How To Roll a Join: Asynchronous Incremental View Maintenance

Kenneth Salem
Dept. of Computer Science
University of Waterloo
kmsalem@uwaterloo.ca

Kevin Beyer
Computer Sciences Dept.
University of Wisconsin

beyer@cs.wisc.edu

Bruce Lindsay
Roberta Cochrane
IBM Almaden Research Center

{bruce,bobbiec}@almaden.ibm.com

Abstract

Incremental refresh of a materialized join view is often less
expensive than a full, non-incremental refresh. However,
it is still a potentially costly atomic operation. This
paper presents an algorithm that performs incremental view
maintenance as a series of small, asynchronous steps. The
size of each step can be controlled to limit contention
between the refresh process and concurrent operations that
access the materialized view or the underlying relations.
The algorithm supports point-in-time refresh, which allows
a materialized view to be refreshed to any time between the
last refresh and the present.

1 Introduction

In a relational database, a view is a relation that
Views, like other
relations, can be queried, and new views may be derived
from them. A view may be materialized by storing
the view’s tuples in the database. In many cases,
a materialized view can be queried more efficiently
than a non-materialized view because its tuples need
not be re-derived. The more complex the view, and
the more often that view is queried, the more benefit
materialization can provide. Materialized views have
many applications.[6]

Unless it is updated, a materialized view becomes
stale when its underlying relations are modified. Up-
dating a stale materialized view so that it reflects the
current state of its underlying tables is called refresh-
ing the view. Another option is point-in-time refresh,
which updates the stale view to a specified intermedi-
ate time between its old state and the state reflected by
the current underlying tables. Point-in-time refresh is
valuable in many applications. However, when point-in-
time refresh is performed, care must be taken to leave

is derived from other relations.

R S

materialized view
onRand S

refresh computation
(attimet .)

Figure 1: Incremental View Maintenance

the materialized view in a transaction-consistent inter-
mediate state.

Unless the underlying tables are very small, or
change very quickly, it is usually desirable to refresh
a materialized view incrementally. That is, rather
than completely recomputing the view in the desired
state, the change from the old state to the desired
state is computed and then used to modify the old
materialized view. For various classes of views, it
is well-understood how to calculate an incremental
change.[3, 7, 4] Figure 1 illustrates a refresh operation
that updates a materialized view from time %44 to time
tpew- The refresh operation uses the view’s underlying
tables, R and S, and the deltas (incremental changes)
for those tables from toq t0 thew to refresh the view
from to1q 10 thew-

There are several problems with the incremental
view maintenance technique of Figure 1. First, the
incremental refresh operation needs to be executed
as an atomic transaction. It must see a consistent
snapshot of the underlying tables. The transaction
may be long-lived, resulting in contention between
the refresh process and concurrent updates to the
underlying tables, and between the refresh operation
and concurrent reads of the materialized view. As the
refresh interval (the amount of time between t,4 and
tnew) gets longer, as the view definition becomes more
complex, and as the number of views to be maintained
increases, this problem becomes worse.

Second, the refresh transaction needs to be syn-
chronous with the refresh interval. That is, the transac-

materiaized view
onRand S

R S
% % view delta
AR N propagate % apply %

% % changes changes

Figure 2: Propagate and Apply

tion must be performed at a specific time, usually , ¢4,
because it needs to see R and S as they exist at that
time. This precludes point-in-time refresh. It is not
possible to decide at 8:00pm to refresh a materialized
view from its 4:00pm state to its 5:00pm state, because
at 8:00pm the underlying tables may no longer be as
they were at 5:00pm. The decision to refresh the view
must be made at 5:00pm and the refresh cost must be
paid at 5:00pm, even though more resources may be
available later when the load is lighter.

The long transaction problem can be addressed
by using very small refresh intervals. For example,
the materialized view can be refreshed within every
transaction. However, this forces the materialized view
to track the current time very closely.
applications such close tracking is required, but for
others it either impractical or undesirable, e.g., when
the materialized view represents daily results. The
use of short refresh intervals also does not address the
synchronization problem. View maintenance costs are
paid by each update transaction.

For some

An orthogonal technique involves splitting the re-
fresh computation into a propagation phase and an ap-
ply phase.[4] This is shown in Figure 2. During the
propagation phase, changes to the view are computed
and stored. Later, during the apply phase, the stored
changes (the wview delta) are used to update the ma-
terialized view. This approach breaks a single refresh
transaction into separate propagate and apply transac-
tions. It also partially addresses the synchronization
problem: the application phase can be delayed, since
the view delta can be stored. However, the propagation
phase, which includes multiple join queries among the
underlying tables and their changes, is still synchronous
and atomic.

This paper’s contribution is an incremental view
maintenance technique called rolling join propagation
that address both the long transaction problem and
the synchronization problem. It has three significant
features. First, view delta propagation is asynchronous.
That is, the computation of the view delta for a
time interval ending at time %,., takes place at some
time after #,¢4. Second, view delta propagation is
treated as a continuous process. The view delta
is propagated using a series of small transactions,
rather than a single large transaction. The size of

view materialization time

e

time | 1 1

view delta /

high-water mark

\j

current time

Figure 3: The Contents of the View Delta Table

each transaction can be be controlled. This control
provides a means of limiting the contention between
the propagation process and concurrent updates to
the underlying tables. Third, the changes recorded in
the view delta are timestamped to indicate when they
should be applied to the view. Timestamps facilitate
the control of propagation transaction sizes and enable
point-in-time incremental maintenance.

