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Abstract

Commodity operating systems achieve good perfor-

mance by running device drivers in-kernel. Unfortu-

nately, this architecture offers poor fault isolation. This

paper introduces microdrivers, which reduce the amount

of driver code running in the kernel by splitting driver

functionality between a small kernel-mode component

and a larger user-mode component. This paper presents

the microdriver architecture and techniques to refactor

existing device drivers into microdrivers, achieving most

of the benefits of user-mode drivers with the performance

of kernel-mode drivers. Experiments on a network driver

show that 75% of its code can be removed from the ker-

nel without affecting common-case performance.

1 Introduction

Bugs in device drivers are a major source of reliabil-

ity problems in commodity operating systems. For in-

stance, a recent Microsoft report indicates that as many

as 85% of failures in Windows XP stem from buggy de-

vice drivers [19].

The root of the problem is the architecture of commod-

ity operating systems. They are designed as monolithic

kernels with all device drivers (and other kernel exten-

sions), residing in the same address space as the kernel.

This architecture results in good performance because in-

voking driver functionality is as easy and efficient as a

function call. Unfortunately, this also results in bloated

operating systems and poor fault isolation. For exam-

ple, kernel extensions constitute over 70% of Linux ker-

nel code [6] (a large fraction of these are device drivers),

while over 35, 000 drivers exist on Windows XP desk-

tops [18]. A single bug exercised in any one of these

extensions suffices to crash the entire operating system.

Several architectures have been proposed to isolate

faults in device drivers [1, 9, 10, 16, 17, 22, 25]. For

example, microkernels run device drivers as user-mode

processes. A bug exercised in a device driver only re-

sults in the failure of the user-mode process running that

driver. This approach, however, has two key problems.

First, this architecture is not compatible with commodity

operating systems, which are designed as monolithic ker-

nels. Providing support for user-mode device drivers in

commodity operating systems thus requires kernel mod-
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Figure 1: Microdrivers split device driver func-

tionality between a kernel-mode component and a

user-mode component.

ifications and rewriting device drivers [7, 14]. Second,

switching between the kernel and a user-mode device

driver involves the costly overhead of changing protec-

tion domains. For devices such as high-throughput net-

work cards, this can result in significant latencies and

performance penalties [22, 23]. A common escape hatch

employed in such cases is to implement drivers within

the kernel, which defeats the benefit afforded by micro-

kernels.

This paper presents a new architecture for device

drivers called microdrivers. Microdrivers seek the mid-

dle ground between monolithic kernels and microker-

nels, and improve reliability while maximizing perfor-

mance. In a microdriver, the functionality of a device

driver is split between a kernel-mode component and a

user-mode component (Figure 1). The kernel-mode com-

ponent contains critical and frequently used functional-

ity, such as interrupt handling and performance-critical

operations (e.g., sending and receiving network packets

and processing SCSI commands), while the user-mode

component contains non-critical and infrequently used

functionality (e.g., startup/shutdown and error-handling).

The user-mode component is implemented as a stan-

dalone process that is called from the kernel-mode com-

ponent. Together, they provide the functionality of a tra-

ditional device driver.

Microdrivers are motivated by a simple mantra: re-

duce the amount of code running in the kernel to improve



its reliability. As discussed in Section 2, more than 70%

of device driver code contains non-critical functionality.

By relegating this code to a user-mode process, a micro-

driver reduces the amount of code running in the kernel

and improves the reliability of the system as a whole.

In addition, because the kernel-mode component of a

microdriver is much smaller than the entire driver, it is

amenable to verification and code audits.

Perhaps the most important aspect of microdrivers

is compatibility with commodity operating system

architectures—device drivers written for monolithic ker-

nels can be refactored nearly automatically into micro-

drivers. This provides a path to execute device drivers

written for commodity operating systems in user-mode

without sacrificing performance. Prior efforts at user-

mode device drivers have either required rewriting the

driver completely [7, 14] or impose significant perfor-

mance penalty [23]. We show that program analy-

sis techniques can automatically identify critical func-

tions in a device driver, following which a semantics-

preserving transformation can split the driver into a user-

mode and a kernel-mode component. We discuss the

design and implementation of such a refactoring tool in

Section 4. We used this tool to refactor the e1000 device

driver for the Intel PRO/1000 gigabit network adapter

into a microdriver. The kernel-mode component of this

microdriver contains just 25% of the code of the entire

microdriver. Our preliminary experience with this mi-

crodriver indicates that overheads for common-case per-

formance and CPU utilization are negligible.

