
Recency-Abstraction for Heap-Allocated Storage

Gogul Balakrishnan and Thomas Reps

Comp. Sci. Dept., University of Wisconsin; {bgogul, reps}@cs.wisc.edu

Abstract. In this paper, we present an abstraction for heap-allocated storage,
called the recency-abstraction, that allows abstract-interpretation algorithms to
recover some non-trivial information for heap-allocated data objects. As an ap-
plication of the recency-abstraction, we show how it can resolve virtual-function
calls in stripped executables (i.e., executables from which debugging information
has been removed). This approach succeeded in resolving 55% of virtual-function
call-sites, whereas previous tools for analyzing executables fail to resolve any of
the virtual-function call-sites.

1 Introduction

A great deal of work has been done on algorithms for flow-insensitive points-to
analysis [1, 9, 35] (including algorithms that exhibit varying degrees of context-
sensitivity [8, 12, 13, 38]), as well as on algorithms for flow-sensitive points-to
analysis [18, 29]. However, all of the aforementioned work uses a very simple ab-
straction of heap-allocated storage, which we call the allocation-site abstraction

[6, 24]:

All of the nodes allocated at a given allocation site s are folded together

into a single summary node ns.

In terms of precision, the allocation-site abstraction can often produce poor-
quality information because it does not allow strong updates to be performed.
A strong update overwrites the contents of an abstract object, and represents a
definite change in value to all concrete objects that the abstract object repre-
sents [6, 33]. Strong updates cannot generally be performed on summary objects
because a (concrete) update usually affects only one of the summarized concrete
objects. If allocation site s is in a loop, or in a function that is called more than
once, then s can allocate multiple nodes with different addresses. A points-to fact
“p points to ns” means that program variable p may point to one of the nodes
that ns represents. For an assignment of the form p->selector1 = q, points-
to-analysis algorithms are ordinarily forced to perform a weak update: that is,
selector edges emanating from the nodes that p points to are accumulated ; the
abstract execution of an assignment to a field of a summary node cannot kill the
effects of a previous assignment because, in general, only one of the nodes that
ns represents is updated on each concrete execution of the assignment statement.
Because imprecisions snowball as additional weak updates are performed (e.g.,
for assignments of the form r->selector1 = p->selector2), the use of weak
updates has adverse effects on what a points-to-analysis algorithm can determine
about the properties of heap-allocated data structures.

To mitigate the effects of weak updates, many pointer-analysis algorithms
in the literature side-step the issue of soundness. For instance, in a number of
pointer-analysis algorithms—both flow-insensitive and flow-sensitive—the initial
points-to set for each pointer variable is assumed to be ∅ (rather than ⊤). For

void foo() {
int **pp, a;

while(...) {
pp =

(int*)malloc(sizeof(int*));

if(...)

*pp = &a;

else {

// No initialization of *pp

}
**pp = 10;

}
}

void foo() {
int **pp, a;

while(...) {
pp =

(int*)malloc(sizeof(int*));

if(...)

*pp = &a;

else {

*pp = &b;

}
**pp = 10;

}
}

(a) (b)

Fig. 1. Weak-update problem for malloc blocks.

local variables and malloc-site variables, the assumption that the initial value is
∅ is not a safe one—it does not over-approximate all of the program’s behaviors.
The program shown in Fig. 1 illustrates this issue. In Fig. 1(a), *pp is not
initialized on all paths leading to “**pp = 10”, whereas in Fig. 1(b), *pp is
initialized on all paths leading to “**pp = 10”.

A pointer-analysis algorithm that makes the unsafe assumption mentioned
above will not be able to detect that the malloc-block pointed to by pp is possibly
uninitialized at the dereference **pp. For Fig. 1(b), the algorithm concludes
correctly that “**pp = 10” modifies either a or b, but for Fig. 1(a), the algorithm
concludes incorrectly that “**pp = 10” only modifies a, which is not sound.

On the other hand, assuming that the malloc-block can point to any variable
or heap-allocated object immediately after the call to malloc (i.e., has the value
⊤) leads to sound but imprecise points-to sets in both versions of the program in
Fig. 1. The problem is as follows. When the pointer-analysis algorithm interprets
statements “*pp = &a” and “*pp = &b”, it performs a weak update. Because
*pp is assumed to point to any variable or heap-allocated object, performing a
weak update does not improve the points-to sets for the malloc-block (i.e., its
value remains ⊤). Therefore, the algorithm concludes that “**pp = 10” may
modify any variable or heap-allocated object in the program.1

It might seem possible to overcome the lack of soundness by tracking whether
variables and fields of heap-allocated data structures are uninitialized (either as
a separate analysis or as part of pointer analysis). However, such an approach
will also encounter the weak-update problem for fields of heap-allocated data
structures. For instance, for the program in Fig. 1(b), the initial state of the
malloc-block would be set to uninitialized. During dataflow analysis, when pro-
cessing “*pp = &a” and “*pp = &b” it is not possible to change the state of the

1 Source-code analyses for C and C++ typically use the criterion “any variable whose
address has been taken” in place of “any variable”. However, this can be unsound
for programs that use pointer arithmetic (i.e., perform arithmetic operations on
addresses), such as executables.

2

malloc-block to initialized because *pp points to a summary object. Hence, fields
of memory allocated at malloc-sites will still be reported as possibly uninitialized.

Even the use of multiple summary nodes per allocation site, where each
summary node is qualified by some amount of calling context (as in [16, 28]),
does not overcome the problem; that is, algorithms such as [16, 28] must still
perform weak updates.

At the other extreme is a family of heap abstractions that have been intro-
duced to discover information about the possible shapes of the heap-allocated
data structures to which a program’s pointer variables can point [33]. Those
abstractions generally allow strong updates to be performed, and are capable
of providing very precise characterizations of programs that manipulate linked
data structures; however, the methods are also very costly in space and time.

