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ABSTRACT
Gaze aversion—the intentional redirection away from the face of an
interlocutor—is an important nonverbal cue that serves a number
of conversational functions, including signaling cognitive effort,
regulating a conversation’s intimacy level, and managing the con-
versational floor. In prior work, we developed a model of how gaze
aversions are employed in conversation to perform these functions.
In this paper, we extend the model to apply to conversational robots,
enabling them to achieve some of these functions in conversations
with people. We present a system that addresses the challenges
of adapting human gaze aversion movements to a robot with very
different affordances, such as a lack of articulated eyes. This sys-
tem, implemented on the NAO platform, autonomously generates
and combines three distinct types of robot head movements with
different purposes: face-tracking movements to engage in mutual
gaze, idle head motion to increase lifelikeness, and purposeful gaze
aversions to achieve conversational functions. The results of a
human-robot interaction study with 30 participants show that gaze
aversions implemented with our approach are perceived as inten-
tional, and robots can use gaze aversions to appear more thoughtful
and effectively manage the conversational floor.

Categories and Subject Descriptors
H.1.2 [Models and Principles]: User/Machine Systems—human
factors, software psychology; H.5.2 [Information Interfaces and
Presentation]: User Interfaces—evaluation/ methodology, user-
centered design

General Terms
Design, Experimentation, Human Factors

1. INTRODUCTION
Gaze is an important nonverbal behavior for social interaction [9].
Research in human-robot interaction (HRI) has investigated the role
of gaze behavior across a variety of settings, including open-ended
conversation [11], presenting information [16], and storytelling
[19]. A recent survey of research on social gaze in HRI proposes
a computationally oriented definition of social gaze as a mapping
from social functions to the expression of one or more discrete gaze
actions [27]. In this paper, we focus on one of these actions—gaze
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Figure 1: A human conversational partner interacting with the NAO robot.
Three example gaze aversion directions implemented for the NAO are shown:
down, up, and to the side.

aversion—and show they might enable humanlike robots to achieve
a number of positive social functions in conversations with humans.

Gaze aversion is defined as the intentional redirection of gaze
away from the face of an interlocutor, and it is used in conversations
to achieve three primary functions: cognitive, intimacy modulation,
and floor management. First is the cognitive function: speakers
spend much more time averting their gaze than listeners in order to
better attend to the planning and delivery of their utterances while
limiting external distraction [4]. Second is the intimacy-modulating
function: periodic gaze aversions while speaking or listening can
serve to modulate the overall level of intimacy in the conversation
[1]. Third is the floor management function: looking away while
pausing during speech is used to indicate that the conversational
floor is being held and the speaker should not be interrupted [13].
These three functions—cognitive, intimacy, and floor management—
correspond with three social contexts identified in previous work on
social gaze in HRI: projecting mental state, establishing agency, and
regulating the interaction process respectively [27].

While the social science literature has highlighted the positive
functions of gaze aversion, it does not provide the exact measure-
ments required to synthesize a model of gaze aversion for robots
that could achieve these functions. In previous work [3], we an-
alyzed a corpus of human-human conversations to obtain precise
spatial and temporal parameters of gaze aversion movements in rela-
tion to speech and conversational function. This analysis informed
the design of a gaze controller for virtual agents that generated ap-
propriately timed gaze aversions during conversations with people.
However, the prior work does not consider the challenges of ap-
plying the model to an autonomous robot, nor does it provide any
evidence that gaze aversions can be effectively used by robots.

In this paper, we demonstrate that humanlike robots can use gaze
aversions to achieve conversational goals. We apply techniques that
address the challenges of applying a human-based gaze aversion
model to a robot, describe an implementation on the NAO platform,



and evaluate the resulting system in a human-robot interaction study.
Our work considers three key technical challenges: adapting the
human movements to a robot with non-human affordances, making
the movements appear lifelike and intentional, and integrating the
gaze aversion movements with other head movements. A description
of the system, along with a link to downloadable source code, is
presented in Section 3.2. In our experimental evaluation, presented
in Section 4, human participants interacted with two robots in four
conversational tasks (Figure 1). Through this evaluation, we show
how the gaze aversions employed by the robot were perceived as
intentional, served to make the robot appear more thoughtful, and
helped the robot manage the conversational floor.

2. BACKGROUND
In this section, we present an overview of social and cognitive sci-
ence research on human gaze aversion in conversations, in which
three primary functions of gaze aversion have been identified: fa-
cilitation of cognitive processing, intimacy modulation, and floor
management. We then review related work on designing effective
gaze mechanisms for robots.

