
Anywhere, Any-Time Binary Instrumentation

Andrew R. Bernat, Barton P. Miller
Computer Sciences Department

University of Wisconsin
Madison, WI 53706

{bernat,bart}@cs.wisc.edu

ABSTRACT
The Dyninst binary instrumentation and analysis framework
distinguishes itself from other binary instrumentation tools
through its abstract, machine independent interface; its em-
phasis on anywhere, any-time binary instrumentation; and
its low overhead that is proportional to the number of in-
strumented locations. Dyninst represents the program in
terms of familiar control flow structures such as functions,
loops, and basic blocks, and users manipulate these repre-
sentations to insert instrumentation anywhere in the binary.
We use graph transformation techniques to insure that this
instrumentation executes when desired even when instru-
menting highly optimized (or malicious) code that other in-
strumenters cannot correctly instrument. Unlike other bi-
nary instrumenters, Dyninst can instrument at any time in
the execution continuum, from static instrumentation (bi-
nary rewriting) to instrumenting actively executing code
(dynamic instrumentation). Furthermore, we allow users
to modify or remove instrumentation at any time, with such
modifications taking immediate effect. Our analysis tech-
niques allow us to insert new code without modifying unin-
strumented code; as a result, all uninstrumented code exe-
cutes at native speed. We demonstrate that our techniques
provide this collection of capabilities while imposing similar
or lower overhead than other widely used instrumenters.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Binary instrumentation

General Terms
Experimentation, Performance

Keywords
Binary instrumentation; Dynamic instrumentation; Binary
rewriting

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASTE’11 September 5, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0849-6/11/09 ...$10.00.

1. INTRODUCTION
Binary instrumentation is a technique that modifies a

binary program, either pre-execution or during execution.
This technique can be used to insert monitoring code, such
as for performance analysis [15,17], attack detection [13], cy-
berforensics [10], or behavior monitoring [5]; to modify pro-
gram data, such as for dynamic transactional memory [14];
or to perform code replacement, such as for performance
steering. For the past several years, we have been develop-
ing the Dyninst binary analysis and instrumentation sys-
tem. By combining these capabilities we have made bi-
nary instrumentation more efficient and precise, and en-
abled a class of tools that combine analysis with instrumen-
tation [15, 16]. Dyninst distinguishes itself from other in-
strumenters through its abstract interface; its emphasis on
anywhere, any-time (AWAT) instrumentation; and its low
overhead that is proportional to the number of instrumented
locations. We describe recent work that allows Dyninst to
provide AWAT instrumentation with proportional cost.

Dyninst allows users to instrument anywhere in the bi-
nary. Other binary instrumentation approaches allow users
to insert instrumentation at instructions [2, 8, 9, 12] or spe-
cific types of control flow edges [8, 9]. Surprisingly, instru-
menting instructions or edges is not sufficient to capture
program behavior based on structural characteristics such
as functions or loops. Consider the case of instrumenting
the entry of a function; such instrumentation should execute
only once per function call. Other binary instrumenters do
not directly support instrumenting function entries; instead,
users instead instrument the first instruction in the function
(assuming sufficient information, such as a symbol table, is
available to correctly identify that instruction). However,
the first instruction of functions with no preamble code may
be executed multiple times per function invocation. There-
fore, such instrumentation would execute multiple times per
invocation. This problem also holds for instrumenting other
control flow features of a program, such as function exits
and loop entries, iterations, and exits.

We address this problem by allowing users to specify in-
strumentation locations in terms of the control flow graph
(CFG) in addition to at the instruction level. We define
classes of instpoints to describe interesting locations in the
CFG (e.g., function entries and exits), and users insert in-
strumentation by annotating these instpoints with instru-
mentation code. Section 2 describes the techniques we use
for instrumenting anywhere in the binary.

Dyninst allows users to insert, remove, or modify instru-
mentation at any time in the execution continuum: pre-

execution (binary rewriting), before code has executed for
the first time, or while the instrumented code is currently
executing (dynamic instrumentation). Binary rewriting of-
fers several benefits over dynamic instrumentation, such as
amortizing the cost of instrumenting a binary over multi-
ple executions or eliminating the need for having the in-
strumenter present during execution. In contrast, dynamic
instrumentation allows users to instrument as the program
executes. Other binary instrumentation approaches support
either static instrumentation [4,8] or dynamic instrumenta-
tion [2,9,12], but not both. Furthermore, other dynamic in-
strumenters cannot guarantee that instrumenting currently
executing code will take immediate effect.

Our approach allows users to use the same tool to instru-
ment both statically and dynamically. Furthermore, dur-
ing dynamic instrumentation any changes are guaranteed to
take immediate effect. During binary rewriting we present
the user with a CFG that was derived using static analysis;
this CFG supports both analysis and instrumentation. If we
are performing dynamic instrumentation we also report run-
time events, such as changes to the CFG or system events
(e.g., thread creation or process exit). For example, if we
are instrumenting a binary that is statically obfuscated or
generates code at runtime, we will discover the new code
before it executes and report that new code to the user [16].
Section 3 describes these techniques.