2 The case for microdrivers

Because device drivers communicate with I/O devices,

their performance is critical to ensure fast I/O. Con-

ventional wisdom holds that performance-critical func-

tionality must be implemented in the kernel. Even un-

dergraduate texts preach that I/O algorithms must be

implemented in the kernel for good performance [21,

page 427]. Unfortunately, a popular interpretation of this

tenet is that device drivers must reside in the kernel. This

has lead to the monolithic and unreliable operating sys-

tems that we see today.

Surely, the entire driver does not reside on the

performance-critical path? To answer this question, we

conducted a study of 455 device drivers, comprising net-

work, SCSI and sound drivers from the Linux 2.6.18 ker-

nel, and identified performance-critical functions in each

of them. To do so, we extracted the static call-graph

of each driver—this graph has an edge f→g if func-

tion f can potentially call function g. We resolved calls

via function pointers using a simple pointer analysis that

is conservative in the absence of type-casts—each func-

tion pointer can resolve to any function whose address

Driver family Drivers analyzed Critical funcs

Network 134 27.8%

SCSI 49 26.1%

Sound 272 7.8%

Figure 2: Classification of functions in different

families of Linux device drivers.

is taken, and whose type signature matches that of the

function pointer.

We then identified a set of critical root functions that

are driver entrypoints that must execute in the kernel

for high performance. Critical root functions are those

that handle interrupts or execute at other high-priority

levels (e.g., tasklets, bottom-halves), and functions that

supply data to or receive data from a device. We de-

fine performance-critical functions to be critical root

functions plus the functions that they transitively call.

Given a template of the entrypoints, critical root func-

tions can be identified automatically for each family of

drivers: e.g., functions that transmit network packets are

critical for network drivers, while functions that process

SCSI commands are critical for SCSI device drivers. We

wrote a tool to automatically identify critical root func-

tions (based upon their type signatures) and the functions

that they transitively call.

Figure 2 shows the results of our study. We found

that fewer than 30% of the functions in a driver are per-

formance critical. The remaining functions are called

only occasionally, e.g., during device startup/shutdown,

to configure device parameters, and to obtain diagnostic

information. Consider, for example, the e1000 driver for

the Intel PRO/1000 gigabit network adapter, one of the

drivers considered in our study. Critical root functions

for this driver include the interrupt handler, the function

to transmit network packets, and callback functions reg-

istered with the kernel to poll the device. This driver

contains 274 functions containing approximately 15, 100

lines of source code. Of these, just 25 functions contain-

ing approximately 1, 550 lines of source code were clas-

sified as critical. It suffices to execute just these func-

tions in the kernel for good performance. Relegating

the remaining functions, which handle startup/shutdown

and get/set device parameters, to a user-mode process

will greatly reduce the amount of code running in kernel

space without adversely impacting common-case perfor-

mance. Note that our estimate of critical device driver

code is conservative, because we only identify critical

functions. It is likely that a finer-grained approach will

show that even less code is on the critical path.

Three factors lead us to believe that implementing

non-critical functionality as a user-mode process will

also improve system reliability and availability as a

whole.



First, fault isolation improves. Any bugs that crash the

user-mode process of a microdriver will potentially ren-

der the corresponding device unusable but will not af-

fect the rest of the operating system. The device driver

can then be restarted in isolation to restore operation of

the device. Note that because the kernel-mode compo-

nent of a microdriver implements critical device func-

tionality, such as interrupt processing, it is possible to

keep the device operational even if the user-mode pro-

cess crashes. For example, the kernel-mode component

can implement error-checking code that detects that the

user-mode process has crashed, and wait until the pro-

cess restarts. However, as it does so, it can still serve

other requests to/from the device.