2.1. Conversational Gaze Aversion
The frequency of speaker gaze aversions in conversation has been
shown to be related to the difficulty of cognitive processing [10].
When constant mutual gaze is required from someone speaking
spontaneously in social interaction, that person’s speech becomes
significantly impaired [7]. Averting gaze has the practical benefit of
improving cognitive performance. This is because an interlocutor’s
face is rich in social information, and is a cognitively demanding
visual target. When people avert their gaze from their interlocutor,
they are able to deploy additional cognitive resources to the task
of thinking or remembering information. With these aversions, a
speaker signals to the listener that cognitive processing is occurring,
creating the impression that deep thought or creativity is being
undertaken in formulating their speech [4].

Eye contact is a primary contributor to the level of intimacy in a
conversation along with physical proximity, topic intimacy, amount
of smiling, and so on [5]. If one of these dimensions of intimacy is
disturbed, compensatory changes will likely occur along the other
dimensions. For example, research has shown that children avert
their gaze more when answering questions in face-to-face rather
than video-mediated conversations [8]. In general, people frequently
avert their gaze to alleviate feelings of self-consciousness and, while
listening, to make speakers more comfortable and to reduce negative
perceptions associated with staring [1].

Gaze is important for facilitating turn-taking and conversational
floor management [13]. When exchanging speaking turns in con-
versation, a pattern is frequently observed in which the first speaker
finishes speaking, looks toward their interlocutor and engages in
momentary mutual gaze, and finally the second speaker averts their
gaze and begins their speaking turn [21]. By looking away at the
beginning of an utterance, the speaker strengthens his or her claim
over the speaking turn. Looking away during a pause in speech is
also used to indicate that the conversational floor is being held and
that the speaker should not be interrupted [13].

2.2. Robot Gaze Mechanisms
Previous research has shown that robots can greatly benefit from the
utilization of humanlike gaze mechanisms [16, 19, 20, 28]. Model-
ing humanlike gaze mechanisms enables conversational robots to
signal different participant roles to human interlocutors, manage
turn-exchanges, and shape how users perceive the robot and the
conversation [20]. Human comprehension of robot speech is im-
proved when a robot gazes to objects it is speaking about in a similar

way and with similar timings as found in human gaze behavior [28].
Robots that use gaze cues are perceived as possessing mental states
and intentionality, as evidenced by previous work on gaze leakage
in a human-robot guessing game [20].

To be truly effective, a robot’s gaze mechanisms need to be em-
ployed contingently based on the behaviors of its human interlocu-
tors. A robot that gazes responsively toward a human user is capable
of eliciting a stronger feeling of being looked at than a robot that uses
non-responsive—i.e., static or random—gaze [30]. In recent work,
HRI researchers have developed a responsive, rule-based system for
generating robot head nods, tilts, and gazes based on discrete dia-
logue acts in conversation, such as those associated with turn-taking,
backchannels, and conversational fillers [16]. When employing gaze
aversions in conversation, robots should do so responsively to the
speech behavior of its human interlocutor.

In previous work [3], we showed how to enable virtual agents to
effectively use gaze aversions responsively in conversations with
people. However, it is not obvious that these results extend to HRI,
as the prior work did not consider the technical challenges specific
to robots. Robots and virtual agents differ along a number of social
dimensions, including realism, social presence, lifelikeness, and
physical proximity [24]. Several studies have demonstrated effects
of these differences [6, 14, 24].

A fundamental difference between the virtual agents we used in
previous work [3] and the robots used in the current work is the
difference in physical affordances available for carrying out gaze
motions. Overall differences in geometry mean that gaze motions
and control laws need to be adapted [22]. Even more critically, the
robots lack articulated eyes and must rely solely on head motions
to convey gaze motions, making it unclear if they are capable of
eliciting the same positive conversational outcomes found in the
virtual agent work [3]. Previous research points to the possibility
of such capabilities, including work which has shown that people
are capable of recognizing a robot’s gaze according to its head
orientation [11] and that robots can use head motions alone to gaze
effectively in a storytelling scenario [19].

3. ROBOT GAZE AVERSION
In prior work [3], we derived a gaze aversion model consisting of
precise spatial and temporal parameters—including length, timing,
and frequency—in relation to conversational functions and speech.
In the next section, we review the data collection and model param-
eters relevant for the design of a robot gaze controller. Following
that, we present our design of gaze aversion motions for human-
like robots without articulated eyes, secondary head motions for
achieving mutual gaze and lifelikeness, techniques for combining
the different head motions, and the overall system implementation
for expressing conversational gaze aversion on the NAO platform.

3.1. Modeling Gaze Aversion
We recruited 24 females and 24 males, aged 18 to 28 and previously
unacquainted, for data collection (Figure 2). Each dyad engaged
in a structured conversation for approximately five minutes. We
analyzed recorded videos of the interactions for participants’ gaze
and speech. Video coding was carried out by two independent
coders with partial overlap. Sequences of time spent speaking and
averting gaze were annotated.

