
DC2: A Framework for Scalable, Scope-Bounded

Software Verification

Franjo Ivančić1, Gogul Balakrishnan1, Aarti Gupta1, Sriram Sankaranarayanan2,

Naoto Maeda3, Hiroki Tokuoka3, Takashi Imoto3, Yoshiaki Miyazaki3

1NEC Laboratories America, Princeton, USA. 2University of Colorado, Boulder, USA
3NEC Corporation, Kawasaki, Japan

{ivancic,bgogul,agupta}@nec-labs.com, srirams@colorado.edu

{n-maeda@bp,tokuoka@ay,t-imoto@ak,y-miyazaki@bq}.jp.nec.com

Abstract—Software model checking and static analysis have
matured over the last decade, enabling their use in automated
software verification. However, lack of scalability makes these
tools hard to apply. Furthermore, approximations in the models
of program and environment lead to a profusion of false alarms.
This paper proposes DC2, a verification framework using scope-
bounding to bridge these gaps. DC2 splits the analysis problem
into manageable parts, relying on a combination of three auto-
mated techniques: (a) techniques to infer useful specifications
for functions in the form of pre- and post-conditions; (b) stub
inference techniques that infer abstractions to replace function
calls beyond the verification scope; and (c) automatic refinement
of pre- and post-conditions from false alarms identified by a user.
DC2 enables iterative reasoning over the calling environment,
to help in finding non-trivial bugs and fewer false alarms. We
present an experimental evaluation that demonstrates the effec-
tiveness of DC2 on several open-source and industrial software
projects.

I. INTRODUCTION

Software Model Checking is a promising technique for

finding subtle bugs in software [19]. The primary utility of

model checkers lies in their ability to present a witness to

help explain a bug to a developer. However, the lack of

scalability (due to fundamental hardness) and the reporting

of false alarms (due to modeling abstractions) form a major

hindrance to the adoption of software model checking in

industry. A practically viable software model checker must

exhibit many key desirable qualities: (1) Scalability: handle

1 MLOC and beyond (for C/C++); (2) Performance: complete

verification within the allotted time; and finally, (3) Accuracy:

yield accurate bug reports with a low rate of false alarms,

so that human effort is not wasted in examining them. The

capabilities of model checkers have made spectacular advances

over the last two decades, especially with the advent of mod-

ern SAT/SMT solvers. However, in spite of these advances,

when used “out-of-the-box” even the most advanced software

model checking engine cannot handle large projects that are

frequently encountered in industry. In this paper, we present

DC2, a verification methodology that enables scalable software

model checking.

DC2—which stands for Depth-Cutoff with Design

Constraints—uses scope bounding along with automatic

specification inference and environment refinement techniques.

Scope bounding limits the size of the generated model by

excluding functions that are deeply nested in the call graph,

thereby enhancing scalability. Environment constraints restrict

the environment (global variables, unknown calling context,

and other external influences) at function interfaces. Function

stubs capture the effect of calls to library functions, missing

source code, or functions deemed outside the scope by DC2.

The environment constraints and function stubs for available

code are inferred automatically using a light-weight and

scalable whole program analysis called SPECTACKLE.

SPECTACKLE can infer constraints from pointer/array in-

directions and user-defined assertions. Furthermore, it prop-

agates (hoists) these constraints across program locations

within a function body, and across function calls. As a result,

constraints originating from deeply-nested function calls can

be automatically hoisted many levels higher in the call graph

to provide constraints at key interface functions. Scalability

is ensured in SPECTACKLE by focusing on specific syntactic

specification templates and using a hand-crafted interpro-

cedural static analysis for these templates. Note that our

main requirement for SPECTACKLE is scalability rather than

precision. In this respect, it is different from other recent

work on automatic generation of preconditions [14, 23], since

our inferred preconditions are used only to bootstrap the

application of a bit-precise and path-sensitive model checker

in the next phase.

The specifications generated by SPECTACKLE may be in-

complete. Furthermore, since aliasing is not treated soundly

by SPECTACKLE, they may also be unsound. Therefore, a

model checker (even with a precise program model) can

produce false alarms due to lack of a precise environment.

To deal with such false alarms, we use an approach we call

CEGER (CounterExample-Guided Environment Refinement).

It is inspired by CEGAR [10], where counterexamples are

used to guide refinement of an abstract model. In CEGER, if

the user deems a reported witness as a false alarm, the model

checker is used to generate a refinement of the environment

constraint, computed using a data-sliced weakest precondition

backwards over the witness trace. The refined environment

constraints are used in subsequent runs of the verification tool,

to eliminate the previously found false alarms. The application

of CEGER is quite useful in practice since it helps iterative

978-1-4577-1639-3/11/$26.00 c© 2011 IEEE ASE 2011, Lawrence, KS, USA

133

reasoning over the calling environment and guides the analysis

towards non-trivial bugs and fewer false alarms.

We have implemented DC2 as part of VARVEL, a software

verification tool developed by NEC. We present an experimen-

tal evaluation of DC2 on several open source and industry

software projects. Our results show that use of DC2 leads

to much fewer failures, enabling the application of software

verification techniques on large projects.

Contributions. In this paper, our main contribution is the

DC2 verification framework that combines scope bounding

with automatic inference and refinement of the environment

to enhance applicability of software model checkers on large

projects.

p We present light-weight specification inference tech-

niques to automatically infer environment constraints and

function stubs.

p We present a counterexample-guided environment re-

finement approach (CEGER) to further refine the en-

vironment constraints, triggered by a user classifying a

reported warning as a false alarm. The CEGER approach

can potentially leverage work done in examining a set of

false alarms for eliminating others in future runs.

p We present an experimental evaluation of DC2 on large

open source and industry software, using an implemen-

tation in VARVEL, a tool developed by NEC and utilized

within a perpetual verification environment.

Overview. The rest of the paper is organized as follows.

First, we provide some background on VARVEL and its pro-

gram modeling in section II. We describe scope bounding

in section III and the global analysis for automatic spec-

ification inference in section IV. Section V presents our

counterexample-guided refinement procedure for environment

constraints. In section VI, we report the experimental results

on application of DC2. Section VII discusses some related

work. Section VIII concludes the paper.