Second, because the kernel-mode component of the

microdriver implements critical and heavily-used func-

tionality, this code is likely more heavily tested than the

user-mode component. Further, because the kernel-mode

component is a relatively small entity, it can either be

verified, subject to thorough code audits, or be protected

with mechanisms such as SFI [24].

Third, because the kernel-mode component and the

user-mode component of a microdriver communicate via

a narrow interface (as desribed in Section 3), data passed

between the kernel- and user-mode components can be

sanity-checked for errors. For example, a bug in the user-

mode component may introduce a dangling pointer in a

data structure that it then passes to the kernel. However,

the corrupted data structure can be detected using error-

checking code implemented at the interface, thus poten-

tially preventing corruption of kernel data structures.

Indeed, the tenet that reduced code in the kernel means

improved reliability has also been recognized by many

others [4, 7, 9, 13], and is an important motivation for

microkernels. This has resulted in several services, that

were previously implemented in the kernel, being imple-

mented in user-mode (e.g., kernel module loaders, AFS).

There have also been several recent efforts to redesign

device drivers (in particular, graphics drivers) with the

goal of reducing the amount of code running in the ker-

nel [4, 13].

Finally, microdrivers also allow vendors to take ad-

vantage of user-level tools such as profilers and debug-

gers during the driver development process. Comparable

tools for developing kernel code are fewer in number and

not as advanced because kernel programming represents

a smaller market and a more challenging target.

Of course, microdrivers are not a panacea for device

driver reliability problems. A bug in the kernel-mode

component of a microdriver could still crash the operat-

ing system. It is also possible that by splitting function-

ality between a user-mode and kernel-mode component,

microdrivers can expose otherwise latent bugs. For ex-

ample, a latent race condition in a device driver could

potentially be exposed in its microdriver implementation.

3 Architecture of a microdriver

A microdriver consists of a kernel-mode component that

implements critical functionality and a user-mode pro-

cess that implements non-critical functionality. Device

driver functionality is split between the kernel-mode and

user-mode components at function boundaries. The two

components communicate using an LRPC-like mecha-

nism [3]. In the kernel-mode component, direct calls to

functions implemented in the user-mode component are

replaced with upcalls through stubs. Stubs marshal data

structures accessed by the called function and unmar-

shal them when the call returns. A symmetric downcall

mechanism enables the user-mode component to invoke

kernel functions. To handle multiple requests from the

kernel-mode component, the user-mode process is mul-

tithreaded.

An object tracker, similar to the one used by

Nooks [22], synchronizes copies of a data structure in

the kernel’s address space and the user-mode process’

address space. It has three main functions.

First, the object tracker is invoked during marshal-

ing/unmarshaling to translate pointers between address

spaces. This ensures that updates to a data structure in

one address space are reflected on its copy in the other

address space. Doing so is challenging for complex data

structures such as arrays, whose elements are accessed

as offsets from the start of the data structure. The object

tracker must explicitly store the range of such data struc-

tures and ensure that accesses via offsets are translated

correctly between address spaces.

Second, the object tracker ensures that data structures

allocated/deallocated in one address space are also al-

located/deallocated in the other. Allocations are dealt

with during pointer translation—a new data structure is

allocated and initialized in an address space if no cor-

responding copy is found in that address space. Deal-

ing with deallocations is more challenging. Deallocator

functions must update the object tracker’s database by re-

moving the entry for the data structure being deallocated.

Third, the object tracker manages synchronization of

shared data structures. Two copies of a shared data struc-

ture can exist in a microdriver, one in each address space,

only one of which must be modified at any time. To sup-

port concurrent accesses to such data structures, the user-

mode process must synchronize with the kernel to ac-

quire a lock on a shared data structure. The object tracker

must ensure that any updates to a shared data structures

in one address space are reflected to its copy in the other

address space.

In addition to the basic functions described above, the

object tracker can optionally include error-checking code



to check for a variety of common data structure cor-

ruptions, such as dangling pointers and potential null-

pointer dereferences.