Gaze aversions were coded for the conversational function
that they were perceived to be supporting: cognitive, intimacy-
modulating, or floor management. This coding took place in three
passes. In the first pass, the coder marked gaze aversions as cogni-
tive if they occurred near perceived cognitive events, e.g., when a
participant appeared to be thinking of a response to a question. In
the second pass, gaze aversions were marked as floor management
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Figure 2: A participant dyad from the data collection. The participants were
designated as the interviewer and the interviewee. The interviewers were
instructed to ask interviewees about their movie preferences.

if they occurred near the beginning of a speaking turn or during a
pause in speech. In the third pass, all remaining gaze aversions were
labeled as intimacy-modulating. An inter-rater reliability analysis
showed substantial agreement on the identification of gaze aversions
and their conversational function (Cohen’s κ = .747).

From our analysis, we obtained timing statistics for different
kinds of gaze aversions. Each of these parameters is modeled as a
Gaussian distribution with means and standard deviations derived
from the data. For cognitive gaze shifts, we model the length (M =
3.54s, SD = 1.26s), start time in relation to cognitive events (M =
–1.32s, SD = 0.47s), and end time after cognitive events (M = 2.23s,
SD = 0.63s). A cognitive event is any point in time at which the
robot should display a state of deep cognitive processing, e.g., at
the beginning of a response to a user’s question. For intimacy-
modulating gaze aversions, we model the length and time between
consecutive gaze aversions while speaking (length: M = 1.96s, SD =
0.32s; time between: M = 4.75s, SD = 1.39s), and while listening
(length: M = 1.14s, SD = 0.27s; time between: M = 7.21s, SD =
1.88s). For floor management gaze aversions, we model the length
(M = 2.30s, SD = 1.10s), start time in relation to the start of the next
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Figure 3: Three examples of gaze aversions from our human-human conver-
sational data. Top: an upward cognitive gaze aversion at the beginning of a
question response. Middle: a short intimacy-regulation gaze aversion while
speaking. Bottom: a floor-management gaze aversion during a pause.
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Figure 4: Percentages of gaze aversions directed up, down, and to the side,
split by conversational function. Intimacy-regulating and floor-managing
gaze aversions are more likely to be directed sideways, while cognitive gaze
aversions are more likely to be directed upwards.

utterance (M = –1.03s, SD = 0.39s), and the end time in relation
to that same utterance (M = 1.27s, SD = 0.51s). Our model also
captures the time before the end of a floor-passing utterance at
which point mutual gaze is engaged with the interlocutor and no
more gaze aversions are generated during that utterance (M = –2.41s,
SD = 0.56s). Figure 3 illustrates each type of gaze aversion.

We also labeled each gaze aversion for its direction as up, down,
and side (Figure 4) and found that intimacy-regulating and floor-
managing gaze aversions and cognitive gaze aversions were more
likely to be directed sideways and upwards, respectively.

3.2. Robot Gaze Aversion Implementation
In this section, we describe methods to overcome three key technical
challenges in adapting our gaze aversion model to a head controller
for conversational robots: adapting the human movements to a
robot with non-human affordances, making the movements appear
lifelike and intentional, and integrating the gaze aversion movements
with other head movements. To adapt gaze movements to a robot
platform without articulated eyes, we substitute head movement for
combined eye and head rotations, extending prior work that showed
robot head motions to serve as valid gaze signals [19]. To make the
movements appear lifelike and intentional, we combine aversion
control with face tracking and structured random movements to
create idle motion. To realize these behaviors in an autonomous
system, we implement them in a predictive filtering framework that
affords graceful combination of multiple goals and effective reaction
to external events.

3.2.1. Aversion Movement Design
A robot without articulated eyes must rely on head motion alone to
carry out gaze aversion motions. There are two considerations when
designing these motions: the magnitude and the dynamics.

The appropriate magnitudes for gaze-averting head motions were
determined in an iterative process to achieve a natural subjective
appearance. Our goal was to generate head movements that are not
too extreme yet clearly serve to avert the robot’s gaze away from the
user. Our system generates vertical gaze-averting head movements
with a magnitude of approximately 20 degrees, with horizontal and
downward head movements at 28 and 22 degrees respectively. For
intimacy-modulating gaze aversions, these angles are scaled by a
factor of 0.4, because these gaze aversions occur quite frequently
and were observed in our human-human data to be employed with
more subtle eyes-only motions.

For the generated gaze aversions, we attempted to recreate the
head velocity profile identified in neurophysiological research on



human gaze shifts [15]. This profile resembles standard ease-in/ease-
out curves found in animation, in which the head rotation starts slow,
speeds up during the bulk of the shift, then slows down before
coming to a halt. The velocity profile was implemented using
programmatically-defined bezier curves. Care was taken to respect
both the upper and effective lower limits of the motors’ rotational
speeds, ensuring smooth motions throughout the robot’s gaze shifts.

