

Evaluation Methods and Challenges

Evaluation Methods

- Ideal method
 - Experimental Design: Run side-by-side experiments on a small fraction of **randomly** selected traffic with new method (treatment) and status quo (control)
 - Limitation
 - Often expensive and difficult to test large number of methods
- Problem: How do we evaluate methods offline on logged data?
 - Goal: To maximize clicks/revenue and not prediction accuracy on the entire system. Cost of predictive inaccuracy for different instances vary.
 - E.g. 100% error on a low CTR article may not matter much because it always co-occurs with a high CTR article that is predicted accurately

Usual Metrics

- Predictive accuracy
 - Root Mean Squared Error (RMSE)
 - Mean Absolute Error (MAE)
 - Area under the Curve, ROC
- Other rank based measures based on retrieval accuracy for top-k

Recall in test data

- What Fraction of items that user actually liked in the test data were among the top-k recommended by the algorithm (fraction of hits, e.g. Karypsis, CIKM 2001)
- One flaw in several papers
 - Training and test split are not based on time.
 - Information leakage
 - Even in Netflix, this is the case to some extent
 - Time split per user, not per event. For instance, information may leak if models are based on user-user similarity.

Metrics continued..

- Recall per event based on Replay-Match method
 - Fraction of clicked events where the top recommended item matches the clicked one.
- This is good if logged data collected from a randomized serving scheme, with biased data this could be a problem
 - We will be inventing algorithms that provide recommendations that are similar to the current one
 - No reward for novel recommendations

Details on Replay-Match method (Li, Langford, et al)

- x: feature vector for a visit
- $\mathbf{r} = [r_1, r_2, \dots, r_K]$: reward vector for the K items in inventory
- h(x): recommendation algorithm to be evaluated
- Goal: Estimate expected reward for h(x)

$$E_{(x,r)\sim\mathcal{P}}\left[\sum_{i}\Pr(h(x)=i)\cdot r_i\right]$$

- s(x): recommendation scheme that generated logged-data
- $x_1,...,x_T$: visits in the logged data
- r_{ti} : reward for visit t, where $i = s(x_t)$

Replay-Match continued

Estimator

$$\frac{1}{T}\sum_{t}\sum_{i}I(h(x_{t})=i \text{ and } s(x_{t})=i) \cdot r_{ti} \cdot \alpha_{t}$$

• If importance weights $\alpha_t = \frac{1}{\Pr(s(x_t) = i \mid h(x_t) = i)}$ and (x_t, r_t) iid $\sim \mathcal{P}$.

- It can be shown estimator is unbiased

- E.g. if s(x) is random serving scheme, importance weights are uniform over the item set
- If s(x) is not random, importance weights have to be estimated through a model

Back to Multi-Objective Optimization

Deepak Agarwal & Bee-Chung Chen @ ICML'11

Serving Content on Front Page: Click Shaping

- What do we want to optimize?
- Current: Maximize clicks (maximize downstream supply from FP)
- But consider the following
 - Article 1: CTR=5%, utility per click = 5
 - Article 2: CTR=4.9%, utility per click=10
 - By promoting 2, we lose 1 click/100 visits, gain 5 utils
- If we do this for a large number of visits --- lose some clicks but obtain significant gains in utility?
 - E.g. lose 5% relative CTR, gain 40% in utility (revenue, engagement, etc)

Why call it Click Shaping?

•SHAPING can happen with respect to any downstream metrics (like engagement)

Multi-Objective Optimization

- CTR of user segment *i* on article *j*: *p_{ij}*
- Time duration of *i* on *j*: *d_{ij}*

Multi-Objective Program

Scalarization

$$\lambda \cdot TotalClicks(\mathbf{x}) + (1 - \lambda) \cdot Downstream(\mathbf{x})$$

$$x_{ij} = \begin{cases} 1, & \text{if } j = \arg \max_J \lambda \cdot p_{iJ} + (1 - \lambda) \cdot p_{iJ} d_{iJ} \\ 0, & \text{otherwise} \end{cases}$$

Goal Programming

maximize $Downstream(\mathbf{x})$ s.t. $TotalClicks(\mathbf{x}) \ge \alpha \cdot TotalClicks^*$

Simplex constraints on x_{iJ} is always applied

Constraints are linear

Every 10 mins, solve x

Use this x as the serving scheme in the next 10 mins

Pareto-optimal solution (more in KDD 2011)

Deepak Agarwal & Bee-Chung Chen @ ICML'11

12

Summary

- Modern recommendation systems on the web crucially depend on extracting intelligence from massive amounts of data collected on a routine basis
- Lots of data and processing power not enough, the number of things we need to learn grows with data size
- Extracting grouping structures at coarser resolutions based on similarity (correlations) is important
 - ML has a big role to play here
- Continuous and adaptive experimentation in a judicious manner crucial to maximize performance
 - Again, ML has a big role to play
- Multi-objective optimization is often required, the objectives are application dependent.
 - ML has to work in close collaboration with engineering, product & business execs

Challenges

Recall: Some examples

• Simple version

- I have an important module on my page, content inventory is obtained from a third party source which is further refined through editorial oversight. Can I algorithmically recommend content on this module? I want to drive up total CTR on this module
- More advanced
 - I got X% lift in CTR. But I have additional information on other downstream utilities (e.g. dwell time). Can I increase downstream utility without losing too many clicks?
- Highly advanced
 - There are multiple modules running on my website. How do I take a holistic approach and perform a simultaneous optimization?

For the simple version

- Multi-position optimization
 - Explore/exploit, optimal subset selection
- Explore/Exploit strategies for large content pool and high dimensional problems
 - Some work on hierarchical bandits but more needs to be done
- Constructing user profiles from multiple sources with less than full coverage
 - Couple of papers at KDD 2011
- Content understanding
- Metrics to measure user engagement (other than CTR)

Other problems

- Whole page optimization
 - Incorporating correlations

- Incentivizing User generated content
- Incorporating Social information for better recommendation
- Multi-context Learning