II. BACKGROUND: VARVEL AND MEMORY MODELING

VARVEL is a software verification tool based on an earlier

research prototype called F-SOFT [18]. VARVEL uses a com-

bination of abstract interpretation and model checking to find

common errors in C/C++ programs including pointer usage er-

rors, buffer overruns, C string errors, API usage violations, and

violations of user-defined assertions. At its core, VARVEL uti-

lizes a bit-precise SAT-based bounded model checker (BMC),

which operates on a model automatically extracted from a

given program. The formulas generated by BMC [8] are solved

by a SAT solver to generate witnesses that correspond to

property violations. VARVEL has been engineered to handle

numerous low-level aspects of C programs including pointer

arithmetic, dynamic memory allocation, function pointers, and

bitwise operations.

Scalability in VARVEL is enhanced by staging various

analyses such that cheaper methods are used first. It uses

abstract interpretation [13] on numerical domains of increasing

precision (e.g., intervals, octagons [22]) to statically prove

properties. Once a property is proved, it is removed from

further consideration. In addition, program slicing is used to

remove portions of the program that are irrelevant to the

unresolved properties. In practice, roughly 60-80% of the

automatically instrumented checks in a program are rapidly

proved using static analysis, before the bounded model checker

is deployed on the rest. Thus, the number of properties to

check, as well as the model size is reduced across the different

stages.

However, it still remains prohibitively expensive to perform

whole program model checking for large programs. Therefore,

VARVEL treats every function appearing in a given program

as a possible entry function. Although this helps to handle

some functions, challenges remain for functions with large

call graphs where the extracted models may become too large.

Furthermore, when a function other than main (or an interface

function) is treated as an entry point for verification, the input

parameters and global variables are assumed to hold arbitrary

values. In reality, however, these parameters are constrained

based on values set by its callers. Therefore, the model checker

may report a witness, where it assigns a value to an input that

cannot be realized in an actual execution, thereby resulting

in a false alarm. The aim of DC2 is to enable effective

deployment of VARVEL on large systems for finding more

bugs and reducing false alarms with minimal user interaction.

VARVEL supports different memory models and checkers

that use the same underlying analyses. Here, we focus primar-

ily on three of these, namely (a) a fine-grained array-bounds

model to check for overflows, (b) a light-weight validity model

that handles bugs due to malloc failures, double-free and free

of statically allocated memory, and (c) a light-weight model

for detecting memory leaks.

A. Array Bounds Checking

The array-bounds model tracks pointer addresses, allocated

bounds for each pointer, and the position of the null-terminator

sentinel for strings. This model is along the lines of the

CSSV model [15] with some key differences, to reduce model

complexity and make it easier to analyze.

The bound [ptrLo(p), ptrHi(p)] represents the range of legal

values for pointer p, such that p may be dereferenced in our

model without causing an out-of-bounds violation. If p ∈
[ptrLo(p), ptrHi(p)] then p[i] underflows iff p+ i < ptrLo(p).
Similarly, p[i] overflows iff p+ i > ptrHi(p). By convention,

a pointer p is regarded invalid (uninitialized, null, freed, etc.)

whenever ptrHi(p) < ptrLo(p). Addresses associated with a

pointer do not correspond to the physical layout of memory

in a program; providing an address to a pointer allows us

to model pointer arithmetic and aliasing in an easier fashion.

Fig. 1 illustrates the modeling attributes.

For statically allocated arrays, the bounds and addresses

are set to fixed values at the start. Dynamically allocated

pointers are not provided with a priori fixed addresses. Instead,

malloc calls are instrumented to assign a new address and

bound at every invocation of malloc.

Tracking String Lengths. A majority of the buffer overflows

in C result from the unsafe use of the standard library

134

char *s=malloc(10);

if (!s) exit(-1);

strcpy(s,"ASE2011");

char *t= s+3;

M M + 5 M + 10

\0

s t

ptrLo(s) ptrLo(t)

strLen(t) = 4

strLen(s) = 7
ptrHi(s)

ptrHi(t)

Fig. 1. The memory model for the array bounds model after successfully executing the four statements on the left-hand side: The successful allocation returns
a pointer to some new address M , and the lower bound addresses ptrLo(s) = ptrLo(t) =M . The higher bound addresses are ptrHi(s) = ptrHi(t) =M+9.
Finally, the string lengths are determined using the size abstraction, namely strLen(s) = 7 and strLen(t) = 4.

functions. We extend our memory model to check for such

buffer overflows along the lines of CSSV [15].

Corresponding to each character pointer p, we associate

a variable strLen(p) to track the position of the first null-

terminator character starting from p. The updates to strLen(p)
are derived along the same lines as those for the pointer

bounds with the exception of assignments involving pointer

indirections, where updates to a string pointer are propagated

to potentially overlapping strings as well.

B. Pointer Validity Checking

The pointer-validity checker handles those aspects of buffer

overflow checking that do not require tracking of bounds ptrHi
and ptrLo for pointers. The validity checker instruments each

pointer using a seven-valued monitor ptrVal(p) to denote the

state of a pointer at runtime: (a) null: a NULL pointer; (b)

invalid: a non-null invalid pointer, whose dereference may

cause a segmentation violation; (c) static: global variables,

arrays and static variables; (d) stack: local variables, alloca

calls, local arrays, formal arguments; (e) heap: dynamically

allocated memory on the heap; (f) code: code section, e.g.,

string constants; and (g) environment: input pointer parame-

ters.

Unlike the overflow checker, the validity checker does not

track addresses of pointers and ignores address arithmetic. A

pointer expression p+ i is assumed to have the same validity

status as its base pointer p. At a dereference ∗p, our modeling

adds an assertion check that is violated if ptrVal(p) is null or

invalid. In case of an assignment to ∗p, we may also report

a bug if ptrVal(p) = code. Calls to free set the validity

monitor of the argument and its aliases to invalid. Finally,

leaving a functional scope changes pointers that are set to

stack to invalid.

C. Memory Leak Checking

We also provide a stand-alone model for detecting memory

leaks. In comparison to a standard approach of combining

memory leak detection with memory safety checkers, our

model is very light-weight. Further, we reduce the model size

based on the observation that, to find memory leaks, pointer

aliasing relationships need to be tracked only between pointers

and allocation sites. That is, rather than having to track

quadratically many aliasing predicates between all pointers,

we simplify the model to track only linearly many aliasing

predicates. We omit further details for sake of brevity.