3.2.2. Achieving Mutual & Lifelike Gaze
In order to interact effectively with humans and accomplish a general
feeling of lifelikeness, the robot must use its head for not only gaze
aversion, but also mutual gaze. To engage in mutual gaze, the robot
must track the user’s face. For our system, we use a face-tracking
algorithm that used a Microsoft Kinect situated behind the robot.
The robot continuously adjusts its head rotation based on the results
of the face tracking algorithm, polled every 200ms.

At this point the robot is capable of executing gaze aversions
and face tracking, however a problem remains in that the transition
between statically gazing at the user and engaging in a gaze aversion
is still quite abrupt. When the user is sitting still and the robot is
not currently engaged in a gaze aversion motion, the robot’s head
becomes motionless and loses its sense of liveliness. To address this
problem, we generate a small amount of idle head motion for the
robot to execute at all times. This idle motion was implemented by
adding a small amount of structured noise, generated by a Perlin
noise function [23], to the results of the face tracking algorithm. A
Perlin noise function generates band-limited, pseudorandom signals
that are useful for emulating biological forms and motions.

3.2.3. Combining Behaviors
The robot uses its head for three different types of gaze motions:
gaze aversions, face tracking, and idle motion. At any point in
time, the robot has multiple distinct goals for its target head rotation.
These goals must be combined in a natural manner that maintains
an ability to be reactive to new goals. To solve this problem, we use
a Kalman filter [12], a linear predictive filter used for estimating the
state of a system given past states and target goals. The filter predicts
the appropriate motion by blending estimated trajectories generated
from the current state and current goals, and corrects these estimates
as the goals change. The filter gains were chosen empirically to
provide an appropriate balance between smoothness and reactivity.

Target head rotations from the three types of motions are streamed
through this filter and combined into a single head rotation signal,
allowing for graceful transitions between motions. Without this filter,
head motions would have to be serially generated and completed,
e.g., a head tracking motion to the face of the user would have to be
completed before a gaze aversion motion could be executed. The
Kalman filter solves this problem by blending estimated trajectories
over time, resulting in smooth, interruptible motions.

3.2.4. System Integration
The target platform for this work was the NAO, a programmable
humanoid robot manufactured by Aldebaran Robotics. 1 The NAO
has 25 degrees of freedom, including two in its neck, and a multitude
of sensors. All behaviors for the NAO were implemented using the
.NET SDK provided by Aldebaran. Gaze aversion behaviors were
implemented on the NAO using two controllers: a high-level gaze
controller to plan the timing and direction of gaze aversions and a
head controller to physically execute the gaze shifts. The source
code for the entire system has been made available online. 2

The head controller is situated at the end of an overall system
pipeline that also includes a speech recognition system and a di-
1http://www.aldebaran-robotics.com/
2http://hci.cs.wisc.edu/projects/gaze

alogue manager. A Microsoft Kinect with the Microsoft Speech
Platform 3 are utilized for speech recognition. Recognized speech
from the user is passed to a dialogue manager that associates a
semantic tag with the utterance and plans the agent’s speech accord-
ingly. For example, if the dialogue manager receives a recognized
question, it will produce the associated answer. Robot speech is
generated in our system by playing pre-recorded audio files, but the
NAO’s built-in text-to-speech system can also be used.

The dialogue manager sends upcoming speech events and the
current conversational state to the gaze controller. As the gaze
controller receives these inputs, it continuously plans gaze aversion
motions to be executed by the head controller. The exact timings
of the gaze aversions are drawn from the parameter distributions
reported in the previous section and visually depicted in Figure 3.
The direction of each gaze aversion is similarly generated according
to its function and the directional likelihoods presented in Figure 4.

Also included in the overall system are a wireless touchpad and
the NAO’s chest light. The wireless touchpad is used by the user
to signal that the NAO can begin the next phase of the interaction,
depending on the context. For example, after the user is done giving
an open-ended response to a question posed by the NAO, the user
would touch the touchpad to signal to the NAO that it can move on
to its next question. The NAO’s chest light is used to signal to users
the beginning (green) and end (red) of the interaction as well as
when the NAO is ready to begin a new interaction phase (blue). The
chest light was not used during core interaction sequences while
gaze aversions were being displayed (i.e., while asking a question,
answering a question, or listening to a user’s utterance).

4. EVALUATION
We designed a study to test user perceptions of the generated gaze
aversions and their effectiveness in enabling robots to achieve posi-
tive conversational functions in human-robot conversations. In this
study, participants interacted in multiple conversational tasks with
two NAO robots. Each task involved the participant either asking
questions to the NAO or responding to questions posed by the NAO.