The inability to perform strong updates not only causes less precise points-to
information to be obtained for pointer-valued fields, it also causes less precise
numeric information to be obtained for int-valued fields. For instance, with in-
terval analysis (an abstract interpretation that determines an interval for each
variable that over-approximates the variable’s set of values) when an int-valued
field of a heap-allocated data structure is initialized to ⊤ (meaning any possible
int value), performing a weak update will leave the field’s value as ⊤. Mak-
ing unsound assumptions (such as an empty interval) for the initial value of
int-valued fields nullifies the soundness guarantees of abstract-interpretation.
Consequently, the results of the analysis cannot be used to prove absence of
bugs.

In this paper, we present an abstraction for heap-allocated storage, referred
to as the recency-abstraction, that is somewhere in the middle between the ex-
tremes of one summary node per malloc site [1, 9, 35] and complex shape ab-
stractions [33]. In particular, the recency-abstraction enables strong updates to
be performed in many cases, and at the same time, ensures that the results are
sound.

The recency-abstraction incorporates a number of ideas known from the lit-
erature, including
– associating abstract malloc-blocks with allocation sites (à la the allocation-

site abstraction [6, 24])
– isolating a distinguished non-summary node that represents the memory

location that will be updated by a statement (as in the k-limiting approach
[19, 22] and shape analysis based on 3-valued logic [33])

– using a history relation to record information about a node’s past state [27]
– attaching numeric information to summary nodes to characterize the number

of concrete nodes represented [39]
– for efficiency, associating each program point with a single shape-graph [6,

24, 25, 32, 36] and using an independent-attribute abstraction to track infor-
mation about individual heap locations [17].

The contributions of our work are as follows:
– We propose an inexpensive abstraction for heap-allocated data structures

that allows us to obtain some useful results for objects allocated in the
heap.

3

– We apply this abstraction in a particularly challenging context, and study
its effectiveness. In particular, we measured how well it resolves virtual-
function calls in stripped x86 executables obtained from C++ code. The
recency-abstraction permits our tool to recover information about pointers
to virtual-function tables assigned to objects when the source code contains
a call new C, where C is a class that has virtual methods. Using the recency-
abstraction, our tool was able to resolve 55% of the virtual-function call-sites,
whereas previous tools for analyzing executables—including IDAPro [20] (a
commercial disassembler), as well as our own previous work without the
recency abstraction [3]—fail to resolve any of the virtual-function call-sites.

The recency-abstraction is beneficial when the initialization of objects is between
two successive allocations at the same allocation site.
– It is particularly effective for initializing the VFT-field (the field of an object

that holds the address of the virtual-function table) because the usual case is
that the VFT-field is initialized in the constructor, and remains unchanged
thereafter.

– Inside methods that operate on lists, doubly-linked lists, and other linked
data structures, an analysis based on the recency-abstraction would typically
be forced to perform weak updates. The recency-abstraction does not go
as far as methods for shape analysis based on 3-valued logic [33], which
can materialize a non-summary node for the memory location that will be
updated by a statement and thereby make a strong update possible; however,
such analysis methods are considerably more expensive in time and space
than the one described here.
The remainder of the paper is organized as follows: §2 provides background

on the issues that arise when resolving virtual-function calls in executables. §3
describes our recency-abstraction for heap-allocated data structures. §4 provides
experimental results evaluating these techniques. §5 discusses related work.

2 Resolving Virtual-Function Calls in Executables

In recent years, there has been an increasing need for tools to help program-
mers and security analysts understand executables. For instance, commercial
companies and the military increasingly use Commercial Off-The Shelf (COTS)
components to reduce the cost of software development. They are interested in
ensuring that COTS components do not perform malicious actions (or cannot be
forced to perform malicious actions). Therefore, resolving virtual-function calls
in executables is important: (1) as a code-understanding aid to analysts who
examine executables, and (2) for recovering Intermediate Representations (IRs)
so that additional analyses can be performed on the recovered IR (à la Engler
et al. [11], Chen and Wagner [7], etc.). Poor information about virtual-function
calls typically forces tool builders to treat them either (i) conservatively, e.g., as
a call to any function whose address has been taken, which is a source of false
positives, (ii) as if the call causes execution to halt, i.e., the analysis does not
proceed beyond sites of virtual-function calls, which is a source of false negatives,
or (iii) in an unsound fashion, e.g., as if they call a no-op function that returns
immediately, which can lead to both false negatives and false positives.

4

In this section, we discuss the issues that arise when trying to resolve virtual-
function calls in executables. Consider an executable compiled from a C++
program that uses inheritance and virtual functions. The first four bytes of
an object contains the address of the virtual-function table. We will refer to
these four bytes as the VFT-field. In an executable, a call to new results in
two operations: (1) a call to malloc to allocate memory, and (2) a call to the
constructor to initialize (among other things) the VFT-field. A virtual-function
call in source code gets translated to an indirect call through the VFT-field (see
Fig. 2).

p = malloc()

p->vt = &VT

f
g

f
g

MallocBlock VirtualTable

ºººº
ºººº
ºººº

ºººº
ºººº

ºººº

(*(p->vt + x))()

···
···

Fig. 2. Resolving virtual-function calls in executables. (A double box denotes a sum-
mary node.)

When source code is available, one way of resolving virtual-function calls is to
associate type information with the pointer returned by the call to new and then
propagate that information to other pointers at assignment statements. However,
type information is usually not available in executables. Therefore, to resolve a
virtual-function call, information about the contents of the VFT-field needs to
be available. For a static-analysis algorithm to determine such information, it
has to track the flow of information through the instructions in the constructor.
Fig. 2 illustrates the results if the allocation-site abstraction is used. Using the
allocation-site abstraction alone, it would not be possible to establish the link
between the object and the virtual-function table: because the summary node
represents more than one block, the interpretation of the instruction that sets
the VFT-field can only perform a weak update, i.e., it can only join the virtual-
function table address with the existing addresses, and not overwrite the VFT-
field in the object with the address of the virtual-function table. After the call
to malloc, the fields of the object can have any value (shown as ⊤); computing
the join of ⊤ with any value results in ⊤, which means that the VFT-field can
point to anywhere in memory (shown as dashed arrows). Therefore, a definite
link between the object and the virtual-function table is never established, and
(if a conservative algorithm is desired) a client of the analysis can only conclude
that the virtual-function call may resolve to any possible function.