The rolling propagation technique uses separate prop-
agation and apply processes, as was shown in Figure
2. Aside from the usual producer/consumer synchro-
nization, the two processes are completely independent.
Either process, or both, can be suspended during peri-
ods of high system load, or for other reasons. At any
given time, the view delta table contains a complete,
timestamped view delta covering the interval from the
view’s current materialization time to a view delta high-
water mark time. This is shown in Figure 3. The view
delta may contain additional tuples as well. For exam-
ple, it may contain partially-computed changes for the
time between the high-water mark and the current time.
However, the apply process can easily distinguish (and
avoid) such tuples using their timestamps. Because the
tuples are timestamped, the apply process can, at any
time, use the view delta to roll the materialized view
forward to any time point up to the view delta’s high-
water mark. This provides for point-in-time refresh of
the materialized view.

2 Definitions and Assumptions

The database consists of a set of tables, which are
multisets of tuples. Transactions cause the database to
evolve over time. Transactions may insert, delete, and
update tuples. An update is modeled as an insertion
and a deletion.

A delta table describes changes made to another table
(possibly a view). We will refer to the non-delta tables
as base tables when it is necessary to distinguish them
from delta tables. If R is a base table, AT will be used
to represent the delta table that describes R’s changes.
A% has the same attributes as R plus two additional
attributes: count and timestamp. A count value of
+n is used to represent the insertion of n copies of its
associated tuple. A value of —n represents the deletion

of n copies of the tuple. The timestamp represents the
time of the insertion or deletion.

To maintain a uniform notation, each base table
is considered to have implicit count and timestamp
attributes. The implicit count associated with each
tuple in the base table is +1. (Thus, a base table is
represented as the insertion of one copy of each of its
tuples into an empty table.) The implicit timestamp
value is null. The count and timestamp attributes in
base tables exist only for notational convenience. They
are not represented explicitly in the database.

The rolling propagation algorithm is presented for
select-project-join views, i.e., for views of the form
m(o(R' X R? X ... X R™)). When it is convenient to
do so, the explicit relational operators will be dropped,
and the view definition will simply be denoted by
RR?...R™. Although rolling propagation is presented
for select-project-join views, it can be extended easily
to accommodate views involving union. It can also be
extended to accommodate select-project-join views with
aggregation by using summary delta tables, as described
in [8].

In addition to select, project, and join, the algorithm
makes use of union and negation operators. The
multiset union of tables R! and R? will be written
R' 4+ R?. The negation operation, written —R, changes
the sign of every count in R. The notation R! — R? is
used as a shorthand for R! + (—R?).

The transaction history is assumed to be serializable,
and the order of transaction commits is assumed to
be consistent with the serialization order. This would
be the case, for example, in any system that used
strict two-phase locking as its concurrency control
mechanism. The notation R, is used to denote the
state of table R at time t,. R, includes the effects
of all transactions that have committed at or before t,,
and does not include any effects from transactions that
commit after ¢,.

In delta tables, the value of a tuple’s timestamp
attribute is the commit time of the transaction that
inserted or most recently updated the tuple. The
operation o,3 selects all tuples having timestamps
greater than ¢, and less than or equal to ¢;. The
notation R, is a shorthand for O'GJ,(AR).

The algorithms presented in this paper compute
view deltas using propagation gqueries. In general, a
computed view delta will be the union of the results of
one or more such queries. The propagation queries for
a view V have the same form as V’s definition, except
that one or more of the base tables are replaced by their
corresponding delta tables. For example, if V' is defined
by m(o(R! X R? X ... X R™)), a possible propagation
query is m(o(R' X R2 , X ... X R")). In this case, R?
has been replaced by R?’s delta over the time interval
from t, to t;. The notation QV[4] is used to represent

the ith relation in a propagation query QV for view V.
QV [i] is either R’ or R!, ,, depending on whether or not
R’ has been replaced by its delta table in the query.

Propagation queries produce delta tables. The
timestamp and count attributes for these tables are
computed from the timestamp and count attributes of
the tables on which the query is defined. The count of
a view delta tuple is the product of the counts of the
tuples from which it is derived. The timestamp of a
view delta tuple is the minimum of the timestamps of
the tuples from which it is derived. Section 3.3 describes
why the minimum timestamp value is chosen.

The notation QZ’ is used to represent the result
of evaluating query QY at time ¢;. Thus, if QV =
R'R%,...R", then Qf = RIR?,...R?. (Similarly,
13 is the state of view V at time tp.) At times it
will be necessary to consider query results such as
R;R?Lb . ..Rév, in which different base tables are seen
at different times. Such a query will be denoted by
Q[V;”b], i.e., by explicitly listing the vector of relation
times, or by defining 7 = [a, , b] and writing QY. Note
that 7 = [a,, b] specifies that R! is seen at t, and R3 is
seen at #3, but it does not specify a time for R?, which
appears as a delta table in QY. It is not necessary to
specify times for delta tables because they do not evolve
over time.

Suppose that V is a three-way join view, QY is a
propagation query for V, and 7 is a vector timestamp.
The query result QY is said to be realizable at time ¢,
iff the following two conditions hold for all 1 <z < n:

o if QV[i] = R, then 7[i] = t,
o if QV[i] = R, then t; <t,.

For example R%RibRg (ta < tp) is realizable at time
ty, and only at time ¢,. The query result R%RibRE’
(ta < t» < t.) is not realizable at any time, since R!
and R3 are seen at different times. Unless historical
snapshots of base relations are maintained or updates
to R; are prevented between times #; and t. (so that
R} = R}!), no serializable transaction can generate this
result. Similarly, the query result RLR2 ,R3 (t, < tp) is
not realizable at any time. In this case: the result uses
changes to R? up through time #;, but R! and R3 need
to be seen at an earlier time ¢,. Note that results of
queries that involve only delta tables are realizable at
any time after the end of the latest delta time interval
in the query.