4.1. Study Design
The experiment involved a single independent variable, gaze aver-
sion behavior, with three conditions varying between participants.
One condition involved the robots using gaze aversions generated by
the controllers described in the previous section, which we call the
good timing condition. The other two conditions served as baselines
for comparison. The first baseline was a static gaze condition in
which the robots did not employ any gaze aversions. This baseline
was included to demonstrate the importance of generating gaze aver-
sion motions regardless of the timing. The second baseline was
a bad timing condition in which the robot employed just as many
gaze aversions as in the good timing condition but with reverse
timings. More precisely, the bad timing condition produced a gaze
shift toward the participant—to engage in mutual gaze—every time
the good timing condition would have triggered a gaze aversion.
Similarly, a gaze aversion is triggered every time the good timing
condition would have produced a shift toward mutual gaze. This
third condition was included as a baseline to show that not only
the presence, but also the timing of gaze aversions is important for
achieving positive social outcomes. Participants were randomly
assigned to one of the three gaze aversion conditions, which was
then held constant for all tasks (10 participants per condition). Re-
gardless of condition, the robot always tracked the participant’s face
and utilized a small amount of idle head motion.

3http://msdn.microsoft.com
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Figure 5: A diagram of the physical setup of the experiment. Participants
interacted with Norman for the first task, and Jack for the other three tasks.

4.2. Participants
Thirty participants were recruited for this study (15 females and 15
males)—aged between 20 and 38 (M = 22.90, SD = 4.27)—from the
University of Wisconsin–Madison campus. Participants were pri-
marily University students with a range of fields of study, including
biology, computer science, economics, and communication.

4.3. Hypotheses, Tasks, & Measures
We developed two hypotheses related to participants’ perceptions
of gaze aversions carried out by a robot and how robots might use
gaze aversion behaviors to achieve each of the three conversational
functions. The second hypothesis is split into three sub-hypotheses,
one for each conversational function. Separate tasks and measures
were created to test each hypothesis and sub-hypothesis. For clarity,
we present each hypothesis together with the task designed to test
that hypothesis as well as the primary measure in that task.

Hypothesis 1 – Well-timed robot gaze aversions will be seen as
intentional motions used to engage in some cognitive processing,
rather than randomly generated motions without meaning.

This hypothesis is derived from research that has shown how
speaker gaze aversion is recognized by listeners as the speaker’s
attempt to disengage attention from the listener’s face in order to
put cognitive effort into organizing a new utterance [8, 10]. Finding
support for this hypothesis enables us to conclude that the robot’s
head movements, which were designed to convey gaze aversion, are
indeed perceived as gaze aversions and not as random movements.

Task 1 – The participants were told that the robot was training to
work at a library help desk and given five library-related questions
to ask the robot. They were instructed to ask each question and
listen to the robot’s response. The robot paused for 7 to 10 seconds
(randomly determined to decrease predictability) before answering
each question. Participants were instructed to ask a question again
if they thought that the robot did not understand.

Measure 1 – The primary measure was the time participants
waited for the robot to respond to questions before interrupting it
to ask the question again. Based on our hypothesis, we expected
participants to give the robot the most time to respond when it was
using gaze aversions in the good timing condition, implying that the
gaze aversion during its long pause was perceived as an intentional
motion to formulate responses to the participants’ questions.

Hypothesis 2 – Gaze aversions generated by our model and em-
ployed by the robot will enable it to achieve the positive conversa-
tional functions observed in human-human interaction. This hypoth-

esis has three sub-hypotheses, one each for the cognitive, intimacy-
modulating, and floor management functions of gaze aversion.

Hypothesis 2a – When a robot utilizes cognitive gaze aversions
at the start of answers to questions, its answers will be rated as being
more thoughtful and creative than when it does not display gaze
aversions or displays gaze aversions with inappropriate timings.

This hypothesis is derived from research which has shown that
people use gaze aversions to signal that cognitive processing is
occurring and to create an impression that deep thought or creativity
is being undertaken in formulating their utterance [4].

Task 2a – Participants engaged in a mock job interview with the
robot, in which the participant was the interviewer and the robot was
the interviewee. Participants were instructed to ask a series of five
common job interview questions, and the robot was programmed to
respond with answers taken from real-world job interviews.

Measure 2a – Participants rated each response immediately after
it was given on four seven-point rating items. We constructed a
single scale of thoughtfulness from the four items, including ratings
on perceived thoughtfulness, creativity, disclosure, and naturalness
of each response. Internal consistency was good for the items in
this scale (Cronbach’s α = .852). We expected the highest overall
ratings to be given by participants when the robot used cognitive
gaze aversions at the start of its responses according to our model.

Hypothesis 2b – Robots that display periodic gaze aversions
while listening will increase a human interlocutor’s comfort and
elicit more disclosure than robots that do not display gaze aversions
or display gaze aversions with inappropriate timings.