The key to resolving virtual-function calls in executables is to be able to
establish that the VFT-field definitely points to a certain virtual-function ta-
ble. §2.1 describes the abstract domain used in Value-Set Analysis (VSA) [3],

5

a combined pointer-analysis and numeric-analysis algorithm that can track the
flow of data in an executable. The version of the VSA domain described in §2.1
(the version used in [3]) has the limitations discussed above (i.e., the need to
perform weak updates); §3 describes an extension of the VSA domain that uses
the recency-abstraction, and shows how it is able to establish a definite link be-
tween an object’s VFT-field and the appropriate virtual-function table in many
circumstances.

2.1 Value-Set Analysis

VSA is a combined numeric-analysis and pointer-analysis algorithm that de-
termines an over-approximation of the set of numeric values or addresses that
each variable holds at each program point. A key feature of VSA is that it
takes into account pointer arithmetic operations and tracks integer-valued and
address-valued quantities simultaneously. This is crucial for analyzing executa-
bles because numeric values and addresses are indistinguishable at runtime and
pointer arithmetic is used extensively in executables. During VSA, a set of ad-
dresses and numeric values is represented by a safe approximation, which we
refer to as a value-set.

Memory-Regions. In the runtime address space, there is no separation of the
activation records of various procedures, the heap, and the memory for global
data. However, during the analysis of an executable, we break the address space
into a set of disjoint memory areas, which are referred to as memory-regions.
Each memory-region represents a group of locations that have similar runtime
properties. For example, the runtime locations that belong to the activation
record of the same procedure belong to a memory-region.

For a given program, there are three kinds of regions: (1) the global -region
contains information about locations that correspond to global data, (2) the AR-
regions contain information about locations that corresponds to the activation-
record of a particular procedure, and (3) the malloc-regions contain information
about locations that are allocated at a particular malloc site.

When performing source-code analysis, the programmer-defined variables
provide us with convenient compartments for tracking data manipulations in-
volving memory. However, stripped executables do not have information about
programmer-defined variables. In our work, we use the variable-recovery mech-
anism described in [4] to obtain variable-like entities for stripped executables.
The variable-recovery algorithm described in [4] identifies the structure of each
memory-region based on the data-access patterns in the executable, and treats
each field of the structure recovered for the memory region as a variable. For
instance, suppose that the structure of the AR-region for a procedure P is

struct {

int a;

struct {

int b;

int c;

} d;

};

6

Procedure P would be treated as having three int-valued variables a, d.b, and
d.c. Similarly, the fields of malloc-regions are treated as variables. In general, if
R is a memory-region, VarR denotes the variables of R. For uniformity, registers
are treated as variables.

Value-Sets. A value-set is a safe approximation for a set of addresses and numeric
values. Suppose that n is the number of regions in the executable. A value-
set is an n-tuple of strided intervals of the form s[l, u], with each component
of the tuple representing the set of addresses in the corresponding region. For
a 32-bit machine, a strided-interval s[l, u] represents the set of integers {i ∈
[−231, 231 − 1]|l ≤ i ≤ u, i ≡ l(mod s)} [31].
– s is called the stride.
– [l, u] is called the interval.
– 0[l, l] represents the singleton set {l}.

Call-strings. The call-graph of a program is a labeled graph in which each node
represents a procedure, each edge represents a call, and the label on an edge
represents the call-site corresponding to the call represented by the edge. A call-
string [34] is a sequence of call-sites (c1c2 . . . cn) such that call-site c1 belongs to
the entry procedure, and there exists a path in the call-graph consisting of edges
with labels c1, c2, . . . , cn. CallString is the set of all call-strings in the program.

A call-string suffix of length k is either (c1c2 . . . ck) or (∗c1c2 . . . ck), where c1,
c2, . . . , ck are call-sites. (c1c2 . . . ck) represents the string of call-sites c1c2 . . . ck.
(∗c1c2 . . . ck), which is referred to as a saturated call-string, represents the set
{cs|cs ∈ CallString, cs = πc1c2 . . . ck, and |π| ≥ 1}. CallStringk is the set of call-
string suffixes of length k, plus non-saturated call-strings of length ≤ k. Consider
the call-graph shown in Fig. 3(a). The set CallString2 for this call-graph is {ǫ,
C1, C2, C1C3, C2C4, *C3C5, *C4C5, *C5C4}.

Call-string Length Memory-region
status map

Comment

C1C3 2 MAIN 7→ NS, A 7→ NS,
D 7→ NS

B is inaccessible

C2C4 2 MAIN 7→ NS, B 7→ NS,
D 7→ NS,

A is inaccessible

*C5C4 2 MAIN 7→ NS, A 7→ NS,
B 7→ S,D 7→ S

(a) (b)

Fig. 3. (a) Call-graph; (b) memory-region status map for different call-strings. (Key:
NS: non-summary, S: summary; * refers to a saturated call-string.)

VSA is a flow-sensitive, context-sensitive, abstract-interpretation algorithm
(parameterized by call-string length [34]); it is an independent-attribute method
(in the sense of [23]) based on the abstract domain described below. To simplify
the presentation, the discussion in this section uses the allocation-site abstraction
for heap-allocated storage.

