
Three kinds of places to store values
handout for CS 302 by Will Benton (willb@cs)

three-places.graffle: Created on Tue Sep 19 2006; modified on Wed Feb 14 2007; page 1 of 1Copyright © 2006 Will C. Benton

declaration example uses scope, lifetime, and notes

local variable int x;

The example above declares an
int variable called x. You may
also specify an initial value:

int x = 5;
String f = "foo";

x = 2;

int y = x;

return x;

Local variables belong to a particular method invocation. A
local variable is in scope from the point of declaration until the
end of the enclosing code block.

A value in a local variable is live from the point it is given to
that local until some other value is given to that local (or until
the local goes out of scope). Remember that instances are live
as long as at there is at least one live reference to them.

parameter variable void foo(int z) {
 /* ... */
}

In the example above, z is a
parameter variable.

int y = z;

return x;

Parameter variables also belong to a particular method
invocation. A parameter variable is in scope inside the entire
body of the method that takes it as a parameter. Liveness rules
for values are the same as for local variables.

Something to consider: Does assigning to a parameter variable
have any effect outside of the method? Why or why not?

instance field public class C {
 private int q;
 /* ... */
}

In the example above, q is an
instance field.

this.q = 5;

int x = q;

Instance fields belong to a particular object. A private
instance field is in scope inside any instance method declared in
the same class. (There are also public instance fields, but it's
considered gauche to discuss them in polite company.) The
value contained in a field is live as long as the object containing
the field is live.

Note the special this reference. this is a reserved word and
corresponds to an "implicit parameter" to every instance
method. Basically, it will always refer to the object you're
acting on. Why is this a useful feature? (Hint: look in your
textbook for "shadowing.")

this.q = c.q;