Dyninst imposes proportional cost by imposing overhead
only when instrumented code is executed; furthermore, re-
moving instrumentation also removes its cost. This can sig-
nificantly reduce overhead if the number of instrumented lo-
cations is small (e.g., a subset of functions in the program)
or if instrumentation can be removed as the program runs.
Binary instrumenters rely on a technique we call relocation
to insert both instrumentation and any additional infras-
tructure code the instrumenter requires (e.g., dynamic anal-
ysis code). Relocation moves code to a new location where
it can be expanded to include new code (instrumentation
and analysis code) and transforms it to preserve its original
behavior; as a result of this transformation the relocated
code frequently executes slower than the original. Other ap-
proaches use dynamic analysis to discover all executed code,
and thus must relocate all executed code whether or not it
is instrumented. As a result, they impose overhead even on
uninstrumented code [2, 9, 12].

By using static analysis to derive the CFG rather than
dynamic analysis we can greatly reduce the amount of unin-
strumented code that must be relocated. In conventional
binaries, we only relocate instrumented code. This reloca-
tion may be performed on a basic block or function basis,
depending on the density of instrumentation. As a result,
any uninstrumented code executes natively with no over-
head; this is also true for code whose instrumentation is re-
moved. For binaries where the CFG is incomplete (e.g., JIT
compilers or self-unpacking malware) we rely on relocation
to enable dynamic analysis, but unlike other approaches we
only relocate the specific locations (e.g., indirect jumps or
calls) that we know are incompletely analyzed. Section 3
describes these techniques.

As a result of our analysis and instrumentation techniques,
Dyninst provides greater precision of instrumentation with-
out incurring additional cost. For example, in experiments
performed on the SPEC benchmark suite we incurred an av-
erage 71% execution overhead when instrumenting every ba-

sic block, as opposed to the 128% imposed by PIN. This is a
worst-case example of our techniques, since it does not lever-
age the proportional cost of our approach, and we show that
the cost we impose decreases as fewer locations are instru-
mented while other instrumenters impose cost even when
executing uninstrumented code. We can also instrument
malware that executes incorrectly or crashes when instru-
mented with other instrumenters, although the overhead we
impose is higher than our overhead on conventional binaries
due to the tamper-resistance features used by these binaries.

2. ANYWHERE INSTRUMENTATION
The control flow graph (CFG) is a familiar representa-

tion of the structural elements in a program (e.g., functions,
loops, and basic blocks) and the relationships between them.
The CFG is also a useful representation for specifying binary
instrumentation in terms of these same structural elements.
In this section, we describe Dyninst’s CFG-based instrumen-
tation approach. This approach has two challenges. First,
we must map reasonable program abstractions onto code
that may have been highly transformed due to optimization
or obfuscation. Second, we must regenerate instrumented
code from the instrumented CFG that both preserves the
behavior of the original code and executes instrumentation
when the user specifies. We begin by defining the basic CFG
abstractions used by Dyninst, including functions, loops, ba-
sic blocks, and the instrumentation points that are used to
specify where instrumentation is inserted. We then describe
the complications that result from highly transformed code
(e.g., overlapping functions) and how we map our abstrac-
tions on to such code. Finally, we describe how we generate
new code from the instrumented CFG.

2.1 Control Flow Abstractions
Our CFG is based on five abstractions: the interprocedu-

ral control flow graph (consisting of basic blocks and edges),
functions, and loops. Our goal is to provide familiar struc-
tural abstractions while hiding the complexities that may
occur in the binary. We also define instrumentation points
(or instpoints) for each of these abstractions, which iden-
tify locations where instrumentation can be inserted, and
code snippets, which represent the inserted instrumentation
code. As with our control flow abstractions, the goal of
these additional two abstractions is to hide the complexity
that arises when you insert additional code in the binary.
Intuitively, an instpoint is a simple abstraction; when the
point is reached during execution, the instrumentation at
that point executes. For example, a user may instrument
the entry point of a function; such instrumentation is guar-
anteed to execute once per function invocation, even if the
entry block executes multiple times (e.g., as part of a loop).
We formalize this concept below.

A CFG is a directed graph G = (V,E, Ve, Vx, τ):

• The set V = B ∪ {v⊥} of vertices corresponding to
basic blocks B and a sink node v⊥;
• The set E ⊆ V × V corresponds to control flow edges

between blocks;
• The sets Ve ⊆ V of entry and Vx ⊆ V of exit nodes;
• The labeling function τ : E → T that associates a

particular edge in the graph with a type.

We define basic blocks in the conventional way as a linear
sequence of instructions bi = 〈im, . . . , in〉 with a single entry

Code
Snippet

Original
Target Block

Original
Source
Block

Transformed
Target Block

Transformed
Source
Block

(a) Edge Rule

Original
Entry Block

Transformed
Entry Block

Code
Snippet

Call Edges

Other
Edge(s)

(b) Function Entry Rule
Figure 1: Two example transformation rules; Figure (a) shows
the edge instrumentation rule and Figure (b) shows the function
entry rule.

point im and single exit point in; an instruction may belong
to only one block. Unknown control flow is represented by an
edge to a unique sink node v⊥ that contains no instructions.

Edges are labeled with an edge type. We define the follow-
ing types: direct, fallthrough, conditional taken, conditional
not taken, indirect, call, call fallthrough, and return, where
call fallthrough edges link blocks ending with calls to their
intraprocedural successors. An edge is interprocedural if it
leaves a function and intraprocedural otherwise.

