
Integrating Data from Disparate Sources: A Mass Collaboration Approach

Robert McCann, Alexander Kramnik, Warren Shen, Vanitha Varadarajan, Olu Sobulo, AnHai Doan
University of Illinois, USA�

rlmccann, kramnik, whshen, varadara, sobulo, anhai � @cs.uiuc.edu

The rapid growth of distributed data at enterprises and on
the WWW has fueled significant interest in building data
integration systems. Such a system provides users with a
uniform query interface (called mediated schema) to a mul-
titude of data sources, thus freeing them from manually
querying each individual source.

Figure 1 illustrates a data integration system that helps
users find houses on the real-estate market. Given a user
query over the mediated schema, the system uses a set of
semantic mappings to translate it into queries over the local
schemas of the data sources. Next, it executes the queries
using wrapper programs attached to the sources, then com-
bines and returns the results to the user.

Today, constructing such a data integration system re-
quires the system builder to execute a series of tasks, such
as finding data sources (e.g., on the Web), creating the medi-
ated schema, constructing wrappers, and matching the me-
diated schema with the schemas of the sources. Sources
often change over time. Thus, after the system is deployed,
the builder must monitor it continuously, to detect and re-
pair system components (e.g., wrappers, mappings) that be-
come broken due to changes.

The above tasks are well-known to be very labor inten-
sive. Hence, the problem of automating them has received
much attention and numerous semi-automatic tools have
been developed (e.g., [5]). However, current integration
tools still have limited accuracy. Thus, even with their help,
the system builder must still spend an enormous amount of
labor executing these tasks. This in turn has incurred exor-
bitant costs of ownership for data integration systems, and
severely limited their deployment in practice. Today, at en-
terprises, where data integration is frequently a must, it is
carried out at a tremendous cost, often at 35% of the IT
budget [2]. On the Web, where data integration systems
can greatly simplify the search for information, there are
currently few such systems and at limited scales. Indeed,
large-scale or long-running data integration systems often
cannot be built because the construction and maintenance
workload quickly overwhelms the builder (or even a team
of builders).

Find houses with
four bathrooms
and price under
$500,000

mediated schema
homeseekers.com

wrappersource schema

greathomes.com

wrappersource schema

realestate.com

wrappersource schema

Figure 1. A data integration system in the real
estate domain.

The MOBS Project

To address the above problems, in the MOBS (Mass
Collaboration to Build Systems) project at the University
of Illinois we are developing solutions that learn from the
multitude of users in the integration environment to improve
the accuracy of integration tools. The improved accuracy
in turn can significantly reduce the workload of the system
builder. In developing MOBS we address the following key
challenges:

Obtaining User Participation: The first challenge
of MOBS is to secure user participation. We show
that in many data integration scenarios, including intra-
organization, inter-organization, and online communities,
the system builder can naturally recruit participants. For
instance, within an organization the future users of the sys-
tem are often willing to help, especially given that they are
the data experts.

In addition to recruiting willing users, MOBS can also
obtain user participation via “payment” schemes, in which
users “pay” to use certain services. For example, in cer-
tain settings the builder can design an integration system
such that whenever a user of the system poses a query, he
or she must “pay” for it, by answering a simple question
before being allowed to see the query result. The answers
to such questions are then used to help the builder main-
tain and expand the system. This scheme is reminiscent of
similar “payment” schemes for online news services (e.g.,�������
	�� ��
�) and for eliminating “freeloaders” from peer-to-
peer systems.

Learning from User Participation: In the next step,
given a semi-automatic tool � for an integration task � ,
we consider how to modify the tool to learn from the above
users. Since most such users are “data integration illiterate”,

we modify � to ask them relatively simple questions, which
have low cognitive load and can be answered quickly. The
questions can help � in many aspects, such as gathering ad-
ditional training data, soliciting simple domain constraints
that � can utilize, and verifying intermediate as well as fi-
nal predictions that � makes. By utilizing answers to these
questions, � can increase its accuracy, thereby reducing the
builder’s workload on task � . The following example illus-
trates the approach.