7

Let Proc denote the set of memory-regions associated with procedures in the
program, AllocMemRgn denotes the set of memory regions associated with heap-
allocation sites, and Global denote the memory-region associated with the global
data area. We work with the following basic domains:

MemRgn = {Global} ∪ Proc ∪ AllocMemRgn
ValueSet = MemRgn → StridedInterval⊥

VarEnv[R] = VarR → ValueSet

AbsEnv maps each region R to its corresponding VarEnv[R] and each register to
a ValueSet:

AbsEnv =

(register → ValueSet)
× ({Global} → VarEnv[Global])
× (Proc → VarEnv[Proc]

⊥
)

× (AllocMemRgn → VarEnv[AllocMemRgn]
⊥

)

VSA associates each program point with an AbsMemConfig:
AbsMemConfig = (CallStringk → AbsEnv⊥)

During VSA, all abstract transformers are passed a memory-region status

map that indicates which memory-regions, in the context of a given call-string cs,
are summary memory-regions. Whereas the Global region is always non-summary
and all malloc-regions are always summary, to decide whether a procedure P ’s
memory-region is a summary memory-region, first call-string cs is traversed, and
then the call graph is traversed, to see whether the runtime stack could contain
multiple pending activation records for P . Fig. 3(b) shows the memory-region
status map for different call-strings of length 2.

The memory-region status map provides one of two pieces of information used
to identify when a strong update can be performed. In particular, an abstract
transformer can perform a strong update if the operation modifies (a) a register,
or (b) a non-array variable in a non-summary memory-region.

Example 1. We will illustrate VSA using the C program2 shown in Fig. 4(a). For
this example, there would be three regions: Global, AR main, and malloc M1.

The value-sets that are obtained from VSA at the bottom of the loop body
are shown in Fig. 4(b). Fig. 4(c) shows the value-sets in terms of the variables
in the C program.

– “i 7→ [(Global 7→ 1[0,4])]” indicates that i has a value (or a global
address) in the range [0, 4].

– “elem 7→ [(malloc M1 7→ 0[0,0])]” indicates that elem contains offset 0
in the malloc-region associated with malloc-site M1.

– “head 7→ [(malloc M1 7→ 0[0,0])]” indicates that head contains offset 0
in the malloc-region associated with malloc-site M1.

– “elem->a 7→ ⊤” and “elem->next 7→ ⊤” indicate that elem->a and
elem->nextmay contain any possible value. VSA could not determine better
value-sets for these variables because of the weak-update problem mentioned
earlier. Because malloc does not initialize the block of memory that it re-

2 In our implementation, VSA is applied to executables. We use C code for ease of
understanding.

8

struct List {
int a;

struct List* next;

};

int main() {
int i;

struct List* head = NULL;

struct List* elem;

for(i = 0; i < 5; ++i) {
M1: elem = (struct List*)

malloc(sizeof(struct List));

elem->a = i;

elem->next = head;

L1: head = elem;

}
return 0;

}

AR main 7→ (

i 7→ [(Global 7→ 1[0,4])]

head 7→ [(malloc M1 7→ 0[0,0])]

elem 7→ [(malloc M1 7→ 0[0,0])]

)

malloc M1 7→ (

Field 0 7→ ⊤
Field 4 7→ ⊤

)

(b)

i 7→ [(Global 7→ 1[0,4])]

head 7→ [(malloc M1 7→ 0[0,0])]

elem 7→ [(malloc M1 7→ 0[0,0])]

elem->a 7→ ⊤
elem->next 7→ ⊤

(c)

º

a next

º
elem

head

(a) (d)

Fig. 4. Value-Set Analysis (VSA) results (when the allocation-site abstraction is used):
(a) C program; (b) value-sets after L1 (registers and global variables are omitted);
(c) value-sets in (b) interpreted in terms of the variables in the C program; and (d)
graphical depiction of (c). (The double box denotes a summary region. Dashed edges
denote may-points-to information.)

turns, VSA assumes (safely) that elem->a and elem->next may contain any
possible value after the call to malloc. Because malloc M1 is a summary
memory-region, only weak updates can be performed at the instructions
that initialize the fields of elem. Therefore, the value-sets associated with
the fields of elem remain ⊤.

Fig. 4(d) shows the information pictorially. The double box denotes a sum-
mary object. Dashed edges denote may-points-to information. In our example,
VSA has recovered the following: (1) head and elem may point to one of the
objects represented by the summary object, (2) “elem->next” may point to any
possible location, and (3) “elem->a” may contain any possible value. �

3 An Abstraction for Heap-Allocated Storage

This section describes the recency-abstraction. The recency-abstraction is similar
in some respects to the allocation-site abstraction, in that each abstract node
is associated with a particular allocation site; however, the recency-abstraction
uses two memory-regions per allocation site s:
AllocMemRgn = {MRAB[s], NMRAB[s] | s an allocation site}
– MRAB[s] represents the most-recently-allocated block that was allocated

at s. Because there is at most one such block in any concrete configuration,
MRAB[s] is never a summary memory-region.

9

– NMRAB[s] represents the non-most-recently-allocated blocks that were al-
located at s. Because there can be many such blocks in a given concrete
configuration, NMRAB[s] is generally a summary memory-region.
In addition, each MRAB[s], NMRAB[s] ∈ AllocMemRgn is associated with a

“count” value, denoted by MRAB[s].count and NMRAB[s].count, respectively,
which is a value of type SmallRange = {[0, 0], [0, 1], [1, 1], [0,∞], [1,∞], [2,∞]}.
The count value records a range for how many concrete blocks the memory-
region represents. While NMRAB[s].count can have any SmallRange value,
MRAB[s].count will be restricted to take on only values in {[0, 0], [0, 1], [1, 1]},
which represent counts for non-summary regions. Consequently, an abstract
transformer can perform a strong update on a field of MRAB[s].

In addition to the count, each MRAB[s], NMRAB[s] ∈ AllocMemRgn is also
associated with a “size” value, denoted by MRAB[s].size and NMRAB[s].size,
respectively, which is a value of type StridedInterval. The size value represents an
over-approximation of the set of sizes of the concrete blocks that the memory-
region represents. This information can be used to report potential memory-
access violations that involve heap-allocated data. For instance, if MRAB[s].size
of an allocation site s is 0[12, 12], the dereference of a pointer whose value-set is
[(MRAB[s] 7→ 0[16, 16])] would be reported as a memory-access violation.