We define a function as the blocks reachable from an en-
try block traversing only intraprocedural edges. Formally,
functions are subgraphs of the CFG fi = (Vi, Ei, vi, Xi, τ

′)
where Vi ⊆ V , Ei ⊆ E, vi ∈ Vi is the entry block of the
function, Xi ⊆ Vi are the exit blocks, and τ ′ assigns only
intraprocedural edge types.

We use natural loops for our loop definition. Loops are
defined similarly to functions, as subgraphs of the CFG:
lj = (Vj , Ej , vj , Xj , τ

′) where Vj ⊆ V , ej ⊆ E, vj is the
unique entry node, Xj are exit nodes, and τ ′ assigns only
intraprocedural edge types (our loops may not be interpro-
cedural). An edge e = (v, vj) is a backedge if v ∈ Vj . Loops
may be nested and share entry blocks; however, the combi-
nation of entry and exit blocks uniquely defines a loop.

While these abstractions provide a familiar program repre-
sentation for binary analysis, the instpoint abstraction sup-
ports instrumentation by capturing a certain aspect of pro-
gram behavior, such as entering a function or traversing an
edge between blocks, and allowing users to instrument their
program based on these behaviors rather than just in terms
of instructions and edges. More formally, an instpoint is an
annotation of a subgraph of the CFG. We define two classes
of instpoints; augmentation and transformation instpoints.
An augmentation instpoint, such as pre-instruction or block
entry, adds additional code to an existing basic block rather
than transforming the CFG. These instpoints are similar to
the instrumentation primitives used by other binary instru-
menters. We define the following augmentation instpoints:
block entry, pre-instruction, and post-instruction.

Transformation instpoints, (e.g., function entry or edge in-
stpoints) insert instrumentation by adding new blocks and
edges to the CFG; for example, edge instrumentation adds
a new block to the CFG along a control flow edge. More
formally, a transformation instpoint is represented by a par-
ticular subgraph template and is associated with a graph
transformation rule that we use to add instrumentation to
the CFG. Briefly, a rule p : L → R replaces an instance
of the subgraph L in a target graph G with the graph R;
we represent these rules graphically, as is typical in graph
transformation [7]. We define the following transformation

Address Instruction
61a901 cmpl $0x0, %gs:0xc

61a909 je 61a90c

61a90b lock cmpxchg %ecx, 0x31f4(%ebx)

61a913 jne . . .
Figure 2: Example of overlapping blocks from GNU libc on IA-32
compiled with GNU GCC 4.x. The first conditional branch skips
past a locking prefix on the compare and exchange instruction;
this results in two instructions that overlap. Execution converges
at the second branch.

Function 1 Function 2

Shared
Block

(a) Interprocedural CFG

Function 1 Function 2

Block
Alias

Block
Alias

Shared
Block

(b) Block Aliases
Figure 3: An example of overlapping blocks in the CFG. Figure
(a) shows the interprocedural CFG, with two functions sharing
the same exit block. Figure (b) shows the corresponding function
representations, with the return block represented by two aliases.

instpoints: function entry and exit; loop entry, exit, begin-
ning of iteration, and end of iteration; block exit; and edge.
We show some example transformation rules in Figure 1.

Finally, we define a code snippet to represent a sequence
of inserted instrumentation. A code snippet is a sequence of
code that has a single entry point and exit point, although
it may have internal branching. We also assume that code
snippets have no side-effects on the execution of the original
code; this is a common assumption for instrumentation. As
a result, we may represent a sequence of code snippets as a
single snippet block. In Dyninst, users specify code snippets
by either specifying them in terms of an abstract syntax tree
or writing them in the C-like DynC language.

2.2 Complicating Cases
Several code structures commonly seen in binaries compli-

cate the mapping of our control flow abstractions onto the
binary code. Our goal with such structures is to hide their
complexity from the user wherever possible. We describe
how we handle two such cases: overlapping basic blocks and
overlapping functions. In this section, we describe these
structures and how our abstractions map onto them; we de-
scribe how we instrument such structures in Section 2.3.

Overlapping basic blocks occur when the same sequence
of bytes disassembles to two distinct instruction sequences,
both of which may be executed by the program. This situa-
tion occurs in variable-length architectures because instruc-
tions can overlap; however, features such as delay slots can
lead to a similar situation on fixed-length architectures. One
example of such code is shown in Figure 2, which uses a con-
ditional branch to optionally skip a locking prefix on a com-
pare and exchange instruction, resulting in two instructions
that overlap. This sequence occurs in many GCC-compiled
Linux libraries. Overlapping instruction sequences also com-
monly occur in obfuscated code. We represent each of these
code sequences as distinct collections of basic blocks. This
representation allows the user to treat the overlapping code
sequences as logically disjoint sequences of instructions.

