Classes: School is In Session

Aneesh Karve

Abstraction

o simplified, high level view
e captures essential properties

Encapsulation

e public interface encapsulates
(hides) the private implementation

e allows non-experts to use expert
implementations as a "black box”

Abstraction in automobiles

Automotive

(car)

Electronic
Control Unit

- Desiger " | >
‘t‘h (Capacitors
——— . and Transistors

Abstraction in software

Computer User

K uy

Applications
Programmer

&h

Applications
Programmer

Object-oriented
Programming (OOP)

e way of thinking about complex
broblems

brovides abstraction and therefore
ower

ouild complex programs out of
olack box components

Advantages of OOP

e makes programs easier to think
about

- fewer bugs
— easier to maintain

e can create custom classes (types)

Designing Classes

o first think of behavior (public
interface); worry about
implementation details later

Access modifier

e keyword which determines
availability of class, field, or
method

e examples
—public

—private

private enforces
encapsulation

public class Capsule{
private String secret = "rosebud";

pubilc void changeSecret (String code) {
secret = code;

} [OK to access private
} fields from within class

Capsule c = new Capsule() ;

String stolen=-c-.seeret;

| Can't access from outside |

Class syntax

| access modifier | | class name |

public class RockBand{

fields (also called "data members" or "instance variables")
private String name = "Sound Garden";

constructors
public RockBand(String name){...}

methods
public String getName(){...}

Fields

e each object has the instance fields
specified by its class

e generally, fields should be private

Field declaration

¢ inside of class definition

access modifier name

private int code 33;

optional

Constructors

e create new objects
e initialize instance fields
e have same name as class

Constructor example

public class IPod{
//field
private double cost;
//constructor
public IPod (double price) {
//initialize cost field
cost = price;

Method anatomy

public int addThreeNumbers(int numl, int num2, int num3){...}

return

Method Body

e where the work gets done
e consists of statements

e contains zero or more return
statements

return

e halts method execution
e may return a value

Return type

e type returned by method

public int someMethod() {
int. x doABunchOfCalculations() ;
return x;

public void anotherMethod () {
//code goes here

return; | methods that don't return a
value have return type void

this

e object reference to implicit
parameter

public class IPod({
//field
.-»private double cost;
//constructors ...
/ /method
public setCost(double cosE){
this.cost = cost

references field,
not parameter

Javadoc

e tool for generating HTML
documentation from source code

e use liberally (before each field,

method, class, constructor)

e documentation is essential to
intelligible, reusable code

Javdoc in action

HTML documentation

‘ Java source Javadoc
Provdey Sancuonaley of 8 Shee cooke momsT

Javadoc syntax

Javadoc comments Summary
start with two "*'"s precedes first "."

bold, italic, etc.

/** This method is rad. Here's why:

* cookie monster is the man!.

* I think he should have his own show.

* @param yum the cookie to eat
@param ¢ number of yums to eat

* @return number of crumbs flying from mouth

*/

public int eatCookies(String

Categories of Variables

where where
declared? initialized? lifetime?

e instance class constructor |object

e parameter [method method call |method
prototype execution

e |Oocal block™ block (or block
else error)

* a block of code is enclosed by brackets: {}

Local vs. Parameter variables

e similarity: defined and initialized
in methods

e difference: how initialized

— parameter variables are initialized
oy calling the method

ocal variables initialized using
assignment operator in method
body

Garbage collector

e reclaims memory from
unreachable objects

e garbage not always collected
immediately