Example 2. Fig. 5 shows a trace of the evolution of parts of the AbsEnvs for three
instructions in a loop during VSA. It is assumed that there are three fields in
the memory-regions MRAB and NMRAB (shown as the three rectangles within
MRAB and NMRAB). Double boxes around NMRAB objects in Fig. 5(c) and
(d) are used to indicate that they are summary memory-regions.

For brevity, in Fig. 5 the effect of each instruction is denoted using C syntax;
the original source code in the loop body contains a C++ statement “p = new

C”, where C is a class that has virtual methods f and g. The symbols f and g

that appear in Fig. 5 represent the addresses of methods f and g. The symbol p
and the two fields of VT represent variables of the Global region. The dotted lines
in Fig. 5(b)–(d) indicate how the value of NMRAB after the malloc statement
depends on the value of MRAB and NMRAB before the malloc statement.

The AbsEnvs stabilize after four iterations. Note that in each of Fig. 5(a)–
(d), it can be established that the instruction “p->vt = &VT” modifies exactly
one field in a non-summary memory-region, and hence a strong update can be
performed on p->vt. This establishes a definite link—i.e., a must -point-to link—
between MRAB and VT. The net effect is that the analysis establishes a definite
link between NMRAB and VT as well: the vt field of each object represented
by NMRAB must point to VT. �

Example 3. Fig. 6 shows the improved VSA information recovered for the pro-
gram from Fig. 4 at the end of the loop when the recency-abstraction is used.
In particular, we have the following information:

– elem and head definitely point to the beginning of the MRAB region.
– elem->a contains the values (or global addresses) {0, 1, 2, 3, 4}.

10

MRAB VT

MRAB VT

f
g

f
g

f
g

ºººº

ºººº

ºººº

ºººº

ºººº

p = malloc()

p→→→→vt = &VT

§§§§

while . . .

T

F

p

p

MRAB NMRAB VT

NMRAB

f
g

f
g

f
g

ºººº

ºººº

ºººº

ºººº

ºººº

v

v

v

MRAB VT

p

p

p

p = malloc()

p→→→→vt = &VT

§§§§

while . . .

T

F

s

s

s

(a) (b)

MRAB NMRAB VT

NMRAB

f
g

f
g

f
g

7777

ºººº

ºººº

ºººº

ºººº

ºººº

v w

v 7777 w

v 7777 w

MRAB VT

p

p

p

p = malloc()

p→→→→vt = &VT

§§§§

while . . .

T

F

s

s

ss

MRAB NMRAB VT

NMRAB

f
g

f
g

f
g

7777

ºººº

ºººº

ºººº

ºººº

ºººº

v

v 7777 w

v 7777 w

MRAB VT

v 7777 w

p

p

p

p = malloc()

p→→→→vt = &VT

§§§§

while . . .

T

F

ss

s

s

(c) (d)

Fig. 5. A trace of the evolution of parts of the AbsEnvs for three instructions in a
loop. (Values v and w are unspecified values presented to illustrate that ⊔ is applied on
corresponding fields as the previous MRAB value is merged with NMRAB during the
abstract interpretation of an allocation site.)

– elem->nextmay be 0 (NULL) or may point to the beginning of the NMRAB
region.

– NMRAB.a contains the values (or global addresses) {0, 1, 2, 3, 4}.
– NMRAB.next may be 0 (NULL) or may point to the beginning of the NM-

RAB region.

�

MRAB NMRAB

head
0,1[0,4] 0,1[0,4]

elem

Fig. 6. Improved VSA information for the program from Fig. 4 at the end of the loop
(i.e., just after L1) when the recency-abstraction is used. (The double box denotes a
summary region. Dashed edges denote may-points-to information.)

This idea is formalized with the following basic domains (where underlining
indicates differences from the domains given in §2):

11

MemRgn = {Global} ∪ Proc ∪ AllocMemRgn
ValueSet = MemRgn → StridedInterval⊥

VarEnv[R] = VarR → ValueSet
SmallRange = {[0, 0], [0, 1], [1, 1], [0,∞], [1,∞], [2,∞]}

AllocAbsEnv[R] = SmallRange× StridedInterval × VarEnv[R]

The analysis associates each program point with an AbsMemConfig:

AbsEnv =

(register → ValueSet)
× ({Global} → VarEnv[Global])
× (Proc → VarEnv[Proc]

⊥
)

× (AllocMemRgn → AllocAbsEnv[AllocMemRgn])

AbsMemConfig = (CallStringk → AbsEnv⊥)

Let count, size, and varEnv, respectively, denote the SmallRange,
StridedInterval, and VarEnv[AllocMemRgn] associated with a given AllocMemRgn.
A given absEnv ∈ AbsEnv maps allocation memory-regions, such as MRAB[s] or
NMRAB[s], to 〈count, size, varEnv〉 triples.

The transformers for various operations are defined as follows:
– At the entry point of the program, the AbsMemConfig that describes the

initial state records that, for each allocation site s, the AllocAbsEnvs for
both MRAB[s] and NMRAB[s] are 〈[0, 0],⊥StridedInterval, λvar.⊥ValueSet〉.

– The transformer for allocation site s transforms absEnv to absEnv′, where
absEnv′ is identical to absEnv, except that all ValueSets of absEnv that contain
[..., MRAB[s] 7→ si1, NMRAB[s] 7→ si2, ...] become [..., ∅, NMRAB[s] 7→ si1⊔
si2, ...] in absEnv′. In x86 code, return values are passed back in register eax.
Let size denote the size of the block allocated at the allocation site. The
value of size is obtained from the value-set associated with the parameter
of the allocation method. In addition, absEnv′ is updated on the following
arguments:

absEnv′(MRAB[s]) = 〈[0, 1], size, λvar.⊤ValueSet〉
absEnv′(NMRAB[s]).count = absEnv(NMRAB[s]).count +SR absEnv(MRAB[s]).count

absEnv′(NMRAB[s]).size = absEnv(NMRAB[s]).size ⊔ absEnv(MRAB[s]).size
absEnv′(NMRAB[s]).varEnv = absEnv(NMRAB[s]).varEnv ⊔ absEnv(MRAB[s]).varEnv

absEnv′(eax) = [(Global 7→ 0[0, 0]), (MRAB[s] 7→ 0[0, 0])]

where +SR denotes SmallRange addition. In the present implementation, we
assume that an allocation always succeeds; hence, in place of the first and
last lines above, we use

absEnv′(MRAB[s]) = 〈[1, 1], size, λvar.⊤ValueSet〉

absEnv′(eax) = [(MRAB[s] 7→ 0[0, 0])].