Consider building an integration system such as the one
in Figure 1. A builder may begin by deploying a tool
which crawls the Web to find query interfaces into real-
estate databases. Current tools however often return many
false positives, forcing the builder to sift through a large
number of forms to find desired query interfaces. To re-
duce the number of false positives, such a tool can be mod-
ified so that when it discovers a form � , instead of imme-
diately showing � to the builder, it shows � to the users
and asks, “Is � a query interface into real-estate listings?”
Intuitively, if enough users say “no”, then the tool can con-
clude with high confidence that � is not a real-estate query
interface. It can then drop � , removing unnecessary work
for the builder.

If enough users say “yes”, then the tool presents � to the
builder. After verifying that � is indeed about real-estate
listings, the builder may employ another tool to construct a
wrapper for the data source (represented by) � . Current
wrapper tools are frequently brittle, in part because they
often must search a huge space of possible wrappers, and
make decisions with insufficient information [1]. In such
cases, a tool can ask users questions such as “Is this text
fragment a part of the data or a part of the wrapper tem-
plate?”, then use the answers to significantly cut down the
search space and build more accurate wrappers.

Next, the builder may want to match the schema of
source � with the mediated schema � . Here, the employed
matching tool can be modified to learn from the users in
many ways. For instance, it can learn simple domain in-
tegrity constraints. From examining the values of attributes
lot-area and house-size of � , it can ask the question “Is
lot-area always greater than house-size?” A confirmative
answer from the users will result in an integrity constraint
that the tool can use to disambiguate matches. The con-
straint can also be re-used in subsequent matching tasks. As
another example, the tool can ask users to verify its matches.
Suppose it predicts that house-size matches lot-size, then
the match can be passed to the users to be verified.

Finally, once the system has been deployed, the builder
may employ a tool to detect and repair broken wrappers.
Several such tools have been developed (e.g., [3]). The tools
however have a high rate of false alarms, thus making the
monitoring task of the builder very labor intensive. To re-
duce this workload, the tools can be modified so that a non-

urgent false alarm will first be verified by the users (e.g., by
showing the output of the wrapper and asking if it is dis-
playing garbage data). Only when enough users say “yes”
is the alarm presented to the builder.

We have considered the tasks of source discovery and
schema matching (including both 1-1 and complex match-
ing), and developed solutions that modify tools to these
tasks to learn from users.

Combining User Answers: In the final challenge, since
users can be ignorant or downright malicious (especially for
Internet applications), it is important that we be able to so-
licit multiple answers for each question � (that a tool asks),
then merge the noisy answers into a correct answer for �
with high probability. We have developed a solution to this
problem, which employs questions with known answers to
evaluate the reliability of each user, then combines user an-
swers based on their reliability. We formulate the solution
in a probabilistic setting based on dynamic Bayesian net-
works, and provide theoretical guarantees for many com-
mon integration cases.

We have evaluated MOBS with extensive real-world and
simulation experiments that demonstrate the utility of the
approach. On the integration tasks of source discovery and
schema matching, MOBS improves tool accuracies by 9 -
60%. The accuracy gain in turn reduces the builder work-
load by 29 - 88%. These experiments show that users have
low workload, that they can answer questions quickly, and
that their answers are useful. The experiments also show
that we can construct some simple, ongoing systems on
the Web that require very little workload from the system
builder. Our initial work on MOBS is presented in [4], and
the work described above is reported in detail in an upcom-
ing technical report.

For future work, we plan to extend MOBS to other tasks
(e.g., wrapper construction, system maintenance), and pro-
vide more extensive real-world evaluation. We are also
studying settings in which data integration systems can be
designed so that they can learn from traces of user activities
to improve integration accuracy.

References
[1] V. Crescenzi, G. Mecca, and P. Merialdo. RoadRunner: To-

wards automatic data extraction from large web sites. In
VLDB, 2001.

[2] C. Knoblock and S. Kambhampati. Tutorial on information
integration on the web. In the Nat. Conf. on AI (AAAI), 2002.

[3] K. Lerman, S. Minton, and C. A. Knoblock. Wrapper main-
tenance: a machine learning approach. In Journal of AI Re-
search, 2003.

[4] R. McCann, A. Doan, A. Kramnik, and V. Varadarajan. Build-
ing data integration systems via mass collaboration. In SIG-
MOD WebDB, 2003.

[5] E. Rahm and P. Bernstein. On matching schemas automati-
cally. In VLDB Journal, 10(4), 2001.