3 The Rolling Join Propagation
Algorithm
This section starts with a presentation of a simple,

synchronous algorithm for view delta propagation.
The asynchronous, rolling propagation algorithm is

arrived at by successive refinement of the original
algorithm. Each refinement addresses a shortcoming
of its predecessor.

3.1 Synchronous Propagation

Several techniques for generating view deltas for SPJ
views have been described in the literature.[3, 7, 4] For
example, if V is R*R*R?, then V,; can be calculated
as:

Vap = Ry R{R;+ RyR. R} + RiRR;, (1)
—R; B3Ry — Ry yRiRG , — Ry R, Ry,
+R;,bRZ,bR3,b

The view delta is computed as the union of the results
of seven propagation queries. This approach is easily
generalized to n-way join views. In the general case,
the view delta is computed as the union of 2* — 1 query
results, one query for each possible combination of base
and delta tables that includes at least one delta table.

Except for the all-delta query, all of the queries of
Equation 1 are realizable only time %3, i.e., all of the
queries must see the base tables as they exist at ;. That
is, the queries must be executed together as an atomic
transaction at time #¢;. A propagation query used to
compute a view delta V,p is synchronous if it cannot
be realized later than #5. All of the queries of Equation
1 (except the last) are synchronous.

A synchronous propagation technique that requires
only n query results to propagate a delta for an n-way
join view is described in [7]. For the case n = 3, this
technique computes V, ; using:

Vap = Ry Ry Ry + RLR: Ry + RLRIRS , (2)

Note that in each propagation query, base tables to
the left of the delta table must be seen at the beginning
of the propagation interval (at ¢,), and those to the
right of the delta table must be seen at the end of
the interval, at ¢;. Although this technique uses fewer
queries to produce the view delta, two of the query
results (RLR2 Ry and RLR2R>,) are not realizable.
For this reasén, Equation 2 may be less useful in
practice that Equation 1. For the purposes of this
paper, however, Equation 2 serves as a useful starting
point since it involves fewer propagation queries.

3.2 Asynchronous Propagation

The computation described by Equation 1 must be
performed atomically at time #¢;. Thus, the cost of
propagating the view delta from 4:00pm to 5:00pm
must incurred in the form of a transaction that runs
at 5:00pm. The propagation transaction cannot be
delayed. Furthermore, it may be long-lived, particularly
if the propagation interval is long or the view is complex.

Long-lived propagation transactions can lead to data
contention at the base tables from which the view is
derived.

The goal of asynchronous propagation is to break
the propagation computation into smaller pieces, each
of which is performed after the propagation interval.
Thus, view delta for the period from 4:00pm to 5:00pm
would be computed by a series of smaller transactions
that might not begin running until well after 5:00pm.

Asynchronous propagation can be achieved using
compensation.[12, 13] Consider the query result Q) =
R! ,R’R} from Equation 1. Suppose that Qv is
evaluated at some later time t. rather than ¢y, resulting
in QY = R. ,RZR2. Since R? and R® may have evolved
between t; and #., Qg’ and QY will, in general, not
be the same. However, this problem can be fixed by
compensating for any errors caused by changes to R?
and R® made between t; and time ¢.. Compensation
involves adding extra changes to the view delta. For
example, if QY includes extra view tuple insertions not
found in QX, they are compensated for by the addition
of matching deletions to the view delta.

The difference between Qg’ and QY is QXC. That is,

the query QV can be treated as a view definition and
its incremental change from #; to ¢, can be calculated.
The compensation required to correct for this difference
is exactly —QXC since every insertion in ngc becomes
a matching deletion in —QXC, and deletions become
matching insertions. Since QY has the same form as
the view V, @}, (and hence —QXC) can be calculated
using the same method used to calculate the view delta,
e.g., Equation 2 or Equation 1.

Consider the following example for V = R! R2. Using
the method illustrated in Equation 2, the view delta V,
can be calculated using

Vap = R;,bRZ + RiRZ,b

The first query can be moved to time ¢, and the second
to time t4, and compensation can be added for each
query to correct any errors introduced by the moves.
This leads to

Vap = Ry pRE — (RgpR%)be + RaRoy — (R'RZ p)aa
The compensation queries are shown in bold face, and
the asynchronous forward queries are not.! The first
compensation can be calculated by another application

of the method of Equation 2:

(Ri,sz)b,c = (Ri,b)meg + (Ri,b)bRg,c

1 The term forward query will be used to describe propagation
queries that involve only a single delta table. The term
compensation query is used for queries that involve more than
one delta table.

ComputeDeltalQ, Toid, tnew) {
for each 7 from 1 to n do

// generate one query for each base relation in @)

if (Q[l] = Rl) A (Told [Z] < tnew)
// Q' is the query to be ezecuted

let Q' ¢ Q[U...QL— Ry ., Qi +1]...Q[n]

// tegec Rolds the ezecution time of the query, which is returned by Execute

tegee — Execute(Q’)
if @’ has any base tables then

// using the method of Equation 2, tables left of i should be seen at T4,

// tables right of 1 should be seen at tpey

let Tintended < [0ld[1],...,0ld[i — 1], , new,..., new)
// tables were actually seen at t;, so recursively compensate back to the intended time

ComputeDelta(—Q', Tintended; tezec)

fi
od

Figure 4: Asynchronous Propagation Using Recursive Compensation

Since R , does not evolve, (Ri,b)bm is empty, and the
compensation expression can be simplified to:

(Ri,sz)b,c = R;,bRg,c

Using the same approach, the compensation term
(RlRib)a,d can be found to be RidRZ’b, which gives
the following asynchronous calculation of V, s:

Vap = Ry R2 — Ry R; .+ RyR. , — Ry 4RZ, (3)

Figure 4 shows an asynchronous propagation algo-
rithm called ComputeDelta that generalizes this ap-
proach to views defined over n base relations. The
algorithm takes an m-way propagation query () an
initial vector timestamp 7,4 and a new time #,eq.
It computes Qodnew, i-e., the delta for @ from
time 7,49 to time t,.,. It can be used to com-
pute a view delta V.3 by setting @ = V, 74 =
[a,a,...,a], and tpew = tp. For example, execution of
ComputeDelta(RR2, [a,a,...,a],t;) will produce the
asynchronous calculation shown in Equation 3.