Several enhancements are possible to the basic archi-

tecture of a microdriver. Functions that are repeatedly

called from both the kernel-mode component and user-

mode component can potentially be replicated in both

components, thus avoiding the overhead of an address-

space change each time the function is accessed. Sim-

ilarly, a frequently-accessed data structure can be allo-

cated in a shared memory region that is accessible both

to the kernel and the user-mode process. Finally, to en-

sure fast operation of the user-mode process, the operat-

ing system can pin the process’ pages to memory.

4 Refactoring device drivers to micro-

drivers

Microdrivers present the same interface to the kernel as

traditional device drivers, and are thus compatible with

commodity operating systems. Moreover, code to im-

plement upcalls, downcalls, marshaling and unmarshal-

ing follows a standard template and can be automatically

generated. This section presents the design of a tool that

statically refactors traditional device drivers into micro-

drivers (see Figure 3). Such a tool preserves the invest-

ment in existing device drivers and provides a migration

path to create microdrivers.

The refactoring tool has two functions. First, it must

analyze the device driver and determine which functions

are critical. This is achieved by the splitter. Second,

it must move the remaining (non-critical) functions to a

user-mode component, and generate code for communi-

cation between the kernel-mode and user-mode compo-

nents. This is achieved by the code generator.

The splitter. The splitter analyzes the device driver

and determines how functions implemented in the driver

must be split between kernel-mode and user-mode. It

builds a static call-graph of the driver (including edges

for indirect calls), identifies critical root functions, and

classifies functions transitively called by them as critical,

as described in the study in Section 2. Critical root func-

tions need to be identified just once for each family of

device drivers.

While this simple propagation-based approach to iden-

tify critical functions has worked well for drivers that

we have considered so far, the splitter can employ more

sophisticated algorithms that use dynamically gathered

profile information. For example, critical functions can

be inferred by solving an optimization problem on the

static call-graph modeled as a flow network [2] with

weights on edges and nodes. Edge weights denote call

frequencies (obtained by profiling) and node weights are

proportional to the number of lines of code in the func-

tion denoted by the node. The goal is to find a cut in
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Figure 3: Design of a tool to refactor traditional

device drivers into microdrivers.

the graph under the constraint that all nodes represent-

ing critical root functions must appear on one side of the

cut (the critical side). Additional constraints can also be

imposed, e.g., that a critical section must not be split be-

tween the kernel-mode and user-mode components. Fur-

ther, the cut should be optimal: it should mimimize both

the weight of edges crossing the cut and the weight of

nodes on the critical side of the cut. All nodes on the crit-

ical side of the cut are marked critical, and the remaining

nodes are non-critical. Intuitively, such a cut minimizes

the number of switches between protection domains and

also the amount of code running in the kernel.

The code generator. The code generator uses the crit-

ical functions identified and emits code for the kernel-

mode and user-mode components. It also generates all

the code to handle upcalls and downcalls, including stubs

and code to marshal/unmarshal data structures. The ob-

ject tracker and threadpool implementation (for the mul-

tithreaded user-mode component) are common to all mi-

crodrivers and need to be written just once.

The code generator needs marshaling annotations to

guide the generation of marshaling/unmarshaling code.

These annotations are used to specify the length of dy-

namically allocated arrays, linked lists and other com-

plex data structures. The code generator employs a con-

servative static analysis algorithm to identify variables

that represent such data structures and prompts the user

to provide these annotations. This potentially reduces the

traditional burden associated with annotation, because

the user does not have to provide annotations before-

hand, but only as guided by the code generator, and only

for data structures that cross the user/kernel boundary.

For example, for the e1000 device driver, the code gen-

erator automatically infers that variables of type struct

e1000 rx ring and struct e1000 tx ring (among oth-

ers) are arrays. These denote ring buffers that are al-

located by the e1000 driver at startup. It requests mar-

shaling annotations for each function call that crosses

address-spaces and potentially modifies these data struc-

tures. The user must supply marshaling annotations that

determine the length of these data structures (or supply

predicates, e.g., those that determine how to stop travers-

ing a linked list).



TCP-send performance

0

20

40

60

80

100

120

140

1 10 100 1000 10000 20000
Delay in microseconds

C
o

m
p

a
ri

s
o

n
 t

o
 b

a
s

e
li

n
e

Throughput

CPU

Figure 4: Performance of an e1000 microdriver.