III. SCOPE BOUNDING

The basic idea behind scope bounding in DC2 is to cut off

function calls beyond a desired call depth in the call graph of

a given entry function. Here, call depth is defined as the length

of the shortest path from the entry function in the call graph.

After the cut-off, the function call is replaced by a stub that

abstracts its effect in terms of preconditions, post-conditions,

and modified variables. DC2 is supported by a three-pronged

inference methodology:

(a) Infer constraints in the form of preconditions for each

function so that the calling environment at the entry

function can be captured.

(b) Infer stubs in the form of pre-conditions, post-conditions,

and summaries for functions that are cut off.

(c) Support refinement of the inferred pre-conditions and post-

conditions upon demand.

In our framework, the inference of pre/post-conditions and

stubs is supported by a simple whole program analysis called

SPECTACKLE. The refinement process, called CEGER, em-

ploys an analysis around a counterexample generated by a

model checker and identified as a false alarm by the user.

The algorithm for function call rewriting in DC2 is shown

in Fig. 2. φentry and φg are the constraints and stub_g is the

stub inferred by SPECTACKLE. This scope bounding instru-

mentation is done as a preprocessing step, and is independent

of the verification performed later. The depth cutoff scheme

is illustrated in Fig. 3. Note that for the entry function of

the analysis, the precondition inferred by SPECTACKLE is

assumed, whereas it is asserted for other called functions.

The function h is deemed outside the scope. Therefore, a stub

replacement h_stub is automatically created and the inferred

preconditions, post-conditions, and stubs are used in place of

h. The inference of preconditions, post-conditions, and stub

functions to support DC2 are described in the next section,

while the refinement process is described in Section V.

IV. SPECIFICATION INFERENCE

Scope bounding largely alleviates the issue of scalability,

enabling verification to cover large parts of the code by using

depth cutoff on each entry function. However, cutting off deep

function calls or replacing them by over-approximate stubs

adversely impacts accuracy, leading to false bugs. Further, we

may miss bugs that occur outside the scope. To cope with

these issues, DC2 utilizes a light-weight global analysis called

SPECTACKLE. It has two main roles: (1) to generate and

hoist preconditions for functions, and (2) to generate stubs

135

Function depthCutoff(entry, depth)

Map depthMap: Func 7→ Integer.

Insert assume(φentry) at the start of entry.

for all functions f in callgraph do

depthMap(f) := Length of the shortest path in

call-graph from entry to f.

for all f such that depthMap(f) = depth do

for all call-sites c in function f do

let g be the function called at c

if depthMap(g) > depth then

Insert assert(φg) before c.

// Cut off function call c.

Replace c with call to stub_g.

Fig. 2. Function call rewriting in DC2.

fun. f(..)

assume(pref)

call g1();

...
call g2();

fun. g1(..)

assert(preg1)

...
call h();

call h_stub();

fun. g2(..)

assert(preg2)

...

fun. h(..)

...

fun. h_stub(..)

assert(preh)

inferred stub

assume(posth)

Fig. 3. A schematic illustration of depth cutoff in DC2 on a call graph.

that capture important side-effects of functions. Both these are

tailored specifically to the checkers in VARVEL.

A. Preconditions

SPECTACKLE visits functions in a reverse topological order

with respect to the call graph of the program. For each

function, it hoists error conditions within the body to the start

of the function. Hoisting is done by back-propagating the

conditions across the statements. In addition, SPECTACKLE

also hoists preconditions of the callees to the start of the caller.

Hoisted conditions are used for two purposes in the scope

bounding algorithm: (1) to constrain the inputs of an internal

function f when it is used as an entry function for verification,

and (2) to assert the correctness of inputs to a callee g1 of

f. Note, in particular, that an assertion check assert(φg)
will trigger a violation during model checking and generate

a witness if the hoisted condition for g is not correct. In

other words, we do not require SPECTACKLE to generate

correct preconditions. Instead, we attempt to automatically

generate likely preconditions. The witnesses generated by

VARVEL can be additionally used for manual refinement of

the preconditions as described in Sect. V.

In the following, we briefly describe the preconditions that

SPECTACKLE generates for a given function.

Pointer validity: For every pointer p that is dereferenced,

SPECTACKLE hoists the condition (p != NULL) to the

beginning of the function, provided p is not checked for null

along all paths that lead to the dereference. If the resulting

condition involves a formal parameter or a global variable, it

will be retained as a precondition for the function.

Array bound: For every variable i that is used as an index

expression for accessing a static array of size n, it back-

propagates the condition (0 ≤ i < n) to the start of the

function. If the resulting condition depends only on the inputs

to the function, it will be used as a precondition that constrains

the range of the respective inputs.

Allocated heap size: If a dereferenced expression is an input

variable itself or is aliased with an input, SPECTACKLE tries

to capture the constraints on the size of heap area pointed-to

by the expression by analyzing pointer arithmetic operations.

For example, consider the following function:

void f(T* t1,int k)

{T* t2; t2 = t1 + k; *t2 = 7;}

From the expression *t2 and the pointer arithmetic oper-

ation t2=t1+k, SPECTACKLE generates the following pre-

condition for f: t1+k ∈ [ptrLo(t1), ptrHi(t1)].
Field relation inference: SPECTACKLE captures specific

patterns of field usage. For instance, we often see struct

definitions that have two fields, one pointing to the heap and

the other indicating the length of the heap as below:

struct S{char* buf; size_t buflen;};

SPECTACKLE automatically extracts such relations and

globally constrains the type of inputs.

Assertion hoisting: SPECTACKLE hoists assertions in the pro-

gram to the beginning of functions. Currently, SPECTACKLE

can hoist simple (linear equality or inequality) expressions

with some simplification for the hoisted assertions. As a

heuristic, we drop non-linear assertions and assertions involv-

ing complex conditional expressions.

Other Properties: SPECTACKLE includes support for infer-

ring null-terminator preconditions for strings. It can also be

easily extended to infer other properties such as type states.

