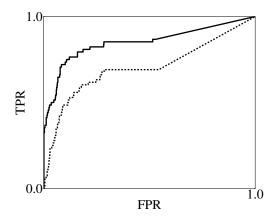
"King Hussein, peace"

Label	Terms
Amman	Majesty King Husayn, al Aqabah, peace process, Jordan, Jordanian, Amman, Arab



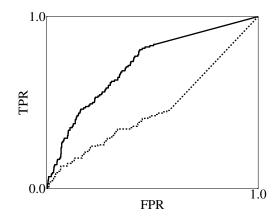
"bank failures"

Label	Terms
FDIC	Federal Deposit Insurance, William Seidman, Insurance Corp, banks, bank, FDIC, banking



"US-USSR Arms Control Agreements"

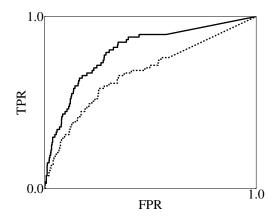
Label	Terms
missile	Strategic Defense Initiative, United States, arms control, treaty, nuclear, missiles, range



"Possible Contributions of Gene Mapping to Medicine"

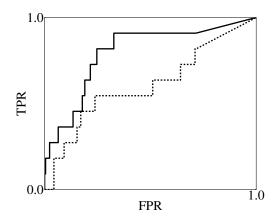
Label Terms

called British journal Nature, immune system, genetically engineered, cells, research, researchers, scientists



"New Space Satellite Applications"

Label	Terms
communications	European Space Agency, Air Force, Cape Canaveral, satellite, launch, rocket, satellites



... governmental strategy of attracting foreign direct investment,...

...governmental strategy of attracting foreign direct investment,...

...governmental strategy of attracting foreign direct investment,...

...governmental strategy of attracting foreign direct investment ,...