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ABSTRACT
Socially assistive robots are envisioned to provide social and
cognitive assistance where they will seek to motivate and en-
gage people in therapeutic activities. Due to their physicality,
robots serve as a powerful technology for motivating people.
Prior work has shown that effective motivation requires adap-
tion to user needs and characteristics, but how robots might
successfully achieve such adaptation is still unknown. In this
paper, we present work on matching a robot’s personality—
expressed via its gaze behavior—to that of its users. We con-
firmed in an online study with 22 participants that the robot’s
gaze behavior can successfully express either an extroverted
or introverted personality. In a laboratory study with 40 par-
ticipants, we demonstrate the positive effect of personality
matching on a user’s motivation to engage in a repetitive task.
These results have important implications for the design of
adaptive robot behaviors in assistive human-robot interaction.
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INTRODUCTION
Technologies with robotic features and social competence have
long been envisioned as integrating into the working and living
environments of people. In recent years, this vision has started
to become reality, with the development and commercializa-
tion of social robotic products such as Jibo1 and Pepper2 that
serve as family companions in homes, Baxter3 and Hospi4

1http://www.myjibo.com
2http://www.aldebaran.com/en/a-robots/who-is-pepper
3http://www.rethinkrobotics.com
4http://news.panasonic.net/archives/2013/1105 24824.html
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Figure 1. A socially assistive robot guiding a user in a puzzle-solving task.

that work alongside people in organizations such as factories
and hospitals, and Autom5 that takes on the role of a per-
sonal weight loss coach. Moving forward, social robots are
expected take on even larger roles in areas such as education,
collaboration, and rehabilitation.

In the area of rehabilitation, social robots hold great promise
for improving the quality of life of the elderly, individuals
with physical impairment, and those with cognitive disorders.
Social robots envisioned for use in these contexts are referred
to as socially assistive robots [11]. The purpose of these robots
is to assist users by providing information, motivation, and
feedback in order to increase compliance with an exercise reg-
imen, take medication on a schedule, perform repetitive tasks
for physical or cognitive therapy, and so on. Socially assistive
robots are currently being developed to work as caregivers
alongside doctors, nurses, and physical therapists [20]; ther-
apy aids for children with autism [12, 39]; and as companions
in nursing homes [10, 26].

Patient compliance with treatment for chronic diseases in the
U.S. is often below 50%; over half of patients do not take
their medication correctly [33]. Following a stroke, one of
the most effective rehabilitation methods is for patients to
repeatedly exercise the affected limb(s), an activity patients
find quite difficult to keep up without a therapist present [9]. A
powerful way of improving motivation and compliance in such
settings is through nonverbal behaviors and adapting behaviors
to the patient’s characteristics. Socially assistive robots are
particularly engaging in such scenarios due to their physical
embodiment and ability to employ nonverbal cues.

5http://myautom.com
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Gaze is a particularly important nonverbal cue in social in-
teractions that robots have at their disposal [8]. Research in
human-robot interaction (HRI) has investigated the positive
outcomes achievable through a robot’s gaze behavior, includ-
ing increasing the robot’s competence in conversations with
people [1, 30, 29], enabling joint attention and referential com-
munication [17, 41], and improving upon the robot’s ability
to hand objects to people [27]. To be truly effective, the robot
must be able to adapt its behaviors in two ways. First, it must
adapt to the unique characteristics of its user, and second, it
must adapt to changes in user needs and behaviors throughout
an interaction and across multiple interactions.

In this paper, we investigate how robots may achieve the first
form of adaptation and present the design and evaluation of
gaze behaviors for socially assistive robots that enable the
robot to match the personality of the user, thereby more effec-
tively motivating users to repeatedly engage in a therapeutic
task. We focus on the extroversion dimension of the Big Five
personality model [19] as it is the most accurately observable
dimension of personality expressed by nonverbal behaviors
over short timescales [25]. We also demonstrate the impor-
tance of taking the user’s intrinsic motivation into account
when attempting to motivate and increase compliance.

BACKGROUND
Three threads of research inform this work, including previous
work on socially assistive robots, previous work on adapting
technologies to the characteristics—especially personality—of
users, and social-science research on the relationship between
nonverbal behaviors, personality, and motivation.

Socially Assistive Robots
Prior work has established that the mere presence of a robot
can positively affect user compliance in an array of contexts. In
previous work where participants were recruited for a weight-
loss program, Kidd found that adherence to the program was
shortest when participants tracked their progress with pen-
and-paper, longer with a computer interface, and significantly
longer when reporting their progress to a robot [21]. Even
a very simple robot—a Roomba vacuum cleaner robot aug-
mented with a facial display—has been shown to be capable
of helping people with medication compliance [42]. Social
facilitation theory [28] provides some explanation for the ef-
fectiveness of robots in these contexts; the presence of an
embodied humanlike robot increases motivation in the same
way that the presence of other people increases an individ-
ual’s drive and enhances their performance in tasks in which
the individual is skilled. The robot’s physical embodiment
and shared physical context create an opportunity for strong
engagement between the robot and the user.