B. Hoisting of Annotations

SPECTACKLE is designed to be fast and scalable even

for large software. Therefore, we avoid computing weakest

preconditions since it is typically expensive for the whole

program. This section briefly discusses how annotations are

hoisted to the beginning of functions and across calls using

purely syntactic domain operations.

Let ϕl be a precondition annotation generated at a program

point l inside a function f . Our goal is to compute an appropri-

ate precondition ψ corresponding to the entry point of function

f . To hoist an annotation ϕl at location l, SPECTACKLE

initalizes l with ϕl and every other location with the condition

false . ψ is computed by means of a backwards data-flow

136

analysis that captures the effect of various assignments and

conditional branches between program point l and the entry

point of f .

The backwards transfer function is the (weakest liberal)

precondition operator. Preconditions across assignment state-

ments are treated by substitution of the right-hand side in place

of the LHS expression. The pre operator is also defined to

propagate a constraint ϕ backwards across a branch condition

c. Computing this operation involves the syntactic search for

a conjunct in ϕ that contradicts the branch condition c. If

such a conjunct is obtained, the precondition is set to false .

If, on the other hand, ϕ contains a conjunct that is identical to

c (syntactically), the result of the precondition is given by

true. Failing this, the precondition is set to ϕ, instead of

the more general constraint c ⇒ ϕ. This is done in part to

keep the syntactic form of the preconditions simple so that the

dataflow analysis can be performed efficiently. On the other

hand, in some cases, the resulting precondition tends to be

stronger, resulting in a false alarm that may need refinement

using CEGER. Formally,

pre(ϕ, c) =

false if ϕ “syntactically contradicts” c
true if ϕ “is identical to” c
ϕ otherwise

A join operator (t) is used to merge two preconditions

ϕ and ψ obtained from the two parts of a branch. The join

operator works by matching its operands syntactically. If one

of the operand syntactically matches false , the result is taken

to be the other operand. If ψ can be obtained by conjoining

some assertion ψ′ to ϕ then the join chooses the weaker

assertion ϕ. Finally, if the operands do not fall into any of the

categories above, the result of the join is the trivial annotation

true. Formally,

ϕ t ψ =

ϕ if ψ is syntactically false
ϕ (ψ ≡ ϕ ∧ ψ′)
ψ if ϕ is syntactically false
ψ (ϕ ≡ ψ ∧ ϕ′)

true otherwise

When the analysis converges, the assertion labeling the entry

point of the function denotes the entry precondition ψ. If ψ
is an assertion other than true or false , it can be propagated

to the callers of the function. If ψ = false , then a warning is

issued to the user.

Example 4.1: Consider function f1 shown in Fig. 4(a).

The pointer dereference q[4] in line 3 of f1 gives rise to two

annotations ϕ3 and ψ3. Consider the assertion ϕ3: q 6= NULL.

Because ϕ3 is identical to branch condition c: q!=NULL
at line 2, the precondition pre(ϕ3, c) is true. Note that the

assertion ϕ4 labelling line 4 is initially false . Therefore,

joining the contribution across the two branches at line 2,

yields ϕ2 : true. As a result, the annotation q 6= NULL does

not yield a precondition for f1.

On the other hand, hoisting the annotation ψ3: q +
4 ∈ [ptrLo(q), ptrHi(q)] produces the precondition p + 4 ∈

pre:p+ 4 ∈ [ptrLo(p), ptrHi(p)]

void f1(int * p){

1: int * q = p;

2: if (q != NULL)

ϕ3 : q 6= NULL

ψ3 : q + 4 ∈ [ptrLo(q), ptrHi(q)]

3: q[4] = 0;
4: ...

}

pre:r 6= NULL

void f2(int *p,

int *r){

1: int * q;

ψ2 :r 6= NULL

true

2: if (*r > 2)

ϕ3 :p 6= NULL

3: q = p;

else

ϕ4 :r 6= NULL

4: q = r;

ϕ5 :q 6= NULL

5: *q = 0;

}

(a) (b)

Fig. 4. Hoisting annotations across statements and branches.

[ptrLo(p), ptrHi(p)]. In a case like this, we generate the

following precondition: if(p) {p+ 4 ∈ [ptrLo(p), ptrHi(p)]}.

Example 4.2: Consider function f2 shown in Fig. 4(b).

The pointer dereference *q at line 5 gives rise to the annota-

tion ϕ5. Similarly, the pointer dereference *r at line 2 gives

rise to the annotation ψ2. Annotation ϕ5 can be hoisted across

the assignments in lines 3 and 4 yielding ϕ3: p 6= NULL and

ϕ4: r 6= NULL, respectively. The join operation at the branch

in line 2 yields the assertion true. As a result, annotation ϕ5

does not contribute to the precondition for f2. On the other

hand, when the annotation ψ2 at line 2 is hoisted to the start

of f2, we generate the preconditon r 6= NULL for f2. �
In practice, a sound and complete precondition is not

strictly necessary. If the precondition is overly restrictive,

it would lead to a violation at some call site. Similarly,

if the precondition is overly relaxed, it would cause false

alarms due to an under-specified environment. In practice, our

implementation of SPECTACKLE sacrifices soundness in its

handling of pointer indirections. Nevertheless, the number of

unsound preconditions generated is very few in practice, and

such instances are detected through witnesses generated by

our model checker.

C. Stub Generation

Recall that scope bounding in DC2 removes functions that

are nested deeply in the callgraph. Another practical issue is

that verifiers for large projects (especially commercial sys-

tems) often need to work with incomplete code bases, because

the source code for many third-party libraries or modules is

unavailable. For verification purposes, it would be useful to

have a summary of the behavior of cut-off functions (for which

source code is available) as well as missing functions (for

which source code is unavailable). We use SPECTACKLE to

automatically generate stubs in both situations.

SPECTACKLE uses the following analyses to generate stubs

that model the side-effects of cut-off functions:

Mod-ref analysis: A conservative update to all variables

accessible in a cut-off function may generate too many false

137

alarms. Thus, SPECTACKLE conducts a light-weight mod-ref

(modification and reference) analysis to find variables that may

be modified. Then, it generates a stub that updates only those

variables that are modified within the function and its transitive

callees.