ComputeDelta uses a function Execute to execute
queries. Each Execute call is assumed to insert its
results into a view delta table in which the view delta
is being accumulated. The view delta table itself is not
indicated explicitly in Figure 4. Each call to Execute
performs its query as a separate transaction and returns
the commit time of that transaction. Section 5 describes
how this is accomplished in our implementation.

3.3 Timestamps

The algorithm of Figure 4 performs asynchronous
propagation of the view delta for a propagation interval

whose endpoints are defined by the parameters 7,4 and
tpew- Over which propagation intervals should a view
delta be propagated? There are two conflicting answers
to this question.

The length of the propagation interval determines
the cost of the propagation queries. Choosing small
intervals leads to many small propagation queries.
Choosing larger intervals leads to fewer, larger queries.
Thus, the interval acts as a parameter that can be
tuned to balance query execution overhead against
data contention. In addition, the propagation interval
determines the time points to which the materialized
view can be rolled. If the view is materialized at time
tq and the view delta V.3 is propagated, then it is
possible to roll the view forward from ¢, to t;. However,
it is not possible to roll the view to any time #;, where
ty <ty < tp.

Ideally, the propagation and apply processes should
be as independent as possible. The choice of a
propagation interval can be made independent of the
apply process by generating a timestamp for each
tuple in the propagated view delta. The timestamp
indicates commit time of transaction that generated
the change. To roll a view from time ¢, to time
tyr, the apply process selects view delta tuples with
timestamps in that interval and applies those tuples
(only) to the materialized view. With this change,
the propagation process can proceed independently of
apply. The propagation interval can be used solely as a
tuning parameter for the propagation process, allowing
size of the propagation queries to be controlled. The
propagation process can be implemented as a loop that
continuously generates timestamped view delta tuples

Propagate(V, tinitiar) {
teur < tinitial
do forever
choose a propagation interval length ¢
ComputeDelta(V, [cur, ..., cur],teur + &)
tcur — tcur + d
od

Figure 5: A Continuous, Asynchronous Propagation
Process

for successively later time intervals. Such a process,
called Propagate is shown in Figure 5. Propagate
generates a view delta starting at a specified time
tinitial- The variable t.,, tracks the view delta high-
water mark, which was illustrated in Figure 3. At the
conclusion of every iteration of Propagate, the view
delta is accurate for the interval from #;p;tiq t0 teur-

Each base table’s delta includes a timestamp at-
tribute indicating the commit times of the changes it
records. As was noted in Section 2, a view delta tu-
ple’s timestamp is the minimum of the timestamps of
the tuples that joined to produce it.2 That the min-
imum timestamp is the correct one to choose may be
counter-intuitive. In Section 4 this choice is shown to
be correct. However, the following examples may pro-
vide some intuituion.

Suppose that V = R'R? and that V; contains a tuple
rr2, where 7! is a tuple found in R} and 72 is a tuple
found in R%. At time t,, where tg < t, < t1, tuple
rl is deleted from RY. At time #;, where t, < t3 < t1,
tuple r2 is deleted from R2. The effect of these deletions
should be the deletion of 7172 from the view at time #,.

The execution of ComputeDelta(V,[0,...,0],%1) (see
Figure 4) calculates Vo1 as

_ pl p2 1 p2 1p2 1 p2
Vo1 = Ry 1R, — Ro 1Ry .+ RiRy 1 — R 4Rg 1

where t. and t4 are query execution times later than
t1. Query Ré.le will produce an empty result, since
r? has already been deleted from R? at time t.. Query
RLR? ; will also produce an empty result for a similar
reason. Query _R(l),lRic will be empty because R? does
not change between ¢; and ¢, in this example. Query
—Ré7dR%71 will find the tuple (t,,—1,r') in R} ; and the
tuple (tp,—1,7?) in R(ZM. (The —1’s are the values of the
count attribute.). The compensation query will join
those tuples and add (tq,—1,7'r%) to the view delta,
since the minimum timestamp (¢,) and the negated

2Recall that base tables are considered have implicit null
timestamps, so only timestamps from the delta tables are
considered when choosing the minimum. Every maintenance
query involves at least one delta table.

product of the counts will be used. This is the desired
result.

Now consider an insertion scenario. Suppose that
tuple z! is inserted into R! at time ¢, and tuple x>
is inserted into R? at time #,. If z! and z2 join, the
effect should be the insertion of z'z? into V at time
tp. ComputeDelta(V,[0,...,0],%1) calculates the view
delta as follows. Query R%JRE will find the tuple
(ta,+1,2') in R} ,, and it will find z? in R2. Thus,
it will add (¢,,+1,z'z?) into the view delta. For a
similar reason, R;llRa1 will add (¢,+1,2'2?) to the view
delta. Query —R};R?, is empty, but —R(lldR(ZL1 will
find insertion tuples in Ra1 and Ré,d- Since it chooses
the minimum timestamp, it will add (¢,,—1,z'2?%) to the
view delta. In net effect, the insertion and deletion at
tq, cancel each other out, leaving only the insertion at
time tp. Again, this is the desired result.