Eye contact is one of the factors that shape feelings of intimacy
between people. Too much of it results in uncomfortable levels of
intimacy [4]. We posit that using gaze aversions appropriately will
alleviate this potentially negative outcome.

Task 2b – The robot in this task was introduced to the participant
as training to be a therapist’s aide that would conduct preliminary
interviews with new clients. During the task, the robot asked the par-
ticipant a series of five questions with increasing levels of intimacy,
ranging from “What do you like to do in your free time?” to “What
is something you don’t like about yourself?,” and participants were
instructed to respond with as much or as little detail as they wished.

Measure 2b – The primary measure for this task was the breadth
of self-disclosure, which we obtained using a word count of partici-
pants’ responses to the robot’s questions. Previous research on how
computers can elicit self-disclosure from people has validated word
count as an appropriate measure of disclosure [17]. We expected that
participants would disclose more to a robot that used appropriately
timed intimacy-modulating gaze aversions while listening.

Hypothesis 2c – Robots that display gaze aversions during pauses
will be perceived as holding the floor and will be interrupted less

Figure 6: An experimenter demonstrating the conversational interaction
with Jack, one of the NAO robots.
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Figure 7: Example of a single question-answer sequence. (a) The participant reads a question from his list in the preparation phase. (b) The participant looks
toward the robot, and the robot engages an upward cognitive gaze aversion at the start of its answer. (c) The robot looks back toward the participant during its
utterance. (d) The robot engages in a sideways intimacy-modulating gaze aversion. (e) The robot looks back toward the participant to complete its utterance.

than robots that do not display gaze aversions or display gaze aver-
sions with inappropriate timings.

Gaze has been previously shown to be important in regulating
conversational turn-taking [13]. By averting its gaze at a pause in
speech, we posit that a robot will be able to hold the conversational
floor, whereas making eye contact during this pause will result in
the robot being interrupted.

Task 2c – Participants were provided with a list of five questions
to ask the robot, with the goal of getting to know each other. Par-
ticipants were instructed to ask each question, listen to the robot’s
response, and then reciprocate with their own response to the same
question. The robot’s responses had two parts, separated by a pause
between 2 and 4 seconds in length (randomly determined to decrease
predictability). If participants started speaking during the pause, the
robot refrained from giving the second part of its response.

Measure 2c – The primary measure of this task was the time
participants waited for the robot to be silent during the pause in its
speech before interrupting or before the robot successfully produced
the second part of its utterance. We expected participants to wait
longer before interrupting the robot—or to not interrupt the robot at
all—when it used appropriate turn-taking gaze aversions during its
speech pauses, as specified by our model.

4.4. Setup & Procedure
An orange NAO, given the name Norman, was used for the first task
that tested the perceived intentionality of generated gaze shifts. A
gray NAO, given the name Jack, was used for the other three tasks.
A separate robot was used for the first task due to the unnaturally
long pauses present in that task. We did not want negative percep-
tions associated with these long response times to become associated
with the robot during the other three tasks in which conversations
proceeded more naturally. Each robot had a unique voice, imple-
mented as pre-recorded audio files from separate male voice actors
modulated in pitch to better fit the design of the robot. Participants
sat in a chair approximately three feet away from the robot they
were currently interacting with. The robot’s position was carefully
chosen to be at approximately eye-level with the participant and at
a comfortable social distance. A black dividing wall was placed
between the two robots so that participants could only see a single
robot at a time. The setup resembled interview booths commonly
used in job fairs (Figure 5 and Figure 6).

Each question-answer interaction sequence, illustrated in Figure
7, began with a preparation phase—a common element of human-
human interviews—in which the participant looked down and read
a question from the list. During this phase, the robot displayed idle
gaze movements while staying focused on the participant. Toward
the end of the question, the participant redirected their attention
toward the robot, at which point the robot began its response, dis-
playing gaze aversions based on the experimental condition. Be-
tween gaze aversions, the robot displayed subtle random motions to
increase lifelikeness. Upon completing its utterance, the robot al-
ways focused back on the participant, displaying subtle idle motion.

At this point, the participant looked down to the list, beginning the
preparation phase for the next question-answer sequence.

After obtaining informed consent, the experimenter led each
participant into the study room and gave a brief introduction to
the experiment. The participant first completed the single task
with Norman and was then relocated to sit in front of Jack for the
other three tasks, which were completed in random order. After
completing all four tasks, the participant responded to a survey of
demographic characteristics and was debriefed. The study took
approximately 30 minutes, and each participant received $5.