5 Implementation and experiments

We have implemented several portions of the microdriver

architecture and the refactoring tool. In particular, the

refactoring tool automatically identifies a split and gen-

erates code for the kernel- and user-mode components.

We have also implemented a static analysis algorithm

to infer where marshaling annotations are necessary and

are currently in the process of integrating this with the

code-generator for marshaling/unmarshaling. To date,

we have applied the tool to several network drivers. Be-

cause our infrastructure is still in development, we report

our experience simulating the operation of an e1000 mi-

crodriver. In particular, we used our tool to generate code

for the kernel- and user-mode components, and ran both

the components in the kernel address-space, using delays

to simulate change of protection domains.

The kernel-mode component of our e1000 microdriver

contains just 25% of the code of the entire microdriver.

In our experiments, we ran the e1000 microdriver on

a dual-core 3Ghz Pentium-D machine running Linux-

2.6.18. We measured network throughput and CPU uti-

lization using netperf to send TCP packets (results for

TCP/receive were similar and are omitted). We used

buffers of size 256KB on both the sending and receiving

side and transmitted 32KB messages. Figure 4 compares

the network throughput and CPU utilization of the e1000

microdriver (with different values for delays) against a

traditional e1000 device driver running under the same

conditions. We observed that the microdriver has neg-

ligible overheads for network throughput and CPU uti-

lization for delays under 10µs. Even with a 20ms delay

(60, 000, 000 machine cycles) we only observed a 6.3%

drop in network throughput and 26% increase in CPU

utilization. These results show that microdrivers reduce

the amount of driver code running in the kernel without

affecting common-case performance, and are thus a vi-

able alternative to traditional device drivers.

6 Related work

Hardware-based isolation. Several architectures use

hardware-based mechanisms to isolate faults in kernel

extensions, in particular device drivers. These include

Nooks [22] and VMM-based mechanisms [11, 15] that

run each driver in its own protection domain. Mi-

crodrivers also use hardware, in particular, the process

boundary, to isolate large parts (but not the entire) device

driver. However, microdrivers can potentially perform

better than these hardware-based isolation mechanisms

because performance-critical code resides and executes

in kernel address-space. In addition, microdrivers also

reduce the amount of code running in the kernel. Micro-

kernels (e.g., [16, 23, 25]) also use the process boundary

to isolate device drivers, and explicitly aim to reduce the

amount of code executing with kernel privilege, but do

so at the cost of reduced performance. Microdrivers of-

fer poorer isolation than microkernels, but promise better

performance.

Several recent efforts have focused on reducing the

amount of driver code running in commodity operat-

ing system kernels [4, 7, 8, 13, 14, 17]. The FUSD

framework [8] and the Microsoft user-mode driver

framework [17] offer APIs to program user-mode de-

vice drivers that communicate with a kernel module.

Chubb [7] and Leslie et al. [14] report user-mode driver

performance comparable to in-kernel device drivers.

However, unlike microdrivers, they require both kernel

support, and rewriting device drivers, making them in-

compatible with existing operating systems.

Language-based isolation. SafeDrive [27] is a recent

effort to improve device driver reliability by preventing

type safety violations (and is similar in spirit to SFI [24]).

SafeDrive reports good performance and is compatible

with commodity operating systems. However, unlike

microdrivers, SafeDrive does not reduce the amount of

in-kernel code. Moreover, it does not offer protection

against bugs that do not violate type safety (e.g., viola-

tion of the locking protocol or other kernel API usage

rules).

Program partitioning. Automatic and semi-automatic

program partitioning techniques, much like the ones in

Section 4, have also been applied to improve application

security [5, 26] and to improve the performance of dis-

tributed components [12] and data-intensive user appli-

cations [20].

7 Conclusions

Microdrivers are a promising alternative to existing ar-

chitectures for device drivers. They can improve system

reliability by reducing the amount of code running in the

kernel without adversely affecting common-case perfor-

mance. Because microdrivers are compatible with com-

modity operating systems, they offer a path for running



existing device drivers in user-mode with good common-

case performance. This paper also shows that program

analysis and transformation techniques can refactor ex-

isting drivers nearly automatically into microdrivers.
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