3.4 Rolling Propagation

The Propagate algorithm from Figure 5, together with
timestamps, addresses the incremental view mainte-
nance issues discussed in Section 1. The rolling prop-
agation algorithm is a refinement of Propagate. The
principal difference between the two is that rolling prop-
agation provides more control over the sizes of the prop-
agation queries.

The ComputeDelta procedure, on which Propagate
is based, provides one tunable parameter: the length
of the propagation interval. All forward queries use
the same interval. However, in many cases the base
tables from which a view is derived will be updated at
different rates. For example, consider a star schema in
which the central fact table is frequently updated and
the surrounding dimension tables are rarely updated.
If the propagation interval is the same for all forward
queries, the forward queries for the fact table will be
much larger than the forward queries for the dimension
tables. The rolling propagation algorithm allows a
different interval to be used for each base table. Thus,
rolling propagation provides n independent tunable
parameters, rather than one.

Rolling propagation also tends to generate fewer,
larger propagation queries than Propagate does. Al-
though both algorithms are based on ComputeDelta,
rolling propagation defers the compensations for some
forward queries and combines them with compensations
for later queries. As it result, it makes fewer calls to
ComputeDelta than Propagate does.

Figures 6,7,8, and 9 constitute a graphical explana-
tion of the rolling propagation algorithm and its re-
lationship to ComputeDelta and Propagate. Suppose
that V = R'R2?. Figure 6 shows a coordinate space
with one time axis for R! and one for R?. The point
t, on the R! axis represents R., i.e., Ry as it exists at

a’
tq. Time tg on each axis represents the relation cre-

2
: Rld R ab
d: 1 2
/ RadR ap
: -
C:
Rla,b ch
b b
Vab = R, Ry
a a
0 L. . > R2 O L - R2
0 a b c d
Figure 6: Graphical Representation the Evolution of Figure 7: ComputeDelta(R'R2,[a,...,a],t)
R'R?
R
A
ation times. The region below and to the left of the
point (a,a) represents the join RLRZ = V,. Similarly, :
the region below and to the left of (b, b) represents V3, dj
and the view delta V, 3 is the L-shaped cross-hatched
region.3 c
ComputeDelta(V,[a,...,a],t;) generates V,p using
the four propagation queries shown in Equation 3.
In Figure 7, each of these queries is represented b
diagrammatically by a rectangular region. For example,
R;bRg’C is represented by the region bounded by ¢, and
tp on the R! axis and by t; and t. on the R? axis. a}
Similarly RcllRib is bounded by ¢y, and #; on the R!
2

axis and t, and t; on the R? axis. The forward queries O —— i =R
are represented by unshaded rectangles, and the shaded
regions are the compensation queries. Note that the
net effect of these four queries is exactly the L-shaped
region representing V,; that was shown in Figure 6.
The portion of RcllRlsz that protrudes above the line R}, R
which is not part of the L-shaped region, is compensated A

for. So is the portion of R;sz that protrudes beyond 1

Figure 8: Three Iterations of Propagate(R'R?,t,)

forward queriesfor R’

the line R?. The compensation of the region RibR?I‘b compensation queries

corrects for the double counting of that region by the
two forward queries, which overlap there.

The Propagate process from Figure 5 generates
consecutive view deltas by repeated application of
ComputeDelta. This is illustrated graphically in Figure
8, which shows the sequential calculation of V5, V3 c,
and V. q by three iterations of Propagate. Each of these
three calculations is identical in form to the calculation
shown in Figure 7.

il ‘\\

- forward queriesfor R*

®Q T O QO o

Finally, the behavior of the rolling propagation ‘O a c e g

31t may be helpful to think of a relation like R! as consisting
of a log of changes since ty. In net effect, the portion of this log
from #g to t4 is the same as R}l.

Figure 9: Rolling Propagation

process is shown in Figure 9. Compare this to
Propagate in Figure 8. Note that in Figure 9, the
forward queries for R? are wider than the forward
queries for R'. This reflects the fact that the rolling
propagation algorithm allows a different propagation
interval to be used for each relation’s forward queries.

The use of different propagation intervals for each
base relation allows for a great deal of control over the
propagation process. However, it also complicates the
structure of the view delta computation. In Propagate
(Figure 8), the propagation queries used to calculate
Vap are independent of the queries that calculate V3 ..
That is, the calculation of the view delta from V.
does not start until the calculation of V, 5 has finished.
Rolling propagation, however, does not partition the
view delta calculations so cleanly. As a result, it is less
obvious when the calculation of any portion of the view
delta has been completed. It is also less obvious how
to generate compensation for the forward queries. In
Propagate, the compensation queries depend only on
which portion of the view delta (e.g., Vo5 vs. Vi) is
currently being calculated.

The rolling propagation algorithm’s solution to these
problems is based on the observation that compensation
queries must cover exactly those portions of the R'R?
space that are (or will be) double-counted by forward
queries. From Figure 8, it can be seen that Propagate’s
compensations accomplish this. Figure 9 shows that
rolling propagation’s compensation queries also accom-
plish it, but with a different set of compensations.

Figure 10 shows the RollingPropagate process.
Each iteration of RollingPropagate performs a single
forward query plus some compensations. The variable
tswali] keeps track of the progress of forward queries
for Ri. The variable querylist[i] keeps track of the
progress of compensation for R’s queries. Specifically,
querylist[i] lists the forward queries for R’ that have not
yet been completely compensated for.* The variable
teompld) tracks the oldest uncompensated query in
querylist[i] (or tsuqli] if querylist[i] is empty). For
example, after the queries shown in Figure 9, both
tswall] and ty,a[2] would be t.. querylist[2] would be
empty, and tcomp[2] = tfwa[2] = te, since both of R*’s
forward queries have been compensated for. However,
querylist[1] would include the two most recent forward
queries for R! (those with propagation intervals Ri,d
and Rclke), since portions of these queries that requife
compensation have not yet been compensated for.
teomp[l] = tc, the beginning of the oldest query in
querylist[1].