Overlapping functions occur when multiple functions in-
clude the same basic block. Optimizing compilers frequently
share common code between functions (e.g., register restores

Entry
Block

Shared
Exit

Function 1

instpoint

instpoint

alias

Other
functions

(a) Original CFG

Entry
Block

Shared
Exit

Function 1

instpoint

instpoint

Cloned
Exit

Other
functions

(b) Block Cloning

Entry
Block

Shared
Exit

Function 1

instpoint

Cloned
Exit

Other
functions

Entry
Snippet

(c) Entry Instrumentation

Entry
Block

Shared
Exit

Function 1

Cloned
Exit

Other
functions

Entry
Snippet

Exit
Snippet

(d) Exit Instrumentation
Figure 4: Instrumentation example of two overlapping functions (a). We use block cloning (b) and graph transformations (c, d) to
instrument function 1, leaving other functions that overlap with function 1 unmodified.

alias shared
block

cloned
block

shared
block

(a) Function Layer

shared
block

cloned
block

shared
block

(b) CFG Layer
Figure 5: The rules associated with block cloning. Figure (a)
shows the rule for transforming the function CFG. Figure (b)
shows the rule for transforming the interprocedural CFG; edges
from blocks in other functions are represented with dashed arrows.

or error code) to increase code density. We represent this
sharing in our interprocedural CFG (Figure 3a), but hide
it at the function layer by using block aliases (Figure 3b).
A block alias represents a shared block in the context of
one particular function, and any analysis or instrumentation
performed on the alias is restricted to that function. More
formally, let b be a block shared by functions f1, . . . , fn.
For each such function fi we create a block alias, denoted
a(b,fi). Block aliases replace their corresponding blocks in
each function’s CFG and instpoints.

A similar case occurs in code produced from languages
that support multiple entry points into a function (e.g., For-
tran). An alternative representation of such code is as a sin-
gle function with a set of entry blocks. We instead represent
such code as a set of single-entry functions (one per en-
try point) to keep a consistent function representation. We
did this because a single-entry function model can repre-
sent multiple-entry functions with a minor cost in efficiency;
analysis can be performed on each function individually and
then combined, and instrumentation can be copied to each
function. However, a multiple-entry model does not support
analysis or instrumentation of overlapping single-entry func-
tions, since the multiple-entry representation cannot identify
which entry block execution passed through.

2.3 Generating Instrumented Code
The final step required for anywhere instrumentation is to

generate new code from the instrumented CFG; an example
of this process is shown in Figure 4. The annotations rep-
resented by instpoints cannot be directly used to generate
code. Instead, we first construct an augmented CFG that
represents the instrumented code, and this augmented CFG
is then used to generate the new instrumented binary code.
We generate the augmented CFG in two steps. First, we use
block cloning to convert all instrumented block aliases to ac-
tual blocks, which eliminates sharing of instrumented code.
Second, we apply the appropriate graph transformation rule

for each instpoint to insert the appropriate code snippets
into the graph. The resulting augmented CFG is used to
generate code with standard code generation techniques.

We allow users to instrument block aliases as distinct ab-
stractions, and so must ensure the independence of such
instrumentation. We do this by cloning each such shared
block, which creates an identical copy of the block. This
copy replaces the instrumented alias in the corresponding
function and is added to the interprocedural CFG. We show
the block cloning rule in Figure 5, and an example of its
application in Figure 4b.

We insert instrumentation into the graph by applying the
appropriate graph transformation rule for each instpoint to
insert the code snippets specified for that instpoint. We show
examples of instrumenting function entry points (Figure 4c)
and exit points (Figure 4d). The inserted instrumentation
is represented by a shaded snippet block.

The result of these two steps is an augmented CFG that
contains both original code and instrumentation. We then
use this graph to generate the actual instrumented code.
This requires three things: compiling instrumentation re-
quests into binary code, updating original and adding ad-
ditional control flow instructions to ensure the newly gen-
erated code matches the CFG, and ensuring that original
instructions maintain their original behavior. The first two
are performed with standard compiler techniques; the third
is handled using the algorithm described in [1].

3. ANY TIME INSTRUMENTATION
The CFG-based instrumentation technique discussed in

the previous section generates instrumented code. In this
section, we discuss how we insert this instrumented code into
the binary at any time during execution while imposing pro-
portional cost. We define an instrumenter be capable of any
time instrumentation if it can insert or modify instrumenta-
tion at any point during the execution continuum, including
pre-execution (static instrumentation or binary rewriting),
while the program is running but has not yet executed code
to be instrumented, and while the program is actively ex-
ecuting code to be instrumented. Furthermore, an instru-
menter imposes proportional cost if it avoids imposing cost
when executing uninstrumented code.

In this section, we describe the techniques Dyninst uses to
provide any time instrumentation with proportional cost. To
provide context for our work, we first present the techniques
used by current binary instrumenters and the patch-based in-
strumentation technique on which our work builds. Current

patch-based instrumenters impose proportional cost, but are
not capable of instrumenting at any time because they can-
not insert or modify actively executing code. We describe
two new techniques that address this lack. The first, state
interception, directly modifies process state to allow instru-
menting executing code. The second, iterative instrumenta-
tion, provides the ability to modify or remove instrumenta-
tion at any point during execution.