Key effects extraction: Library function calls are important

for verification. For instance, if a function calls free or exit

internally, this is captured in the stub.

The stubs for missing functions are generated according

to default environment assumptions (described in the next

section), including suitable preconditions for appropriate ini-

tializations and postconditions. In general, the default stubs

generated by SPECTACKLE are not sound. They are designed

to avoid false alarms that arise frequently in practice, while

still exposing problematic situations. In addition, VARVEL

provides a mechanism for the user to provide (or refine

existing) stubs through use of Stub APIs. This is described

in the next section.

Example 4.3: We applied SPECTACKLE on an H.264 video

decoder software project comprising about 25k LOC. SPEC-

TACKLE ran in a matter of seconds and generated 1473
preconditions for all the functions. Overall, a majority (69%)

of the generated preconditions corresponded to direct pointer

dereferences of the form ∗p without any indexing. A signif-

icant number (22%) corresponded to preconditions generated

due to indexing of statically allocated arrays with known sizes,

while the rest corresponded to indexing of pointers of unknown

sizes.

Applying VARVEL on the H.264 project without the inferred

preconditions yielded 658 witnesses, almost all of them being

false alarms. However, the number of witnesses was drastically

reduced to 30, when we used VARVEL with the preconditions

generated by SPECTACKLE. Of these 30 witnesses, 10 were

plausible buffer overflows. �

V. ENVIRONMENT CONSTRAINTS AND REFINEMENT

The preconditions and stubs described in Sect. IV are

collectively referred to as the environment. We use an ap-

proach we call CEGER (CounterExample-Guided Environ-

ment Refinement) for refining the environment. The basic

idea behind CEGER is to first apply the model checker using

the default stubs and preconditions (e.g. those generated by

SPECTACKLE). Afterwards, the user examines the witnesses

reported and decides which are false alarms. The environment

is refined iteratively to avoid the false alarms encountered

in the previous iterations. We start by describing the default

environment assumptions.

A. Default Environment Assumptions

SPECTACKLE makes some default assumptions about func-

tions when generating the preconditions and function stubs.

These assumptions are inspired by common use scenarios.

Tab. I shows some of the default assumptions about values of

input arguments, bounds of pointers, aliasing, and functions

whose code is not included in the analysis.

TABLE I
AUTOMATIC DEFAULT ENVIRONMENT ASSUMPTIONS

Feature Default assumption

int/char arg. Nondet. value

Pointer Aliasing No aliasing of input argument pointers
Pointer Address Nondet.: NULL or p > 0.
Pointer Bounds Nondet.: Invalid or [ptrLo(p), ptrHi(p)]
String Length Nondet.: Invalid or nullTerm
Func. missing src. ptr. args are set to nondet.,

globals are not changed

p NULL

lo 0 hi

p

lo 0 hi

p

lo 0 hi

p

p FREED

(a) (b)

Fig. 5. Possible pointer configurations of an input string p: (a) part of default
assumptions, and (b) not permitted by the default assumptions.

Input pointers are nondeterministically set to be NULL,

or to a valid pointer address and bounds. If p is cho-

sen to be valid, then p is set to a unique non-NULL ad-

dress, [ptrLo(p), ptrHi(p)] forms a valid range, and p ∈
[ptrLo(p), ptrHi(p)]. The allocated length of p is set to be

positive but nondeterministic. Finally, strings are assumed

to be null-terminated. Note that these assumptions do not

lead to a strictly sound treatment of the environment. For

example, it is possible to call a function p that has a valid

base, but points outside its allocated region at the call site.

However, interfaces in C are seldom designed to handle such

cases. Fig. 5 highlights some cases allowed by the default

assumptions for a string input pointer p, and some other cases

that are not allowed.

Stub API. To aid the user in supplying and refining

the environment using C/C++, VARVEL supports a special

Stub API that provides access to auxiliary (instrumented)

variables introduced in the verification models. These include

variables such as ptrHi(p), ptrLo(p), strLen(p), ptrVal(p),
and so on. The APIs also support assertions, assumptions,

preconditions and assignments involving instrumented vari-

ables (to set up an initial environment). These allow the user

to directly control the model and verification in VARVEL.

Indeed, the preconditions and stubs automatically generated

by SPECTACKLE utilize the same APIs, providing a common

interface for modeling the environment. In addition, VARVEL

comes equipped with about 650 pre-defined stubs for standard

libraries (e.g. strings), along with embedded assertions for

different checkers.

Tab. II shows some of the Stub APIs. The assert function

is part of the C library. It is treated as a check. The assume
function blocks the execution unless the assumed expression

138

TABLE II
STUB API TO SPECIFY ENVIRONMENT

preCond(expr) C expr. expr is a precondition.
assert(expr) expr is asserted.
assume(expr) expr is assumed.

NONDET(e1, e2) A nondet. integer in [e1, e2].
setStrLen(p, e) Insert the assignment strLen(p) := e.
setValidity(p, e) Assignment ptrVal(p) := e.

is valid. The precondition function preCond has two different

meanings depending on where it is encountered. It is used as

an assumption when it is encountered at the entry function

of the analysis. If encountered in a non-entry function, it is

treated as a check. This corresponds to the natural semantics

of a precondition in annotation checking.

B. Counterexample-Guided Environment Refinement

The CEGER framework uses a software model checker in

two ways:

1) The model checker provides a concrete witness trace

showing the control flow and the data values at each

program point in the execution leading up to the error.

This trace aids the user considerably in determining

whether the witness is a false alarm.

2) The model checker suggests an environment constraint

to rule out a false alarm, by propagating weakest pre-

conditions backwards along the trace, starting from the

violation and ending at the function interface. In our

experience, users find it considerably easier to improve

upon (e.g. generalize) a suggested constraint rather than

derive a suitable constraint from scratch.

We consider refinement of the preconditions for each

function. Let ϕf be the existing environment precondition

corresponding to a function f in the code. For each witness w,

let ψw be the weakest precondition computed at the function

interface starting from the assertion violation. When a witness

w is marked as a false alarm by the user, there are two possible

diagnoses:

• In the witness, starting from function f , we observe an

assertion violation in the code that is dependent on the

input environment. In this case, ϕf is weak. We term

such witnesses as Type 1 witnesses.