To improve effectiveness, the robot must relate to the user with
praise and feedback on their actions. Previous research has ex-
amined the positive effects of relational discourse—including
praise and feedback—in an exercise coach robot leading el-
derly participants in physical and cognitive exercises [10].
Relational agents have also been found to be effective for de-
livering health communication and health behavior change
interventions to older adults, especially those with low func-
tional health, reading, or computer literacy [2].

Previous research has investigated the ability of social robots
to provide cognitive therapy to users, such as older adults
with mild cognitive impairments that need help planning and
executing everyday activities [3]. Robot therapists for the
elderly have also been employed to play memory enhancing
music games with their users [45]. For individuals suffering
from dementia and/or other cognitive impairments, socially
assistive robots have been shown to improve, through social
interaction, the cognitive abilities of their users, and thus their
quality of life [46]. Robots are also educationally useful in-
terventions to improve social interactions for individuals with
Autism Spectrum Disorders (ASD) [32].

Socially assistive robots are capable of providing physical
therapy for users without needing to make physical contact.
Individuals who have recently suffered a stroke may benefit
from the use of robots in this domain. Previous work has
investigated the influence of robot coaching styles designed
to enhance motivation and encouragement on post-stroke indi-
viduals during motor task practice [49]. In other prior work, a
robot asked healthy users to engage in physical exercises simi-
lar to those used during standard stroke rehabilitation, such as
repeatedly lifting and moving books or pencils. Participants
were asked to perform the tasks for as long as they wished.
Researchers manipulated the interaction style of the robot and
found that extroverted participants preferred and complied
more with a robot that challenged them rather than one which
focused on nurturing praise [44]. In subsequent work, the
robot adapted its behavior to match each participant’s pref-
erences in terms of therapy style, interaction distance, and
movement speed [43]. In that work, as well as in research pre-
sented in the next section, it is shown that adaptation is key to
creating positive interactions, especially in assistive contexts.
The present work aims to further this research by presenting
personality-expressing gaze behaviors and demonstrating that
they must be targeted to the personality of users.

Adapting to Users
Previous research in HRI has demonstrated the benefit of a
robot adapting to its users. In prior work in which a robot
provided cooking help to participants in a kitchen, researchers
found that adaptive dialogue—in which the robot adapted
the content of its speech depending on the expertise of the
user—improved information exchange and social relations,
especially when users were under time pressure [47]. Previ-
ous research with children investigated the use of adaptive
empathic behaviors (e.g., encouraging comments and offer-
ing help) for a chess-playing robot [24]. Children responded
positively to the robot when the empathic behaviors were em-
ployed adaptively, rather than randomly. Previous work has
also investigated the positive effect in eliciting user compli-
ance of matching a “playful” or a “serious” robot (conveyed
through the robot’s speech) to a playful or serious task [14].

Adapting to user personality has been more widely studied
in HCI. For example, previous research shows that computer
interfaces can be manipulated to exhibit an extroverted or in-
troverted personality through the use of language, pictures,
and sounds, and that introverted users will perform tasks faster
when using introverted software [36]. This result follows from



the theory of similarity-attraction which predicts that a person
will be attracted more to others who match their personalities
than to those who mismatch [22]. In the same way, matching
the personality of a synthesized voice, expressed through pitch,
prosody, and so on, to user personality positively affects users’
feelings of social presence, especially in extroverts [22]. Emo-
tion matching is also important in computer interfaces. In a
study of emotional speech generation for car interfaces, it was
found that when the emotion expressed by the car voice (en-
ergetic or subdued) matches the emotional state of the driver
(happy or upset), drivers have fewer accidents, attend more
to the road, and speak more to the car [31]. Our research in
socially assistive robots parallels these efforts by following
similarity-attraction theory to match the gaze behaviors of the
robot to the personality of the user.

Nonverbal Behaviors, Personality, and Motivation
Nonverbal behaviors, especially gaze, have long been recog-
nized in social-sciences literature as useful tools in persuading
others to comply with requests or demands. A number of theo-
ries have been proposed to explain this phenomenon, including
speech accommodation theory, demand theory, and arousal
intimacy theory [40]. According to speech accommodation
theory, people may change their communication behaviors
when interacting with others and convergence toward the style
of the partner should produce a positive attitude in the partner
and thus lead to compliance. According to demand theory,
nonverbal behaviors can function as demands (e.g., staring as
a demand for a response), producing a level of arousal that
targets can alleviate by complying with any implicit or explicit
demands. In arousal intimacy theory, nonverbal behaviors are
predicted to produce compliance because they produce greater
perceptions of intimacy between the source and target, leading
to compliance when the target experiences positive arousal.
Each of these three theories predicts a strong relationship
between nonverbal behaviors and compliance.