3.1 Instrumentation Overview
Binaries rarely include sufficient space to insert instru-

mentation without moving original code. Instead, instru-
menters create a copy of this code that is instrumented and
then execute the copied code in place of the original. This
code is copied using a technique we call relocation. Relocat-
ing a region of code produces a new version that emulates the
behavior of the original code, but contains sufficient space to
insert instrumentation. This new code may execute slower
than the corresponding original code due to this emulation;
we have previously described relocation in detail and pre-
sented an approach that lowers this overhead by emulating
only visible behavior [1]. Once a region of code has been re-
located, the instrumenter must ensure it is executed in place
of the original code. This is done with one of two methods.
The first, patch-based instrumentation, overwrites the origi-
nal code with interception branches to the relocated code, as
shown in Figure 7 [3, 8]. The second, JIT instrumentation,
instead relocates all code as it is executed [2,9,12]. This sec-
ond approach does not modify original code but imposes re-
location overhead on all code rather than just instrumented
code, and thus does not impose proportional cost.

Patch-based instrumentation operates in three phases: se-
lection, relocation, and patching. The selection phase se-
lects the code that will be relocated and patched; we refer
to this code as the selected code. The selected code may
range from a single instruction to several functions. The
relocation phase creates a copy of the code selected in the
previous phase; we then use the techniques described in Sec-
tion 2 to add instrumentation to this region and copy the
resulting code into the binary. The patching phase patches
the binary with interception branches that will jump from
the selected region to the relocated region.

The selection phase identifies the selected code, which may
consist of a set of instructions, basic blocks, or functions
that do not need to be contiguous. The chosen code must
be large enough to contain the interception branches with
which it will be patched, as we cannot overwrite either data
or non-selected code. We also consider two other factors.
To satisfy our goal of proportional cost, we want to select
as little uninstrumented code as possible. However, we also
want to minimize how many interception branches are exe-
cuted to minimize the cost involved in executing this extra
code. Previous approaches have used single basic blocks or
single functions. Instead, we select all instrumented func-
tions as well as functions that overlap with an instrumented
function; this allows us to improve performance by eliminat-
ing interception branches for control flow within the selected
group. We represent this set of functions as F .

The relocation phase creates the instrumented code se-
quence and copies it into the binary. We create a modi-
fied CFG using the techniques described in Section 2.3. We
then generate code to match this CFG, using a combina-
tion of the relocation techniques described in our previous

input : A set F of selected functions
output: A set IB of interception branches

1 IB ← ∅;
2 for each function f ∈ F do
3 Let vf be the entry block of f ;
4 if f was instrumented at entry then
5 Let if = FunctionEntryPoint(f) ;
6 Let sbf = SnippetBlock(if) ;
7 IB ← IB ∪ {(vf , sbf)}
8 else if vf was instrumented at entry then
9 Let iv = BlockEntryPoint(vf) ;

10 Let sbv = SnippetBlock(iv) ;
11 IB ← IB ∪ {(vf , sbv)}
12 else if s was cloned then
13 Let cl be the clone of vf in f ;
14 IB ← IB ∪ {(vf , cl)}
15 else
16 Let v′f be the relocated copy of vf ;

17 IB ← IB ∪ {vf , v′f}
Figure 6: An algorithm for calculating interception branches for
each selected function entry point.

work [1] to move original code and standard compiler tech-
niques to generate instrumentation code. These relocation
techniques determine and preserve only the visible behavior
of the moved code, allowing any aspects of behavior that
are not visible to the program as a whole to differ; this can
significantly reduce the overhead caused by relocation.

The patching phase overwrites original code with inter-
ception branches to the corresponding locations in the newly
installed instrumentation code. We represent these branches
as a set of tuples IB = {(s1, t1), . . . , (si, tn)} where each s
is the block that will be patched and t the target block of
the branch. We show a simplified version of the algorithm
we use to derive IB in Figure 6. For each function, we first
identify its entry block. If either the function or block was
instrumented at its entry, we want to use the inserted snip-
pet block as the target (lines 4-11). Otherwise, we use the
block clone as a target (lines 12-14) or the relocated block
itself (lines 15-17), as appropriate. The presented algorithm
assumes only function and block level instrumentation for
simplicity; our implementation includes cases for loop and
instruction instpoints as well.

Once we have derived IB we generate code for each inter-
ception branch. We use two forms of interception branches:
a direct branch or a calculated branch. Direct branches are
preferred due to their lower overhead, but may not have suf-
ficient range. If we cannot use a direct branch we instead
use a sequence that first calculates the destination address
in a register and then uses an indirect branch to reach that
destination. Clearly, this sequence both requires more space
than a single direct branch and imposes higher overhead;
thus, we use a direct branch whenever possible.

To ensure correct execution, interception branches cannot
overlap, overwrite non-selected code, or overwrite data. This
requires that the selected code be large enough to contain
the corresponding set of interception branches. If this is not
the case we have two alternatives. The first is to enlarge the
region of selected code and recalculate the set of intercep-
tion branches; this is our preferred approach. The second
is to use trap instructions instead of interception branches.
Unfortunately, using traps requires the execution of a signal
handler and thus imposes higher overhead than a branch.
As a result, we use traps only as a last resort.