• In the witness, starting from another function g, the

precondition ϕf (treated as an assertion) is violated when

calling f . In this case, either ϕf is strong or ϕg is weak.

We term such witnesses as Type 2 witnesses.

To eliminate a Type 1 witness w, we refine the precondition

ϕf for the entry function f by conjoining it with ¬ψw: ϕ′
f =

ϕf ∧¬ψw. This suffices to eliminate w from future iterations

of the verifier. In many cases, this also rules out other related

witnesses to the same assertion from alternative program paths.

However, note that ϕ′
f is presented to the user as a suggestion.

In many cases, the user may be able to rule out additional false

witnesses by weakening ϕ′
f further.

To handle a Type 2 witness, we re-run the analysis starting

from function g and including the code for function f , but

TABLE III
DESCRIPTIONS OF BENCHMARKS.

name version LOC (analyzed) #Functions

thttpd 2.25b 6.7K 145
GenericNQS 3.50.10-pre1 15.1K 253
libupnp 1.6.6 17.9K 363
Product P1 — 54.5K 408
Product P2 — 143.6K 727

TABLE IV
RESULTS OF DC2 EXPERIMENTS. Success ratio reports the percentage of

functions successfully verified within the given timeouts. Likely Bugs
reports the number of bugs that were communicated to developers with
numbers in parenthesis representing the number of interprocedural bugs.

Success Ratio #Likely Bugs

w/o DC2 w/ DC2 w/o DC2 w/ DC2

thttpd 68% 96% 0 (0) 5 (3)
GenericNQS 82% 94% 6 (2) 6 (2)
libupnp 81% 98% 8 (0) 19 (8)
Product P1 89% 96% 8 (1) 11 (6)
Product P2 88% 91% 14 (3) 22 (9)

excluding the assertion (from the precondition) for f . If the

analysis succeeds in producing a violation inside function f
that is deemed to be false by the user, then ϕg is weak.

Therefore, f ’s precondition is used to refine ϕg as a Type-

1 witness. If the analysis fails, the user may choose to treat

the original witness w as a Type-1 witness to refine ϕg , or

relax the precondition of f such that [[ϕ′
f]] ⊇ [[ϕf]] ∪ s, where

s is the concrete state in the witness causing the violation of

ϕf . Such a relaxation will also eliminate the witness w from

future iterations of the verifier.

Note that since the possibility of a witness being false is

arbitrated by the user, mistakes by the user can lead to missed

bugs. In particular, the user may introduce a fallacious envi-

ronment assumption, such as ϕf : false , proving all properties

trivially. The static analysis can detect such cases and warn

the user. Although CEGER is not completely automatic, it is

nevertheless quite effective in our experience at enabling users

to discover real bugs on large code bases.

VI. EXPERIMENTS

This section describes experiments conducted on open

source and proprietary software projects. First, we highlight

the usage of DC2 on several benchmarks and show the effec-

tiveness of scope-bounded model checking to find interesting

interprocedural bugs. Then, we present some experiments on

counterexample-guided environment refinement.

A. DC2 Experiments

We applied VARVEL to five benchmarks, including two

industry programs from NEC, with and without DC2. The

description of the benchmarks is shown in Tab.III. Due to time

limitations, especially for investigating results, we decided to

employ only a part of each benchmark for the experiments.

The column LOC shows the sizes of modules analyzed by

VARVEL. Product P1 is a developer tool whose original LOC is

100k and product P2 is a business application software whose

original LOC is 1400k.

For the experiments, the DC2 depth was set to 1, i.e.,

each scope consisted of two levels of function calls in the

139

urlconfig.c:390-396

L1 err_code = config_description_doc(doc, ipaddr_port, &root_path);

L2 if(err_code != UPNP_E_SUCCESS) { goto error_handler;}

L3 err_code = calc_alias(alias, root_path, &new_alias);

urlconfig.c:203-340

int config_description_doc(IXML_Document *doc, const char *ip_str, char **root_path_str){

...

L4 err_code = ixmlNode_appendChild(rootNode, (IXML_Node *) element);

L5 if(err_code != IXML_SUCCESS) { goto error_handler;}

L6 textNode = ixmlDocument_createTextNode(doc, (char *)url_str.buf);

L7 if(textNode == NULL) { goto error_handler;}

... // *root_path_str is updated here.

error_handler:

L8 if(err_code != UPNP_E_SUCCESS) { ixmlElement_free(newElement);}

...

L9 return err_code;}

Fig. 6. A subtle inter-procedural bug in libupnp-1.6.6.

call graph, and we did not change any preconditions or stubs

generated automatically by SPECTACKLE. The analysis was

performed with a time bound of 800s, and the results are

shown in Tab. IV. As expected, we observed that the success

ratio (percentage of functions successfully verified within an

allotted time) improved with DC2 for all benchmarks. Clearly,

scope bounding enabled application of VARVEL on even

those functions with large call graphs. Further, the number

of detected bugs also increased with DC2.

Interestingly, many of the bugs found without DC2 were

intraprocedural. On the other hand, VARVEL was able to find

deep interprocedural bugs with DC2. One such (previously

unknown) bug in libupnp is shown in Fig. 6. It was only

found when we utilized DC2. The variable root_path is

supposed to be initialized by config_description_doc

at L1. If the initialization fails, it is designed to jump

to an error handler at L2. However, VARVEL found a

case where the initialization fails and the returned er-

ror code is UPNP_E_SUCCESS. The witness generated by

VARVEL indicates that if IXML_SUCCESS is assigned to

err_code at L4 and ixmlDocument_createTextNode

returns NULL, then the execution will proceed to the er-

ror handler without changing err_code. IXML_SUCCESS

and UPNP_E_SUCCESS have the same value of 0. Thus,

uninitialized root_path will be passed as a parameter

to the calc_alias function (L3) which checks that the

corresponding parameter is not NULL. Note this bug is pro-

duced even without analyzing ixmlNode_appendChild and

ixmlDocument_createTextNode, which are out of scope

of the verification run.

B. CEGER Experiments

In this section, we only present VARVEL experiments that

do not utilize SPECTACKLE. This allows us to highlight the

advantage of CEGER independently of DC2. However, this

also means that these experiments do not take full advantage

of DC2 and thus result in an increased rate of false alarms.