When RollingPropagate performs a forward query
Q =R'.. .R"_lRiﬂ’yR"‘l'l ...R™ for R, it compensates

4 A forward query has been completely compensated for if every
region of the query that will overlap another forward query has
been compensated for.

for forward queries of lower-numbered relations with
which Q overlaps. Thus, when V = R'R?, no compen-
sation is performed for R'’s forward queries, and R*’s
forward queries perform compensation that accounts for
overlap between R?’s queries and R'’s. Ideally, the nec-
essary compensation can be accomplished with a single
call to ComputeDelta. In general, however, the region
for which compensation is required is not rectangular.
This is true of both of the compensation queries shown
in Figure 9. In these cases, the region to be compen-
sated is divided into rectangular sub-regions, and one
call to ComputeDelta is used to perform the compen-
sation for each sub-region. This is accomplished by the
repeat/until loop in RollingPropagate.

The rolling propagation computation is more flexible
that that of Propagate. An obvious question, however,
is how to determine the view delta high-water mark.
(Recall from Figure 3 that the view delta high-water
mark indicates which portion of the view delta has been
completely calculated.) For example, given the state of
the computation shown in Figure 9, how far forward
from ¢, can the apply process roll the materialized view?

RollingPropagate(V,t,) will have completely cal-
culated the view delta from ¢, to ¢; once all of the
forward queries that overlap with that interval have
been completely compensated. The RollingPropagate
algorithm tracks the compensation of forward queries
through the tcomp[i] variables. After any iteration of
the algorithm, the view delta high water mark is deter-
mined by the minimum value of #.omp[i] over all of the
relations R*'. Thus, after the computation in Figure 9,
teompll] = tes teompl2] = te, and the view delta high
water mark is at %..

4 Correctness

There are many equivalent ways to represent a view
delta. For example, a insertion can be represented using
a single tuple with a count of +1, as two tuples, one with
a count of +2 and another with a count of —1, and so
on. The net effect operator, ¢, maps equivalent tables
into a canonical form.

Definition 4.1

The net effect of a table R, written ¢(R), is the table
obtained from R by the following steps. First, R 1is
grouped on all attributes except count and timestamp.
Within each group, count wvalues are aggregated using
addition, and the group’s timestamp becomes null.
Finally, tuples for which count is equal to zero are
eliminated.

Note that, when applied to a base table, the net
effect operation turns a multiset into a set, with tuple
multiplicity in the original multiset represented by
count values in the net effect. The net effect operation

RollingPropagate(V, tinitiat) {
V4 tfwd[i] tracks the progress of forward queries for R
// querylist[i] lists forward queries for R' that have not been fully compensated
/7 tecomplt] tracks oldest query in querylist[i]
for each 1< i< n:tsyalt] ¢ tinitials teomplt] ¢ tinitiar, querylist[i] « 0
do forever
choose a base relation R' with the smallest #f,ali]
PruneQueryLists (¢su4[t])
choose a propagation interval length J for R'
// perform forward query for R'. t. holds the ezecution time, which is returned by Ezecute
te — Execute(Rl...Ri_lR;wd[iJde[i]HRHl .. .R”')
if i <n then insert R!.. .Ré_lR?wd[i]de[i]H Ri+1
// generate call(s) to ComputeDelta to compensate for the forward query
if i>1 // no need to compensate for R'’s forward queries
repeat
& min((5,CompInterval(Ri,tfwd[i]))
// compensate for overlap with forward queries for R! through R-1,
14 < [CompTime (R, tsyali]),. .. ,CompTime(Ri_l,tfwd[i]) ssleseeestel
ComputeDelta(R!... R"_lR;wd[i]Ju}d[R+ ... R", 74,t.)
tfwd[i] — tfwd[i] + ¢’
d+d6—4
until § =0
fi
od

}

// determine how wide a compensation for R' can bve, starting at t,
// without becoming non-rectangular
CompInterval(Rit) {
let ¢, be the smallest execution time greater than { of all queries appearing in
querylist[1] U ... U querylist[i — 1]
return(t, — t)

}

// determine how far back a compensation query at t should compensate R
CompTime (R',t) {
let R}...R:'R, Ri*'...R} be the query from any querylist[i]
with the smallest execution time ¢, that is greater than ¢
return(t;)

}

// remove fully-compensated queries from the query lists, and update tcomp[i]
PruneQueryLists(¢) {
for each R! do
remove from querylist[i] all queries with execution times less than or equal to ¢
if querylist[i] is empty
tcomp [Z] — tfwd[z]
else
let Ré...Ri_lRi’yRi‘H...RZ have the smallest execution time in querylist[i]

teompt] < ta

..R? into querylist[i]

il+o!

od

Figure 10: The Rolling Propagation Process

has the following properties:

¢(¢(R)) = ¢(R)
$(R+S) = ¢($(R)+S)=¢(R+4(S))
= ¢(¢(R) +¢(5))
(

¢(RS) =

-

R)¢(S)

Provided that the selection condition does not involve
count or timestamp and that a projection does not
eliminate count or timestamp, the net effect operation
also has the following properties:

¢(o(R)) o(¢(R))
¢(m(R)) ¢((4(R)))

Intuitively, a table A is a delta table for R if it can be
used to “roll” the state of R from one time to another.
That is, if $(R; + A) = ¢(R;), then A is a delta table
for R from time #; to time ;. However, the delta tables
used by the rolling compensation algorithm are more
flexible than this because they include timestamps.
With such a delta table, it is possible to select tuples
having timestamps within a particular time window and
then use the selected tuples as a view delta over that
window. This is captured by the following definition:

Definition 4.2

The table A is a timed delta table for R from t;
to t; (ti < t;) iff for all times t, and ty such that
t; <t <ty <t it satisfies the following condition:

#(0ap(A) + Ra) = ¢(Rs)

Timed delta tables can be split to produce timed
delta tables over smaller time intervals. Consecutive
timed delta tables can also be combined to produce a
single timed delta table over a larger interval.