Consequently, the analysis only explores the behavior of the system on exe-
cutions in which allocations always succeed.

12

– The join absEnv1⊔absEnv2 of absEnv1, absEnv2 ∈ AbsEnv is performed point-
wise; in particular,

absEnv′(MRAB[s]) = absEnv1(MRAB[s]) ⊔ absEnv2(MRAB[s])

absEnv′(NMRAB[s]) = absEnv1(NMRAB[s]) ⊔ absEnv2(NMRAB[s])

where the join of two AllocMemRgns is also performed pointwise:

〈count1, size1, varEnv1〉 ⊔ 〈count2, size2, varEnv2〉

= 〈count1 ⊔ count2, size1 ⊔ size2, varEnv1 ⊔ varEnv2〉.

In all other abstract transformers (e.g., assignments, data movements, interpre-
tation of conditions, etc.), MRAB[s] and NMRAB[s] are treated just like other
memory regions—i.e., Global and the AR-regions—with one exception:
– During VSA, all abstract transformers are passed a memory-region

status map that indicates which memory-regions, in the context
of a given call-string suffix cs, are summary memory-regions. The
summary-status information for MRAB[s] and NMRAB[s] is ob-
tained from the values of AbsMemConfig(cs)(MRAB[s]).count and
AbsMemConfig(cs)(NMRAB[s]).count, respectively.

4 Experiments

This section describes the results of our preliminary experiments. The first three
columns of numbers in Tab. 1 show the characteristics of the set of examples
that we used in our evaluation. These programs were originally used by Pande
and Ryder in [29] to evaluate their algorithm for resolving virtual-function calls
in C++ programs. The programs in C++ were compiled without optimization3

using the Microsoft Visual Studio 6.0 compiler and the .obj files obtained from
the compiler were analyzed. We did not make use of debugging information in
the experiments.

The final seven columns of Tab. 1 report the performance (both accuracy
and time) of the version of VSA that incorporates the recency abstraction to
help resolve virtual-function calls.
– In these examples, every indirect call-site in the executable corresponds to

a virtual-function call-site in the source code.
– The column labeled ⊥ shows the number of (apparently) unreachable indirect

call-sites.
– The column labeled ⊤ shows the number of reachable indirect call-sites at

which VSA could not determine the targets. A non-zero value in the ⊤-
column means that at some indirect call-sites VSA could not resolve the
virtual-function call to a specific subset of the procedures. VSA reports such

3 Note that unoptimized programs generally have more memory accesses than opti-
mized programs; optimized programs make more use of registers, which are easier
to analyze than memory accesses. Thus, for static analysis of stripped executables,
unoptimized programs generally represent a greater challenge than optimized pro-
grams.

13

x86 Procs # Indirect ⊥ 1 2 ≥3 ⊤ % Reachable Time
Instructions call-sites call-sites resolved (secs)

NP 252 5 6 0 0 6 0 0 100 1
primes 294 9 2 1 1 0 0 1 50 <1
family 351 9 3 0 3 0 0 0 100 1
vcirc 407 14 5 0 5 0 0 0 100 <1
fsm 502 13 1 0 1 0 0 0 100 5
office 592 22 4 0 4 0 0 0 100 <1
trees 1299 29 3 1 0 0 0 2 0 9
deriv1 1369 38 18 8 8 2 0 0 100 4
chess 1662 41 1 0 0 0 0 1 0 16
objects 1739 47 23 18 0 4 0 1 17 2
simul 1920 60 3 2 0 0 0 1 0 6
greed 1945 47 17 6 10 0 0 1 59 10
shapes 1955 39 12 4 4 3 0 1 58 10
ocean 2552 61 5 3 0 0 0 2 0 17
deriv2 2639 41 56 33 22 0 0 1 39 2

Table 1. Characteristics of the example programs, together with the distribution of
the number of callees at indirect call-sites and the running times for VSA. The bold
entry indicates that eight call-sites in deriv1 are identified as definitely unreachable.

call-sites to the user, but does not explore any procedures from that call-site.
This is a source of false negatives, and occurred for 9 of the 15 programs. On
the other hand, for the 6 programs for which the ⊤-column is 0, any call-
sites reported in the ⊥-column are definitely unreachable. In particular, the
eight call-sites that were identified as unreachable in deriv1 are definitely
unreachable.

– The other columns show the distribution of the number of targets at the
indirect call-sites. For example, the column labeled 1 denotes the number of
indirect call-sites that had a single target.
It is important to realize that these results are obtained solely by using

abstract interpretation to track the flow of data through memory (including
the heap). The analysis algorithm does not rely on symbol-table or debugging
information; instead it uses the structure-discovery mechanism described in [4].
On average, our method resolved 55% of the virtual-function call-sites, whereas
previous tools for analyzing executables—such as IDAPro, as well as our own
previous work using VSA without the recency abstraction [3]—fail to resolve any

of the virtual-function call-sites.
Manual inspection revealed that most of the situations in which VSA could

not resolve indirect call-sites were due to VSA not being able to establish that
some loop definitely initializes all of the elements of some array. The problem is
as follows: In some of the example programs, an array of pointers to objects is
initialized via a loop. These pointers are later used to perform a virtual-function
call. Even when VSA succeeded in establishing the link between the VFT-field
and the virtual-function table, VSA could not establish that all elements of the
array are definitely initialized by the instruction in the loop, and hence the
abstract value that represents the values of the elements of the array remains ⊤.