TABLE V
DATA FROM INITIAL RUN OF THE ZITSER ET AL. BENCHMARKS. LEGEND:

AI: ABSTRACT INTERPRETATION; MC: MODEL CHECKING, PRF.:
PROOFS, WIT.: WITNESSES, T/O: TIME OUT.

Code size (kLOC) Analysis Result (# Properties)

Total Avg Max Total AI-Prf. MC-Prf. Wit. T/O

46 1.9 4.5 3281 2155 4 90 500

TABLE VI
ANALYSIS OF WITNESSES FROM ZITSER ET AL. BENCHMARKS

Status #Wit(1) #Wit(2)

Plausible Bugs 7 10
Missing function getopt, optarg, . . . 25 0
Missing function dn_skipname 12 0
Missing functions setpwent, getpwent 43 0
Modeling limitation: Array/string elements 3 3

Zitser Benchmark Suite. We ran VARVEL on some public

benchmarks put forth by Zitser et al. to evaluate the perfor-

mance of academic and commercial static analysis tools [28].

The benchmark suite consists of 25 programs, which form a

part of a larger open source application with known overflow

bugs involving arrays and strings. We allowed each instance

to run for 1800s. The programs themselves range in size

from 1 − 5kLOC (after preprocessing, forward slicing and

instrumentation). Table V shows the results of running the

analysis on these examples. Note that we are able to prove

a majority (∼ 65%) of the properties statically. The model

checker produces 90 concrete violations. Each violation was

manually examined by one of the authors. Of the 90 witnesses

found, 7 were found to be real violations based on the witness.

The remaining 83 were classified into 4 categories. Table VI

shows an analysis of these violations (#Wit(1)). Note that

missing preconditions are not a problem for these benchmarks,

since they contain drivers that initialize the environment.

Indeed, a large number of false positives arose due to missing

functions that did not have any stubs. Overall, about one man

hour was spent in analyzing all the witnesses in the first run.

140

TABLE VII
RESULT DATA FOR TWO INDUSTRIAL CASE STUDIES USING CEGER

#Func- Witnesses #Pre- #Stub Bugs
kLOC tions R1 R2 conds PV AB

P3 24 188 211 19 17 6 5 2

P4 70 654 951 181 7 3 6 3?

Our subsequent iteration included stubs for the missing

functions. The stubs were created by consulting the description

of function behavior specified by the manuals. Table VI shows

the results of the second iteration (#Wit(2)). This iteration

results in a total of 13 witnesses, of which 10 were found to

be plausible.

Industrial Benchmarks. Next, we applied VARVEL on a

small embedded software application (in industrial use) with

6k LOC. The application lacks a single “main” function.

Therefore, we ran the analysis on each entry function in

the source. No partitioning was required for this application.

We first used the pointer validity checker. The check ran in

60 minutes and produced 15 witnesses in all. One of the

authors analyzed all 15 witnesses in 30 minutes. It yielded one

plausible bug, where the result of a malloc was dereferenced

without a check. We formulated preconditions based on the

other witnesses. These preconditions covered both pointer and

array overflow checks. Overall, the entire analysis involved

3 rounds of the validity checker and 4 rounds of the array

overflow checker, requiring 200 minutes to run. The resulting

witnesses revealed 7 bugs overall.

We helped in conducting case-studies on two larger em-

bedded software projects P3 and P4. The study involved

the use of VARVEL by two engineers who received tool

training and documentation, but were not verification experts.

Each study was time limited: 6 person days for P3 and 7
person days for P4. Table VII summarizes the results. Each

analysis carried out two iterations with the pointer validity

checker followed by two iterations using the more complex

array bounds checker. The first iteration used the default

environment assumptions. Subsequently, the witnesses were

all examined, and preconditions and stubs were written for the

next iteration. Table VII shows the number of witnesses in the

first round using default environment assumptions (R1), and

the number of witnesses after CEGER (R2). It also classifies

the environment assumptions into preconditions and missing

stubs written by the engineers. These preconditions and stubs

are shared by multiple entry functions. Finally, we report on

the number of real bugs for pointer validity (PV) and array

overflows (AB) (only about a quarter of AB witnesses were

examined by the engineers).

VII. RELATED WORK

VARVEL uses abstract interpretation and bit-precise

bounded model checking for analysis. Approaches based on

abstract interpretation [13] have been used in tools such as

PolySpace [2], Astrée [9], C Global Surveyor [27]. These tools

focus on checking embedded applications with special features

such as simple aliasing, no dynamic allocation, simple control

flow and no recursion. However, our approach is designed to

be more general purpose. The CBMC tool due to Clarke et

al. [11] also uses bit-precise bounded model checking, but does

not use abstract interpretation and has limited scalability. The

CoVerity verifier [1] has been successfully applied to large

industrial as well as open source projects, but an experimental

comparison is outside the scope of this paper.

Abstraction Refinement. CEGAR (CounterExample Guided

Abstraction Refinement) was proposed and successfully used

in many efforts [6, 10, 20]. In particular, it has been used with

predicate abstraction and refinement in the SLAM project,

with continuing improvements in industry applications [7].

Our CEGER approach is very much inspired by CEGAR.

Whereas other CEGAR efforts use spurious counterexamples

to refine the abstract model of the program, we use them only

to refine the calling environment of the function being verified

or to model missing functions. CEGER is not completely

automated, and relies upon the user to determine whether the

reported witness is a false alarm.

Scope Bounding. Several approaches utilize scope bounding

to achieve better scalability in verification [5, 21, 24, 25].

Taghdiri and Jackson proposed a CEGAR-like refinement-

based method to find bugs in Java programs [25]. It iteratively

expands the scope of called functions by utilizing information

from counterexamples, and continues until it finds a proof or

a witness that does not rely on any unconstrained value. Babić

and Hu proposed structural abstraction [5] that gradually

relaxes the boundary of verification by inserting function sum-

maries on demand for a given property. In contrast, DC2 works

for all properties within a statically-determined scope. Instead

of expanding the scope iteratively, it refines the preconditions

and stubs for cut-off functions, based on witness traces.