Lemma 4.1 If A is a timed delta table for R from t;
to tj, and ty is a time between t; and t;, then o; 4(A)
is a timed delta table for R from t; to t5, and o4 ;(A)
is a timed delta table for R from t; tot;.

Lemma 4.2 If A is a delta table for R from t; to t,
and A is a delta table for R from t; tot;, then A+ A’
is a timed delta table for R from t; to t;.

The following theorems state that the ComputeDelta,
Propagate, and RollingPropagate procedures are cor-
rect. Because of space limitations, they are presented
here without proof. Proofs can be found in the extended
version of this paper.[11]

Theorem 4.1 Let A be the result of executing
ComputeDelta(V,1,,ty) for a view V. A is a timed delta
table for V. from time 7, to time tp.

DBMS mat

base

tebles view apply

base view

deltas ! delta

1 1 3
n ‘
-

Figure 11: View Maintenance Architecture

Theorem 4.2 Let A be the delta table that has been
produced by Propagate(V t,) after some number of
complete iterations, and let t be the value of toyr in
Propagate. A is a timed delta table for V from time t,
to time tp.

Theorem 4.3 Let A be the table produced by
RollingPropagate(V,t,) and let tp be the minimum
value (over all i) of teompli]. At all times, o,5(A) is
a timed view delta for V from t, to ty.

5 Implementation Issues

A prototype of the rolling propagation algorithm has
been implemented using a set of external drivers around
the DB2 relational database engine. Figure 11 gives a
high-level view of the prototype’s architecture. Solid
lines represent data flow. The dashed lines are used to
indicate which driver controls each data flow.

The external drivers use a set of control tables
maintained in the database engine. The control tables
identify the tables associated with each materialized
view, including the view delta table, the underlying
base tables, and their delta tables. The control
tables also record the current view materialization
time and the view delta high-water mark. The
propagate driver implements the rolling propagation
algorithm to populate view delta tables. The apply
driver implements incremental point-in-time refresh by
applying changes recorded in the view delta table.

One issue that arose during the design of the
prototype was the method of populating the base table
deltas. There are two options. One is to define triggers
on each base table R, so that updates, insertions, and
deletions will trigger the insertion of change records into
AR, The other option is to populate A® by extracting
changes from the database engine’s transaction log.

The trigger method is simpler to implement and it
does not require knowledge of the database engine’s log
format. However, it has several disadvantages. One is
that it expands the update footprint of any transaction
that modifies R to include A®. Thus, the transaction

can conflict with propagation queries (initiated by the
propagate driver) that read the delta table. Note that
if a materialized view depends on R, every propagation
transaction will read either R or A®. A more serious
problem for the trigger-based approach is the generation
of timestamps for the tuples in A®. As was noted in
Section 2, the timestamp of a delta tuple is supposed to
identify the serialization order of the transaction that
performed the change. In many systems (e.g., those
that use two-phase locking for concurrency control), the
serialization order of a transaction is not known until
it commits. This means that a trigger that fires at the
time of an insertion or deletion into R will not be able
to attach an appropriate timestamp.

The prototype view maintenance implementation
uses a tool called DB2 DataPropagator (DPropR) to
populate the base delta tables directly from the trans-
action log. DPropR tags each delta tuple with a unique
transaction identifier. In addition, DPropR maintains
a separate global table, called the unit-of-work table,
which maps the identifier of each relevant transaction
to its commit sequence number and commit timestamp.
Both the sequence number and the timestamp are con-
sistent with the transaction serialization order, but the
sequence numbers are unique, while commit timestamps
may not be. DPropR populates the unit-of-work table
as it encounters commit records of relevant transactions
in the log. A transaction is relevant if it has made a
change to one of the view’s underlying tables.

The propagate process obtains commit sequence
numbers and timestamps for the tuples in AF by
joining A® with the unit-of-work table on the unique
transaction identifier. Internally, propagate uses
commit sequence numbers as “times”. However, it
records both a sequence number and a timestamp in
each view delta tuple so that real times can be used
to specify propagation intervals and materialized view
states.

A similar approach might be possible in a trigger-
based system if the database engine provides commit
triggers. A commit trigger could potentially be used to
record each transaction’s serialization point in a unit-
of-work table, provided that the trigger has some means
of determining the serialization order. However, unless
relevant transactions could somehow be identified, the
unit-of-work table would have to record serialization
times for all update transactions.

A related issue that must be addressed by the
propagate process is how to determine the evaluation
time of a propagation query. The function Evaluate
used by ComputeDelta and RollingPropagate is ex-
pected to return the serialization time of the transac-
tion in which the propagation query is evaluated. In
the prototype, propagate determines the commit se-
quence number of such a transaction by forcing it to

write a unique value into a special global table. The
special table has an associated delta table, which is pop-
ulated by DPropR. Once the transaction has completed,
propagate waits for DPropR to capture its special table
update. From the captured update, propagate can de-
termine the maintenance query’s transaction identifier.
The unit-of-work table can then be used to determine
its serialization time.