14

Note that this issue is orthogonal to the problem addressed in this paper.
That is, even if one were to use other mechanisms (such as the one described in
[15]) to establish that all the elements of an array are initialized, the problem of
establishing the link between the VFT-field and the virtual-function table still
requires mechanisms similar to the recency-abstraction.

This issue makes it difficult for us to give a direct comparison of our approach
with that of [29]; in particular, [29] makes the unsafe assumption that elements
in a array of pointers (say, locally allocated or heap allocated) initially point
to nothing (∅), rather than to anything (⊤). Suppose that p[] is such an array
of pointers and that a loop initializes every other element with &a. A sound
result would be that p’s elements can point to anything. However, because in
the algorithm used in [29] the points-to set of p is initially ∅, [29] would determine
that p’s elements point to a, which is unsound.

5 Related Work

Some of the relationships between our approach and past work on abstractions
of heap-allocated storage were already mentioned near the end of §1.

The recency-abstraction is similar in flavor to the allocation-site abstrac-
tion [6, 24], in that each abstract node is associated with a particular alloca-
tion site; however, the recency-abstraction is designed to take advantage of the
fact that VSA is a flow-sensitive, context-sensitive algorithm. Note that if the
recency-abstraction were used with a flow-insensitive algorithm, it would pro-
vide little additional precision over the allocation-site abstraction: because a
flow-insensitive algorithm has just one abstract memory configuration that ex-
presses a program-wide invariant, the algorithm would have to perform weak
updates for assignments to MRAB nodes (as well as for assignments to NMRAB
nodes); that is, edges emanating from an MRAB node would also have to be
accumulated.

With a flow-sensitive algorithm, the recency-abstraction uses twice as many
abstract nodes as the allocation-site abstraction, but under certain conditions it
is sound for the algorithm to perform strong updates for assignments to MRAB
nodes, which is crucial to being able to establish a definite link between the set
of objects allocated at a certain site and a particular virtual-function table.

If one ignores actual addresses of allocated objects and adopts the fiction that
each allocation site generates objects that are independent of those produced at
any other allocation site, another difference between the recency-abstraction and
the allocation-site abstraction comes to light:
– The allocation-site abstraction imposes a fixed partition on the set of allo-

cated nodes.
– The recency-abstraction shares the “multiple-partition” property that one

sees in the shape-analysis abstractions of [33]. An MRAB node represents a
unique node in any given concrete memory configuration—namely, the most
recently allocated node at the allocation site. In general, however, an abstract
memory configuration represents multiple concrete memory configurations,
and a given MRAB node generally represents different concrete nodes in the
different concrete memory configurations.

15

Hackett and Rugina [17] describe a method that uses local reasoning about in-
dividual heap locations, rather than global reasoning about entire heap abstrac-
tions. In essence, they use an independent-attribute abstraction: each “tracked
location” is tracked independently of other locations in concrete memory configu-
rations. The recency-abstraction is a different independent-attribute abstraction.

The use of count information on (N)MRAB nodes was inspired by the heap
abstraction of Yavuz-Kahveci and Bultan [39], which also attaches numeric in-
formation to summary nodes to characterize the number of concrete nodes rep-
resented. The information on summary node u of abstract memory configuration
S describes the number of concrete nodes that are mapped to u in any concrete
memory configuration that S represents. Gopan et al. [14] also attach numeric
information to summary nodes; however, such information does not provide a
characterization of the number of concrete nodes represented: in both the present
paper and [39], each concrete node that is combined into a summary node con-
tributes 1 to a sum that labels the summary node; in contrast, when concrete
nodes are combined together in the approach presented in [14], the effect is to
create a set of values (to which an additional numeric abstraction may then be
applied).

The size information on (N)MRAB nodes can be thought of as an abstraction
of auxiliary size information attached to each concrete node, where the concrete
size information is abstracted in the style of [14].

Strictly speaking, the use of counts on abstract heap nodes lies outside the
framework of [33] for program analysis using 3-valued logic (unless the framework
were to be extended with counting quantifiers [21, Sect. 12.3]). However, the use
of counts is also related to the notion of active/inactive individuals in logical
structures [30], which has been used in the 3-valued logic framework to give a
more compact representation of logical structures [26, Chap. 7]. In general, the
use of an independent-attribute method in the heap abstraction described in
§3 provides a way to avoid the combinatorial explosion that the 3-valued logic
framework suffers from: the 3-valued logic framework retains the use of separate
logical structures for different combinations of present/absent nodes, whereas
counts permit them to be combined.

Several algorithms [2, 5, 10, 37, 29] have been proposed to resolve virtual-
function calls in C++ and Java programs. For each pointer p, these algorithms
determine an over-approximation of the set of types of objects that p may point
to. When p is used in a virtual-function call invocation, the set of types is used
to disambiguate the targets of the call. Static information such as the class hi-
erarchy, aliases, the set of instantiated objects, etc. are used to reduce the size
of the set of types for each pointer p. Because we work on stripped executables,
type information is not available. The method presented in §3 analyzes the code
in the constructor that initializes the virtual-function pointer of an object to
establish a definite link between the object and the virtual-function table, which
is subsequently used to resolve virtual-function calls. Moreover, algorithms such
as Rapid Type Analysis (RTA) [2] and Class Hierarchy Analysis (CHA) [10] rely
on programs being type-safe. The results of CHA and RTA cannot be relied

16

on in the presence of arithmetic operations on addresses, which is present in
executables.

References

1. L. O. Andersen. Binding-time analysis and the taming of C pointers. In PEPM,
pages 47–58, 1993.

2. D.F. Bacon and P.F. Sweeney. Fast static analysis of C++ virtual function calls. In
Object-Oriented Programming, Systems, Languages, and Applications, pages 324–
341, 1996.