Automatic Environment Generation. Recently, numerous

formalisms have focused on automatically generating models

of the environment, based on automatic sound abstraction [26],

specification mining [4], automata learning [3], and so on. Our

environment generation is based on a light-weight whole pro-

gram analysis, where we are occasionally unsound. The main

motivation is to suppress false alarms and to capture conditions

spanning deeply-nested function calls to find interprocedural

bugs.

Automatic Contract Inference. Techniques for synthesizing

contracts automatically from pointer indirections and asser-

tions in the code have also been proposed by Moy and

Marche [23] and by Cousot et al. [14]. Our approach for

precondition synthesis is similar in spirit, but differs radically

on the choice of abstract domains: (a) our approach is mostly

syntactic in nature, based on matching expressions in the code,

and (b) our handling of pointer indirection is simple, albeit un-

sound in theory. However, the preconditions inferred seem to

be accurate in practice. Furthermore, a wrong precondition can

be detected by VARVEL as a type-1 or a type-2 witness. Our

simpler approach can infer preconditions for large projects,

with 500kLOC and beyond, in a matter of minutes. This design

choice works well in combination with precise modeling in our

model checker.

141

Annotation Checking. Our work also relates to annotation

checking tools that utilize function interface specifications, e.g.

ESC/Java [16] and more recently VCC [12]. Although these

efforts can handle complex specifications, they require signif-

icant manual effort to write them, and support for automatic

annotation inference or refinement is largely absent. Tools such

as SALInfer [17] provide some automated annotation inference

for runtime errors. In contrast to standard annotation checking,

note that DC2 handles multiple levels of function calls in

the analysis, thereby utilizing more precise interprocedural

contexts for finding bugs.

VIII. CONCLUSIONS

We presented the DC2 framework for program analysis sup-

ported by automated specification inference. Our experimental

results for DC2 in VARVEL support our experience that a soft-

ware model checker can accommodate the requirements from

industry by carefully designing and engineering its application.

We are investigating other directions to improve DC2, such as

adaptively tuning scope-bounding based on program metrics

and prior verification runs.

IX. ACKNOWLEDGMENTS

We would like to acknowledge the assistance and support

of Shinichi Iwasaki-san and Fusako Mitsuhashi-san from NEC

Corporation, and Mustafa Hussain and Naveen Sharma from

NEC HCL Systems Technologies during the development of

VARVEL.

REFERENCES

[1] CoVerity Inc. program verifier. www.coverity.com.
[2] PolySpace program analysis tool. www.polyspace.com.
[3] R. Alur, P. Černý, P. Madhusudan, and W. Nam. Synthesis of interface

specifications for java classes. In Proc. POPL, pages 98–109. ACM
Press, 2005.

[4] G. Ammons, R. Bodík, and J. R. Larus. Mining specifications. In POPL,
pages 4–16, 2002.

[5] D. Babić and A. J. Hu. Structural abstraction of software verification
conditions. In CAV, 2007.

[6] T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Automatic predicate
abstraction of C programs. In PLDI’01, pages 203–213. ACM Press,
2001.

[7] T. Ball, E. Bounimova, R. Kumar, and V. Levin. Slam2: Static driver
verification with under 4% false alarms. In FMCAD, pages 35–42, 2010.

[8] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model
checking without BDDs. In TACAS, pages 193–207, 1999.

[9] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. A static analyzer for large safety-critical
software. In PLDI, volume 548030, pages 196–207. ACM, 2003.

[10] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement. In CAV, pages 154–169, 2000.

[11] E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C
programs. In TACAS, 2004.

[12] E. Cohen, M. Dahlweid, M. A. Hillebrand, D. Leinenbach, M. Moskal,
T. Santen, W. Schulte, and S. Tobies. VCC: A practical system for
verifying concurrent C. In TPHOLs. Springer, 2009.

[13] P. Cousot and R. Cousot. Abstract Interpretation: A unified lattice model
for static analysis of programs by construction or approximation of
fixpoints. In POPL, pages 238–252, 1977.

[14] P. Cousot, R. Cousot, and F. Logozzo. Precondition inference from
intermittent assertions and application to contracts on collections. In
VMCAI. Springer, 2011.

[15] N. Dor, M. Rodeh, and M. Sagiv. CSSV: Towards a realistic tool for
statically detecting all buffer overflows in C. In Proc. PLDI. ACM Press,
2003.

[16] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and
R. Stata. Extended static checking for Java. In PLDI, pages 234–245,
2002.

[17] B. Hackett, M. Das, D. Wang, and Z. Yang. Modular checking for buffer
overflows in the large. In ICSE, 2006.

[18] F. Ivančić, I. Shlyakhter, A. Gupta, M. Ganai, V. Kahlon, C. Wang, and
Z. Yang. Model checking C programs using F-Soft. In ICCD. IEEE,
2005.

[19] R. Jhala and R. Majumdar. Software model checking. ACM Comput.

Surv., 41(4), 2009.
[20] R. Kurshan. Computer-aided Verification of Coordinating Processes:

the automata-theoretic approach. Princeton University Press, 1994.
[21] A. Loginov, E. Yahav, S. Chandra, S. Fink, N. Rinetzky, and M. G.

Nanda. Verifying dereference safety via expanding-scope analysis. In
ISSTA, 2008.

[22] A. Miné. The octagon abstract domain. In WCRE, 2001.
[23] Y. Moy and C. Marché. Modular inference of subprogram contracts for

safety checking. Symbolic Computation, 45, 2010.
[24] D. Shao, S. Khurshid, and D. E. Perry. An incremental approach to

scope-bounded checking using a lightweight formal method. In FM,
2009.

[25] M. Taghdiri and D. Jackson. Inferring specifications to detect errors in
code. ASE, 14(1):87–121, 2007.

[26] O. Tkachuk, M. B. Dwyer, and C. Pasareanu. Automated environment
generation for software model checking, 2003.

[27] A. Venet and G. P. Brat. Precise and efficient static array bound checking
for large embedded C programs. In PLDI, pages 231–242. ACM Press,
2004.

[28] M. Zitser, R. Lippmann, and T. Leek. Testing static analysis tools using
exploitable buffer overflows from open source code. In SIGSoft/FSE.
ACM, 2004.

142