A large amount of previous research has empirically demon-
strated the positive effect of gaze on compliance. When a
collector of money for charity engaged in mutual gaze with
possible donors, rather than looking at the collecting tin, they
were more successful in receiving donations [4]. Nonverbal
behavioral cues, such as gaze, gesture, and proxemics, are
sometimes referred to as immediacy cues [6]. Students are
more likely to comply when they perceive their teachers as
moderately to highly immediate, and are more likely to choose
to reject requests made by nonimmediate teachers [5]. Simi-
larly, attraction and dominance increase compliance and cues
of such are often expressed through nonverbal cues like gaze
[34]. Gaze is also closely tied to personality, with extroverts
commonly engaging in significantly more mutual gaze with
their conversational partners than do introverts [37].

In addition to nonverbal behaviors and personality, attempts
to increase compliance in others must take into account a per-
son’s motivation, which can vary not only in magnitude but
also in orientation [38]. The most basic distinction in moti-
vation orientation is between intrinsic, which refers to doing
something because it is inherently interesting or enjoyable,
and extrinsic, which refers to doing something because it is

Figure 2. Setup of the human-human data collection study. The participant
on the right (instructor) is providing extrinsic motivation to the participant on
the left (worker) to complete the puzzle.

accompanied by external pressure or control. In the current
work, we use socially assistive robots to create extrinsic moti-
vation in users, but also take into consideration the intrinsic
motivation that those users have to complete the task.

DESIGNING PERSONALITY-EXPRESSING GAZE
In order to develop adaptive gaze behaviors for a socially
assistive robot to employ, we first sought to understand the re-
lationship between gaze and personality, focusing particularly
on extroversion, in a motivational context. In this section, we
present a human-human data collection study we conducted
in order to inform the design of personality-expressive gaze
behaviors. We also present an online validation study we
conducted to confirm that the designed robot gaze behaviors
express the intended personality.

Data Collection and Modeling
To understand the relationship between gaze and personality
in a motivational task, we sought to answer the following ques-
tions. How do people use their gaze when attempting to moti-
vate others and increase compliance? What is the relationship
between their use of gaze and their respective personalities?
To answer these questions, we conducted a human-human
data collection study with four participant dyads, obtaining
more precise measurements of gaze behavior than what is
traditionally presented in the social-sciences literature. We
chose the Tower of Hanoi puzzle for participants to complete
collaboratively. The goal of this puzzle is to move a number
of colored blocks from one location to another while follow-
ing some simple rules. This task was chosen for its mix of
cognitive (solving the puzzle) and physical (actually moving
the pieces around) elements, mapping well to tasks commonly
used in physical and cognitive rehabilitation. The task can
also be broken down into two repeating phases common to
rehabilitation activities: (1) the actual execution of the task,
which we will refer to here as the in-task phase, and (2) the
time between tasks when the therapist must provide encour-
agement to persist with the task, which we will refer to here
as the between-task phase.

Participants filled out the Big Five inventory prior to par-
ticipation to determine their position on the extroversion-
introversion spectrum [19]. The Big Five questionnaire con-



Worker Compliance & Mutual Gaze

Measure

Dyad (Instructor–Worker)
Extroverted–Extroverted
Introverted–Introverted
Extroverted–Introverted
Introverted–Extroverted

Time
(s)

1369
703
320
295

Puzzles
Done

18
14

9
7

In-Task
Phase

7.66
3.79
5.31
1.91

Between-
Task Phase

14.74
8.57

10.53
4.39

In-Task
Phase

5.20
2.74
1.77
4.94

Between-
Task Phase

11.91
8.68
8.97

14.74

Blocks
Moved

541
352
227
121

Worker Gaze 
toward Partner (%)

Instructor Gaze 
toward Partner (%)ComplianceOutcome

Table 1. Results from the human-human data collection on worker compliance
in each dyad, as well as the amount of partner-directed gaze for all participants.

tains 44 items on a five-point rating scale that ask the partici-
pant to rate their agreement or disagreement with statements
about their own personality and activities. Eight of these items
contribute to the extroversion dimension of the participant’s
overall personality score. These items have good internal reli-
ability (Cronbach’s α = .88). Participants scoring lower than
2.5 on the extroversion dimension were labeled as introverted,
and those above 2.5 were labeled as extroverted.