Original
Program

Instrumented
Program

Instrumentation

Patched code
branch

branch Relocated code

Selected code

Figure 7: Example of patch-based instrumentation; the original
program is shown on the left, and the patched program on the
right.

input : An executing instruction ij , block
b = {i1, . . . , ij , . . . , in}, and function f

output: A destination address d
1 if ij = i1 ∧ b was instrumented then
2 Let pb = EntryPoint(b) ;
3 Let sbb = SnippetBlock(pb) ;
4 d← EntryAddr(sbb)

5 else if ij was instrumented then
6 Let pi = PreInsnPoint(ij) ;
7 Let sbi = SnippetBlock(pi) ;
8 d← EntryAddr(sbi)

9 else if b was cloned then
10 Let cl = {i′1, . . . , i′j , . . . , in} be the clone of b in f ;

11 d← Addr(i′j)

12 else if b was relocated then
13 Let b′ = {i′1, . . . , i′j , . . . , in} be the relocated copy of vf ;

14 d← Addr(i′j)

15 else
16 d← Addr(ij)

Figure 8: An algorithm for calculating state interception target
addresses.

3.2 State Interception and Iterative Instrumen-
tation

The patch-based algorithm as described above has two
weaknesses. First, it does not support instrumenting pro-
grams that are executing inside the selected region, since it
only inserts interception branches at the boundaries of this
region. As a result, the process may continue to execute
original code, or execute part of an interception branch (if
the branch overwrote multiple instructions). Second, it does
not support modifying previously inserted instrumentation
if the program is executing inside the instrumented region.
We present two techniques, state interception and iterative
instrumentation, that address these problems.

State interception allows us to instrument programs that
are executing inside the selected region by directly modify-
ing process state to move from the current execution point to
the corresponding destination in the instrumentation code.
We do this by directly modifying the execution context of
each thread to transfer execution rather than inserting a
branch. We determine this destination with the algorithm
shown in Figure 8. This algorithm is a generalization of Fig-
ure 6 that handles the additional complexity of intercepting
control at arbitrary locations in the program instead of just
function entries. The inputs to this algorithm are the cur-
rently executing instruction ij , block b, and function f . We
identify ij and b by examining the CFG, since a program
counter uniquely identifies an instruction and basic block.
If b belongs to a single function we select that function as f ;
otherwise, we identify the currently executing function by
examining the stack. We transfer execution to block entry
(lines 1-4) or pre-instruction (lines 5-8) instrumentation if

Exit
Block

Entry
Block

Exit
Block

Code
Snippet

Patched
Block

Interception
Branch

(a) Entry Instrumentation

Exit
Block

Entry
Block

Exit
Block

Patched
Snippet

Patched
Block

Entry
Block

Exit
Block

Code
Snippet

Code
Snippet

(b) Exit Instrumentation
Figure 9: An example of iterative instrumentation. Figure (a)
shows the result of instrumenting the function entry point by
patching the entry block with an interception branch. Figure (b)
shows the result of further instrumenting the exit point; we have
patched both the original entry block as well as the entry snippet
inserted in the previous step.

appropriate; unlike interception branches, we do not include
function or loop instrumentation because we cannot guar-
antee execution has not already passed the entry of these
constructs. Finally, if the current execution point was not
relocated we leave it unmodified (lines 15-16).

Iterative instrumentation allows a user to further instru-
ment previously instrumented code or remove instrumenta-
tion at any time. Since our CFG transformation approach
essentially inlines instrumentation into the relocated code,
further modifying this code is difficult. Instead, we generate
a new version of instrumentation taking into account any
changes the user has made. We do this in three steps. First,
we use the patch-based instrumentation algorithm described
above to generate a new version of instrumentation. Second,
we patch all previous versions of instrumentation code with
interception branches to this new version. Third, we use
state interception to immediately transfer any active execu-
tion of a previous version to the newest version. We show
an example of iterative instrumentation in Figure 9.

Iterative instrumentation allows us to modify instrumen-
tation at any time, but may result in multiple redundant
copies of instrumentation. We lessen this cost using two
mechanisms. First, if the user has removed all instrumenta-
tion we simply restore the original code. Second, we garbage
collect old copies of instrumentation when we can determine
that a copy can no longer be executed. We determine this
with a stack walk over all executing threads; if no address
in these walks corresponds with an instrumentation version
we conclude that version is dead code and can be collected.

4. RESULTS
Our instrumentation algorithm provides anywhere, any

time instrumentation of the binary while imposing cost pro-
portional to the number of locations instrumented. We ver-
ified these characteristics with the following experiments.
First, we compared the overhead imposed by our approach
with other current instrumenters when instrumenting ev-
ery basic block with a simple counter, and show that the
overhead of our approach is comparable to other current ap-
proaches. Second, we compared the results of instrumenting
function entry and exit points with the same counter metric,
and show that our approach results in equal counts for en-
tries and exits on binaries that lack the debugging informa-

i n t main (i n t argc) {
do {

argc −= 1 ;
} whi le (argc > 0) ;
r e turn argc ;

}
(a) Code Listing

Address Instruction
400450: sub $0x1, %edi
400453: test %edi, %edi
400455: jg 400450 <main>
400457: mov %edi, %eax
400459: retq

(b) Disassembly
Figure 10: Code listing and disassembly for our entry and exit
instrumentation experiment. The entry block of main executes
once per argument given to the program.

tion required by other instrumenters. Third, we compared
the overhead of instrumenting a subset of basic blocks to
show that our approach imposes proportional cost.