3. G. Balakrishnan and T. Reps. Analyzing memory accesses in x86 executables. In
Comp. Construct., pages 5–23, 2004.

4. G. Balakrishnan and T. Reps. Recovery of variables and heap structure in x86
executables. Tech. Rep. 1533, Comp. Sci. Dept., Univ. of Wisconsin, Madison,
US., September 2005.

5. B. Calder and D. Grunwald. Reducing indirect function call overhead in C++
programs. In Princip. of Prog. Lang., pages 397–408, 1994.

6. D.R. Chase, M. Wegman, and F. Zadeck. Analysis of pointers and structures. In
Prog. Lang. Design and Impl., pages 296–310, 1990.

7. H. Chen and D. Wagner. MOPS: An infrastructure for examining security proper-
ties of software. In Conf. on Comp. and Commun. Sec., pages 235–244, November
2002.

8. B.-C. Cheng and W.W. Hwu. Modular interprocedural pointer analysis using
access paths: Design, implementation, and evaluation. In Prog. Lang. Design and
Impl., pages 57–69, 2000.

9. M. Das. Unification-based pointer analysis with directional assignments. In Prog.
Lang. Design and Impl., pages 35–46, 2000.

10. J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented programs
using static class hierarchy analysis. In European Conference on Object-Oriented
Programming, pages 77–101, 1995.

11. D.R. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using
system-specific, programmer-written compiler extensions. In Op. Syst. Design and
Impl., pages 1–16, 2000.

12. M. Fähndrich, J. Rehof, and M. Das. Scalable context-sensitive flow analysis using
instantiation constraints. In Prog. Lang. Design and Impl., 2000.

13. J.S. Foster, M. Fähndrich, and A. Aiken. Polymorphic versus monomorphic flow-
insensitive points-to analysis for C. In SAS, 2000.

14. D. Gopan, F. DiMaio, N.Dor, T. Reps, and M. Sagiv. Numeric domains with
summarized dimensions. In Tools and Algs. for the Construct. and Anal. of Syst.,
pages 512–529, 2004.

15. D. Gopan, T. Reps, and M. Sagiv. A framework for numeric analysis of array
operations. In Princip. of Prog. Lang., pages 338–350, 2005.

16. B. Guo, M.J. Bridges, S. Triantafyllis, G. Ottoni, E. Raman, and D.I. August.
Practical and accurate low-level pointer analysis. In 3nd IEEE/ACM Int. Symp.
on Code Gen. and Opt., pages 291–302, 2005.

17. B. Hackett and R. Rugina. Region-based shape analysis with tracked locations. In
Princip. of Prog. Lang., pages 310–323, 2005.

18. M. Hind and A. Pioli. Assessing the effects of flow-sensitivity on pointer alias
analyses. In SAS, 1998.

19. S. Horwitz, P. Pfeiffer, and T. Reps. Dependence analysis for pointer variables. In
Prog. Lang. Design and Impl., pages 28–40, 1989.

17

20. IDAPro disassembler, http://www.datarescue.com/idabase/.
21. N. Immerman. Descriptive Complexity. Springer-Verlag, 1999.
22. N.D. Jones and S.S. Muchnick. Flow analysis and optimization of Lisp-like struc-

tures. In S.S. Muchnick and N.D. Jones, editors, Program Flow Analysis: Theory
and Applications, chapter 4, pages 102–131. Prentice-Hall, Englewood Cliffs, NJ,
1981.

23. N.D. Jones and S.S. Muchnick. Flow analysis and optimization of Lisp-like struc-
tures. In S.S. Muchnick and N.D. Jones, editors, Program Flow Analysis: Theory
and Applications, chapter 12, pages 380–384. Prentice-Hall, Englewood Cliffs, NJ,
1981.

24. N.D. Jones and S.S. Muchnick. A flexible approach to interprocedural data flow
analysis and programs with recursive data structures. In Princip. of Prog. Lang.,
pages 66–74, 1982.

25. J.R. Larus and P.N. Hilfinger. Detecting conflicts between structure accesses. In
Prog. Lang. Design and Impl., pages 21–34, 1988.

26. T. Lev-Ami. TVLA: A framework for Kleene based static analysis. Master’s thesis,
Tel-Aviv University, Tel-Aviv, Israel, 2000.

27. T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Putting static analysis to work
for verification: A case study. In Int. Symp. on Softw. Testing and Analysis, pages
26–38, 2000.

28. A. Milanova, A. Rountev, and B.G. Ryder. Parameterized object sensitivity for
points-to analysis for Java. TOSEM, 2005.

29. H. Pande and B. Ryder. Data-flow-based virtual function resolution. In SAS, pages
238–254, 1996.

30. S. Patnaik and N. Immerman. Dyn-FO: A parallel, dynamic complexity class. In
Symp. on Princ. of Database Syst., 1994.

31. T. Reps, G. Balakrishnan, and J. Lim. Intermediate-representation recovery from
low-level code. In PEPM, 2006.

32. M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages
with destructive updating. Trans. on Prog. Lang. and Syst., 20(1):1–50, January
1998.

33. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
Trans. on Prog. Lang. and Syst., 24(3):217–298, 2002.

34. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.
In Program Flow Analysis: Theory and Applications, chapter 7, pages 189–234.
Prentice-Hall, 1981.

35. B. Steensgaard. Points-to analysis in almost-linear time. In Princip. of Prog. Lang.,
1996.

36. J. Stransky. A lattice for abstract interpretation of dynamic (Lisp-like) structures.
Inf. and Comp., 101(1):70–102, Nov. 1992.

37. V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam, E. Gagnon,
and C. Godin. Practical virtual method call resolution for Java. In Object-Oriented
Programming, Systems, Languages, and Applications, pages 264–280, 2000.

38. J. Whaley and M. Lam. Cloning-based context-sensitive pointer alias analyses
using binary decision diagrams. In Prog. Lang. Design and Impl., 2004.

39. T. Yavuz-Kahveci and T. Bultan. Automated verification of concurrent linked lists
with counters. In SAS, 2002.

18