4.5. Results
We performed a mixed-design analysis of covariance (ANCOVA)
to assess how robot gaze aversion behaviors affected the dependent
variable for each task. Participant gender was included as a covariate
to control for gender differences. Question ID—five in each task—
was included as a covariate to control for learning effects. Question
ID was nested within participant ID and modeled as a random
effect. This resulted in five observations per participant and 150
total observations in each measure. Planned pairwise comparisons
described in our hypotheses were carried out using Tukey’s HSD
test. A summary of our primary results is presented in Figure 8.

Hypothesis 1 predicted that gaze aversions employed by the robot
would be seen as intentional motions used to engage in some cog-
nitive processing, rather than randomly generated motions with-
out meaning. Our analysis supported this hypothesis. The time
given to the robot before interrupting was significantly higher when
the robot used proper gaze aversion with good timing rather than
bad timing, F(1,142) = 7.72,p = .017, or no gaze aversion at all,
F(1,142) = 5.99,p = .041.

Hypothesis 2a predicted that when a robot utilized cognitive gaze
aversions at the start of answers to participant-provided questions,
those answers would be rated as being more thoughtful and creative
than when the robot did not display gaze aversions or displayed gaze
aversions with inappropriate timings. Our analysis supported this
hypothesis. Participants assigned higher ratings of thoughtfulness
to utterances produced by robots using well-timed gaze aversions
over those produced by robots using poorly-timed gaze aversion,
F(1,142) = 27.97,p < .001, and over those produced by robots using
static gaze, F(1,142) = 10.19,p = .005.

Hypothesis 2b predicted that robots that displayed periodic gaze
aversions while listening would increase a human interlocutor’s com-
fort and elicit more disclosure than robots that did not display gaze
aversions or displayed gaze aversions with inappropriate timings.
Our analysis did not support this hypothesis. The robot using gaze
aversions with good timing elicited no more disclosure—measured
as word count per response—from participants than when its gaze
aversions were badly timed, F(1,142) = 0.56,p = .735, or when it
used no gaze aversion at all, F(1,142) = 0.05,p = .972.

Hypothesis 2c predicted that robots that displayed gaze aversions
during pauses would be perceived as holding the floor and would
be interrupted less than robots that did not display gaze aversions or
displayed gaze aversions with inappropriate timings. Our analysis
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Figure 8: The results of the evaluation. Robot gaze aversions generated by
our model were perceived as intentional and enabled the robot to appear
more thoughtful and effectively manage the conversational floor. (*), (**),
and (***) denote p < .050, p < .010, and p < .001, respectively. Means and
standard deviations (in parentheses) are provided inside each bar.

supported this hypothesis. The time given to the robot during its
pause before interrupting was significantly higher when the robot
used properly-timed gaze aversion than when its gaze aversions
were badly timed, F(1,142) = 25.53,p < .001, or when it did not use
gaze aversion at all, F(1,142) = 24.93,p < .001.

5. DISCUSSION
The goal of the evaluation was to show that gaze aversions generated
by our robots are perceived as intentional and meaningful motions,
and that robots can use gaze aversions to achieve three conversa-
tional functions: signaling that cognitive effort is being spent in
producing thoughtful utterances, modulating the overall intimacy
level of the conversation, and facilitating floor management.

As shown in the first task, the robot’s gaze aversions were per-
ceived as intentional motions to engage in some sort of processing.
Participants gave the robot significantly more time to formulate its
response to a question when the robot used gaze aversion appropri-
ately. Confirming this first hypothesis is important for interpreting
the rest of the results, as we can conclude that the robot’s head move-
ments which were designed to convey gaze aversion were indeed
perceived as gaze aversions and not as random movements.

As shown in the second task, in which a robot produced responses
to a participant’s interview-style questions, a robot that uses gaze
aversions appropriately is capable of achieving the cognitive con-
versational function of producing utterances that are perceived as
thoughtful and creative. This result is especially interesting as it
was not observed when evaluating our previous implementation of
gaze aversion behaviors for virtual agents [3]. A potential explana-
tion might be found in the increased social presence of robots over
virtual agents, making the generated cognitive gaze aversions more
salient cues in this evaluation. That said, a follow-up evaluation that
directly compares virtual agents and robots in this task would be
required to better explain the observed difference in results.

Robots using well-timed gaze aversions were not successful in
eliciting more disclosure from participants, as shown in the third task.

A possible explanation is that the intimacy-modulating function
of gaze aversion is really about reducing eye-contact and staring
and that the precise timing for this type of gaze aversion is not
important. Furthermore, the idle Perlin noise motions generated by
our robot system in all conditions may have been perceived as small
gaze shifts that increased participant comfort without needing more
overt gaze aversions. In general, the lack of a significant result is
consistent with previous HRI work that also did not find a difference
in participant disclosure based on the gaze behavior of a robot [18].