First, we instrumented each program in the SPEC2006
integer suite to count how many basic blocks were executed.
We compared our tool with the PIN [9] and DynamoRIO [2]
dynamic instrumenters and the PEBIL [8] static rewriter.
We did not compare our overhead to that of the popular
Valgrind tool [12], as previous research has shown that its
overhead is higher than either PIN or DynamoRIO. We mea-
sured the time to instrument and execute each benchmark.

The performance results for this experiment are shown
in Figure 12; the y-axis is the total time normalized to the
uninstrumented run time (100%). The overhead incurred by
Dyninst is competitive or better on all benchmarks, with the
exception of bzip where DynamoRIO incurred lower over-
head. The PEBIL rewriter incurs overhead close to Dyninst
on many benchmarks; this is unsurprising since both tools
use patch-based instrumentation. It performs substantially
worse on the xalan benchmark due to high instrumentation
time, and failed to correctly instrument gcc and omnet. The
DynamoRIO overheads are competitive due to their focus
on instrumentation efficiency. Finally, PIN performs worse
than other instrumenters. We believe this is due to their
more conservative code relocation mechanism; this was par-
ticularly harmful on the h264ref benchmark.

Second, we compared the accuracy of our function entry
instrumentation approach with PIN and PEBIL; to the best
of our knowledge DynamoRIO does not provide function-
level instrumentation. Our graph transformation approach
ensures that entry instrumentation executes once per func-
tion invocation. Other instrumenters implement function-
level instrumentation in terms of block-level instrumenta-
tion, which may cause such instrumentation to execute an
incorrect number of times. We constructed a synthetic test
program based on a typical optimized code pattern that we
have observed in several compilers 10. When compiled, this
code results in a loop back-edge to the entry block.

We used each tool to instrument this synthetic benchmark
with function entry instrumentation. We considered the
tool to have succeeded if it reported a single function entry
and failed if it reported multiple function entries. Dyninst
successfully reported a single entry, demonstrating that our
graph transformation approach ensured that function entry
instrumentation executed once even though the entry block
executed multiple times. Both PIN and PEBIL reported one
function entry for each time the loop executed.

Third, we determined the overhead of partially instru-
menting the program. We did this by instrumenting ran-
domly chosen blocks in the perl benchmark with a simple
counter. We used this counter to determine the percent-
age of total block executions (as opposed to just percentage

PIN

Time

PEBIL Block countPEBIL

Time

Dyninst Block countDyninst

Time

100.00% 99.49% 94.83% 91.96% 84.64%

100.00% 91.16% 82.59% 72.69% 70.19%

100.00% 87.90% 73.98% 62.08% 58.11%

100.00% 89.82% 87.07% 75.28% 66.62%

100.00% 87.53% 87.22% 63.41% 54.73%

0%

25.00%

50.00%

75.00%

100.00%

0% 25.00% 50.00% 75.00% 100.00%

Partial Instrumentation Overhead

PIN PEBIL Dyninst
Figure 11: Performance of each instrumenter on partially instru-
mented programs. The x-axis shows the percentage of total block
executions that were of instrumented blocks, and the y-axis is
overhead normalized to the overhead of full instrumentation.

of blocks) were of instrumented blocks. We then compared
the overhead of each run to the overhead of a fully instru-
mented benchmark. The data is graphed in Figure 11. The
y-axis shows the overhead for each run; 0% indicates zero
overhead, and 100% the overhead for a fully instrumented
execution. Since Dyninst and PEBIL both use patch-based
instrumentation their instrumentation cost decreases to zero
as fewer blocks are instrumented; PIN imposes overhead
even on uninstrumented code.

5. RELATED WORK
In this section we compare our work to previous work

in binary instrumentation, including both dynamic instru-
menters and binary rewriters. We compare four character-
istics of these tools to our work: the abstractions they use
to specify where to insert instrumentation; at what point
in the execution continuum they can instrument code; and
how much overhead they impose on the binary.

We divide previous work into three categories: patch-
based, software dynamic translation (SDT), and link-time.
Patch-based instrumenters include PEBIL [8] and Bird [11].
PEBIL provides abstractions for functions and loops, but all
instrumentation is performed in terms of instructions and
edges. Both tools use techniques similar to those described
in Section 3 to insert instrumentation. Bird provides dy-
namic instrumentation, but cannot iteratively instrument or
instrument actively executing code; PEBIL supports only bi-
nary rewriting. Since these tools use patch-based instrumen-
tation they provide proportional cost; however, Bird patches
single instructions and therefore must rely on traps if the
patched instruction is smaller than a branch.

SDT instrumenters [2,9,12] apply just-in-time compilation
(JIT) principles to binary instrumentation by dynamically
constructing a code cache that contains an instrumented
copy of the program. Execution occurs entirely within this
code cache and the instrumenter; as a result, no original
code is executed. These tools can instrument instructions,
basic blocks, and edges, but do not identify loops. PIN [9]
supports function-level instrumentation, but relies on the
presence of a symbol table to identify function entries and
does not guarantee correct identification of function exits;
furthermore, they may incorrectly execute entry instrumen-
tation multiple times per function invocation. Since all code
is copied to and executed from the cache these tools impose
overhead even when executing uninstrumented code.