6 Related Work

Many view maintenance algorithms have been de-
scribed. An overview of this work can be found in [6],
which also discusses applications. The algorithms de-
scribed in [3, 7, 4] are probably most closely related to
the rolling propagation algorithm. The algorithms in [3]
handle select/project/join views only, and require pre-
update snapshots of the base table. Those of [7] handle
a broader class of view definitions, including views with
union, recursion, and negation, but they require both
pre-update and post-update snapshots of the base ta-
bles. [4] presents algorithms for deferred maintenance
of views that may involve union and difference opera-
tions in addition to select, project and join. All of these
approaches are synchronous: incremental maintenance
queries must see base tables either at the beginning of
the propagation interval or at the end. [4] also pro-
poses the decomposition of the view maintenance prob-
lem into separate propagate and apply phases. Another
technique, based on multi-versioning, for reducing con-
tention between materialized view updates and concur-
rent reads is presented in [10]. A description of the
implementation of incremental view maintenance in a
commercial relational database system can be found in
[2].

The summary-delta table method was proposed in
[8] for incremental maintenance of relational views that
involve aggregation. A summary-delta table records
the net change to an aggregate over a particular time
window. The rolling propagation technique can be
extended to support views with aggregation by using
summary-delta tables.

Compensation as a view maintenance technique was
proposed in [12]. The Eager Compensation Algorithm
described in [12] operates in a warehousing environment
in which the base tables and the materialized views are
located in different systems. The warehouse (where the
view is located) is notified explicitly of each update
to the base tables. The warehouse responds to an
update notification by issuing a maintenance query to
compute incremental change necessary to reflect the
update in the materialized view. If further updates
occur while the maintenance query is pending, the
warehouse modifies the maintenance queries for those
updates so that the updates’ effects on the pending
queries will be compensated for. Compensation is also

used in [13] and [1] in a more general environment in
which the base tables may be distributed across several
systems.

Self-maintainable views are views that can be incre-
mentally maintained using only the base deltas, and
not the base tables themselves. Self-maintainable views
were introduced in [5], and [9] presents techniques for
expanding materialized views so that they become self-
maintainable.

7 Conclusion

Most incremental view maintenance techniques are
synchronous. They tie the incremental refresh effort
to the refresh time, since the base tables must be seen
in a particular state. Compensation can be used to
decouple the refresh effort from the refresh time, while
the database continues to evolve.

Rolling propagation is a compensation-based tech-
nique for asynchronous incremental view maintenance.
Unlike other compensation-based techniques, it pro-
vides explicit control over the granularity of the view
maintenance transactions. Rolling propagation also
completely decouples the propagation of a view changes
from the application of those changes to the material-
ized view. Applications can control point-in-time re-
fresh of the materialized view, while view delta propa-
gation is tuned independently to suit the requirements
of the underlying database system.

8 Acknowledgements

The authors would like to thank Beth Hamel, Hamid
Pirahesh, Jay Shanmugasundaram, and Richard Sidle
for their help and comments.

References
[1] D Agrawal, A. El Abbadi, A. Singh, and T. Yurek.

Efficient view maintenance at data warchouses. In
Proceedings of the ACM SIGMOD International

Conference on Management of Data, pages 417—
427, 1997.

[2] Randall Bello, Karl Dias, Alan Downing, James
Feenan, Jim Finnerty, William Norcott, Harry
Sun, Andrew Witkowski, and Mohamed Ziauddin.
Materialized views in Oracle. In Proceedings of
the International Conference on Very Large Data

Bases, pages 659-664, 1998.

[3] José A. Blakeley, Per-Ake Larson, and Frank Wm.
Tompa. Efficiently updating materialized views.
In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 61-71,
1986.

[4] Latha S. Colby, Timothy Griffin, Leonid Libkin,
Inderpal Singh Mumick, and Howard Trickey.
Algorithms for deferred view maintenance. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 469—
480, 1996.

[5] Ashish Gupta, H. V. Jagadish, and Inderpal Singh
Mumick. Data integration using self-maintainable
views. In International Conference on Extending
Database Technology, pages 140-144, 1996.

[6] Ashish Gupta and Inderpal Singh Mumick. Main-
tenance of materialized views: Problems, tech-
niques, and applications. Bulletin of the

IEEE Technical Committee on Data Engineering,
18(2):3-19, 1995.

[7] Ashish Gupta, Inderpal Singh Mumick, and V. S.
Subrahmanian. Maintaining views incrementally.
In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 157—
167, 1993.

[8] Inderpal Singh Mumick, Dallan Quass, and
Barinderpal Singh Mumick. Maintenance of data
cubes and summary tables in a warehouse. In Pro-
ceedings of the ACM SIGMOD International Con-
ference on Management of Data, pages 100-111,
1997.

[9] Dallan Quass, Ashish Gupta, Inderpal Singh Mu-
mick, and Jennifer Widom. Making views self-
maintainable for data warehousing. In Conference
on Parallel and Distributed Information Systems,

pages 158-169, 1996.

[10] Dallan Quass and Jennifer Widom. On-line
warehouse view maintenance. In Proceedings of
the ACM SIGMOD International Conference on
Management of Data, pages 393-404, 1997.

[11] K. Salem, K. Beyer, B. Lindsay, and R. Cochrane.
How to roll a join: Asynchronous incremental view
maintenance. Technical Report CS-2000-6, Dept.
of Computer Science, University of Waterloo,

February 2000.

[12] Yue Zhuge, Hector Garcia-Molina, Joachim Ham-
mer, and Jennifer Widom. View maintenance in
a warehousing environment. In Proceedings of the
ACM SIGMOD International Conference on Man-
agement of Data, pages 316-327, 1995.

[13] Yue Zhuge, Hector Garcia-Molina, and Janet
Wiener. The strobe algorithms for multi-source
warehouse consistency. In Conference on Parallel
and Distributed Information Systems, 1996.