Finally, robots using well-timed gaze aversion behaviors were
more successful in managing conversational floor. When the robot
used gaze aversions appropriately, participants waited longer during
the robot’s pause before interrupting it to claim the floor. It should
be noted, however, that the robot was never able to hold the conver-
sational floor throughout the entirety of its pause in speech (planned
to be 2–4 seconds in length) without being interrupted. When using
properly timed gaze aversions, the mean time before interruption
was 608ms, compared with 329ms and 327ms in the static gaze and
bad timing conditions, respectively. This is still a noteworthy re-
sult, as most gaps between turns in human-human conversations are
shorter than 400ms, about one-third of them less than 200ms [29].
Adding other floor-holding behaviors, such as conversational fillers,
might enable the robot to be even more effective in holding the floor
during its pause. Previous work in HRI has already demonstrated
the usefulness of conversational fillers in alleviating users’ negative
perceptions to long system response times [26].

5.1. Design Implications
This work has a number of design implications. In general, this
work demonstrates the value of gaze aversion as a useful nonverbal
conversational cue for designing applications such as an information
booth robot that gives suggestions and should appear thoughtful and
creative in the production of its utterances or a conversational robot
that needs to effectively manage turn-taking with people. That said,
gaze aversion motions alone are not sufficient for an autonomous
robot system to appear natural and lifelike in its movements. In
this paper, we showed how to combine aversion control with face
tracking and structured random movements to create lifelike idle
motion. A predictive filtering framework was very effective for
gracefully combining multiple gaze motions with different goals.
We have released online the code for our system of robot gaze
aversion, which can be downloaded and run directly on any NAO
robot with a Kinect for face tracking and speech recognition.

Another implication concerns the difference between designing
social behaviors for virtual agents and physical robots. In this work,
we showed how a robot could use gaze aversions effectively in
conversations with people, which is similar to what we showed for
virtual agents in previous work [3]. However, there are a number of
important differences between virtual agents and robots that must be
carefully considered when designing behaviors across both modal-
ities, as evidenced by previous work and the difference in results
across systems discussed here. It will take careful thought and
creativity to develop precise representations of future agent behav-
iors that achieve targeted conversational functions while still being
sufficiently generalizable across virtual and physical platforms.

5.2. Limitations & Future Work
One limitation of this work is that the presented gaze aversion
model is static, in that the timings and frequencies of gaze aversions
employed by the robot do not change over the course of the conver-
sation or across conversations. In future work, we hope to explore
how interaction history might be considered by our model. Previous
research has shown that gaze aversions during speech become more
common in later conversations between counselors and clients [25].



Another limitation of this work is that the gaze aversions are
responsive to the speech of the human user but not to their gaze. By
tracking the user’s gaze, the robot might be able to more effectively
regulate mutual gaze throughout the conversation and recognize
gaze aversions of its user. Interactively aligning gaze aversions is
particularly important to ensure that the robot’s gaze aversions are
recognized by the user, for instance, by producing a turn-taking gaze
aversion only when the user is looking toward the robot.

When used inappropriately or in excess, gaze aversion can be
perceived negatively, as illustrated by our bad timing condition. Pre-
vious research has linked gaze aversion with avoidance-oriented
emotions, such as embarrassment, sorrow, and disgust, and direct
gaze with approach-oriented emotions, such as joy, love, and anger
[2]. We posit that averting gaze only when it is useful and appropri-
ate maximizes the positive effects of eye contact. The link between
gaze aversion and emotion and the tradeoff between the effects of
mutual and averted gaze are important directions for future work.

Gaze aversion is only one type of gaze action, but there are many
others, including fixations, glances, mutual gaze, and scanning
[27]. In future work, we hope to integrate the current work on gaze
aversion into a comprehensive gaze controller that implements other
gaze models, and test the effectiveness of robot gaze aversion within
the context of a richer set of gaze behaviors.

6. CONCLUSION
Gaze aversion—the intentional redirection away from the face of an
interlocutor—is an important nonverbal cue that serves cognitive,
intimacy-modulating, and floor management functions in conversa-
tions. In previous work, we identified precise spatial and temporal
parameters of gaze aversion from a video corpus of human-human
interactions. In this paper, we presented our work to implement
these behaviors on a humanlike robot system. This implementation
was designed to overcome the inherent challenges of adapting a
human-based gaze model for a robot without articulated eyes. We
designed a head controller for the NAO platform that generates and
combines head motions with three purposes: purposeful gaze aver-
sions to achieve conversational functions, face tracking for engaging
in mutual gaze with a user, and noisy idle head motions to increase
lifelikeness. An evaluation of the designed gaze aversion behaviors
generated by this system demonstrated that they are perceived as
intentional when expressed by a humanlike robot, and that robots
can use gaze aversions to appear more thoughtful and effectively
manage the conversational floor. These results have important impli-
cations for designers of human-robot interactions. Gaze aversions
should be considered as an important and useful cue for developing
effective conversational interactions between humans and robots.
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