Link time rewriters insert instrumentation into original
code without either patching or constructing a code cache;
instead, the original code is moved as necessary to make
room for instrumentation [4, 6]. These tools require link-
time information to perform this movement correctly, lim-

0%

100.00%

200.00%

300.00%

400.00%
Block Instrumentation Overhead

0%
100%
200%
300%
400%

perl

bzip

gcc

mcf

gobmk

hmmer

sjeng

libquantum

h264ref

omnetpp

astar

xalancbmk
Harmonic Mean

Block Instrumentation Overhead

PEBIL DynamoRIO PIN Dyninst
Figure 12: Performance of Dyninst, PEBIL, DynamoRIO, and PIN performing a basic block count. The y-axis is total execution time
normalized to the uninstrumented execution time. Missing values indicate the tool did not successfully instrument that benchmark.

iting their application. These instrumenters do not modify
the CFG and thus cannot guarantee correct instrumenta-
tion of function entries. Since they insert instrumentation
directly into original code they do impose proportional cost.

6. CONCLUSION
We have presented techniques for performing anywhere,

any-time instrumentation on a binary. By using graph trans-
formations to add instrumentation, we can instrument the
binary in terms of instructions, basic blocks, loops, and func-
tions; our experiments show that this approach results in
more accurate instrumentation when we instrument func-
tions. By using patch-based instrumentation we can instru-
ment at any time, from binary rewriting to instrumenting
currently executing code. Furthermore, we impose overhead
proportional to the number of instrumented locations.

7. ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their insightful

comments and suggestions. This research funded in part
by Department of Homeland Security grant FA8750-10-2-
0030 (funded through AFRL), National Science Foundation
grants CNS-0716460 and OCI-1032341, and Department of
Energy grants DE-SC0004061 and DE-SC0002154.

8. REFERENCES
[1] A. R. Bernat, K. Roundy, and B. P. Miller. Efficient,

sensitivity resistant binary instrumentation. In
International Symposium on Software Testing and
Analysis (ISSTA), Toronto, CA, July 2011.

[2] D. Bruening, T. Garnett, and S. Amarasinghe. An
infrastructure for adaptive dynamic optimization. In
Symposium on Code Generation and Optimization
(CGO), San Francisco, CA, March 2003.

[3] B. Buck and J. Hollingsworth. An API for runtime
code patching. Journal of High Performance
Computing Applications, 14(4):317–329, Winter 2000.

[4] B. De Bus, B. De Sutter, L. Van Put, D. Chanet, and
K. De Bosschere. Link-time optimization of arm
binaries. In 2004 ACM SIGPLAN/SIGBED
conference on Languages, Compilers, and Tools, pages
211–220, Jun 2004.

[5] W. Drewry and T. Ormandy. Flayer: exposing
application internals. In Workshop on Offensive
Technologies (WOOT), Boston, MA, USA, August
2007.

[6] A. Eustace and A. Srivastava. ATOM: A flexible
interface for building high performance program

analysis tools. In USENIX Technical Conference, New
Orleans, LA, January 1995.

[7] R. Heckel. Graph transformation in a nutshell. In
Electr. Notes Theor. Comput. Sci., pages 187–198.
Elsevier, 2006.

[8] M. Laurenzano, M. Tikir, L. Carrington, and
A. Snavely. PEBIL: Efficient static binary
instrumentation for linux. In International Symposium
for Performance Analysis of Systems and Software
(ISPASS), White Plains, NY, 2010.

[9] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: building customized program
analysis tools with dynamic instrumentation. In
Programming Language Design and Implementation
(PLDI), pages 190–200, Chicago, IL, USA, June 2005.

[10] A. Moser, C. Kruegel, and E. Kirda. Exploring
multiple execution paths for malware analysis. In
Security and Privacy (SP), Oakland,CA, USA, May
2007.

[11] S. Nanda, W. Li, L.-C. Lam, and T. cker Chiueh.
Bird: Binary interpretation using runtime disassembly.
In International Symposium on Code Generation and
Optimization (CGO 2006), pages 358–370, New York,
NY, 2006.

[12] N. Nethercote and J. Seward. Valgrind: A framework
for heavyweight dynamic binary instrumentation. In
Programming Language Design and Implementation
(PLDI), San Diego, CA, USA, June 2007.

[13] J. Newsome, D. Brumley, D. Song, J. Chamcham, and
X. Kovah. Vulnerability-specific execution filtering for
exploit prevention on commodity software. In Network
and Distributed Systems Security Symposium (NDSS),
San Diego, CA, USA, February 2006.

[14] M. Olszewski, J. Cutler, and J. Steffan. Judostm: A
dynamic binary-rewriting approach to software
transactional memory. In Parallel Architecture and
Compilation Techniques, pages 365–375, Brasov,
Romania, 2007.

[15] Open Speedshop. Open speedshop performance tool.
February 2011.

[16] K. A. Roundy and B. Miller. Hybrid analysis and
control of malware binaries. In Recent Advances in
Intrusion Detection (RAID), Ottawa, Canada,
September 2010.

[17] S. Shende and A. D. Malony. The TAU parallel
performance system. Journal of High Performance
Computing Applications, 20(2):287–311, Summer 2006.