In each dyad, one participant was assigned to be the instructor
and the other the worker. Each of the four dyads covered
one of the four possible combinations of participant person-
ality and role. The experimenter first explained the puzzle
to the instructor without the worker present. Next, the in-
structor practiced solving the puzzle with the experimenter.
The instructor was required to successfully solve the puzzle
a number of times in front of the experimenter to prove that
they were comfortable with the task. Then, the instructor was
asked to carry out the following procedure: (1) explain the
task to the worker, (2) monitor the worker as they complete the
task, (3) provide encouraging feedback during the puzzle solv-
ing, (4) motivate the worker to keep working between puzzle
tasks, and (5) correct workers when they make a mistake. The
worker was told by the experimenter that everything would
be explained by the instructor, but that they were welcome to
work on the task for as long as they wished and that it was up
to them to decide when they would like to stop.

The two participants sat at a table facing each other, with
the puzzle between them (Figure 2). Over-the-shoulder view
cameras recorded the gaze of each participant, and a side
camera with wide-angle view was used for recording the entire
task. The compliance of the worker to the instructor was
measured in three ways: (1) total time spent solving puzzles,
(2) total number of puzzles completed, and (3) total number

Gaze Lengths (Mean (Standard Deviation))

Personality

Phase

Partner
Puzzle

In-Task

2.66 (0.80)
4.04 (2.12)

Between-Task

3.91 (1.22)
1.01 (1.26)

Between-Task

1.59 (0.39)
6.21 (8.14)

In-Task

0.57 (0.19)
11.65 (11.17)

Extroverted Introverted

Table 2. Means and standard deviations of gaze fixations (in seconds) to the
partner and to the puzzle for extroverted and introverted participants, divided
into in-task and between-task phases of the interaction.

of puzzle pieces moved. Worker compliance in each dyad, as
well as the percentage of each participant’s attempt to engage
in mutual gaze with their partner, is presented in Table .

All videos were coded for participant gaze behavior. Partici-
pant gazes were recorded and labeled for two targets: the other
participant and the shared workspace. The mean and standard
deviation of these gaze lengths are presented in Table .

We observe three trends from the data. First, extroverts seem
to be attempting to engage in more mutual gaze with their part-
ner than do introverts. This relationship between extroversion
and gaze behavior has been similarly demonstrated in previous
research, including a study of dyadic interviews in which it
was found that extroverts gaze at their interviewer more than
introverts do [18]. Second, there is more mutual gaze between
puzzle phases when the instructor is attempting to motivate
the worker to solve more puzzles and much less mutual gaze
during the actual puzzle completion. Third, there is some pre-
liminary indication that personality matching is an effective
strategy for increasing compliance, as personality-matching
dyads exhibited longer time-on-task than the mismatching
personality dyads. This point is explored further in the experi-
mental evaluation presented later in this paper.

The results presented in Table are used to generate two mod-
els of gaze behavior for robots, one to express an extroverted
personality and the other to express an introverted personal-
ity. The presented means and standard deviations are used
to create normal distributions of gaze lengths that the robot
draws from when planning and executing gazes toward the
user and toward the task space. In an expression of the extro-
verted model, the robot gazes into the face of the user more,
while the introverted model generates more gaze toward the
task space. In both models, more gaze is generated toward
the user in the motivational between-task phase than in the
in-task phase, which involves monitoring the user’s actions.
For example, an extroverted robot drawing from the distribu-
tions in Table might generate a four-second gaze toward the
user in a between-task phase, followed by a one-second gaze
toward the task space. This sequence of long user fixations
and short task fixations—randomly generated according to the
distributions—would repeat until the start of the next in-task
phase. At this point, the extroverted robot might generate a
four-second gaze toward the task space followed by a two-and-
a-half-second gaze to the user. This cycle of gaze shifts would
repeat throughout the in-task phase.

Implementation
Following the data collection and analysis from human dyads,
we next designed and implemented a system to allow a robot
to take on the instructor role in the same puzzle completion
scenario. We implemented the system on the Meka robot
platform (Figure 1). We use the Robot Operating System
(ROS) to handle the execution and communication amongst
each of the system components described below (Figure 3).

Tracking the participant and task state—A depth camera
mounted in Meka’s chest was used for face tracking. A small
amount of noise is added to the tracking output so that the
robot’s gaze does not remain motionless when gazing toward
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Figure 3. The implementation of the socially assistive robot. Participant
face location, speech, and task state are tracked and passed to the dialogue
controller, task controller, and gaze controller. These controllers determine
the gaze, speech, and gestures of the robot. Rounded squares, circles, and
rounded rectangles denote sensing, output, and control modules, respectively.

the user’s face. For puzzle tracking, a separate webcam is
placed on the table and focused on the puzzle. Color blob
tracking is employed to determine the current locations of
each of the different colored puzzle pieces. Google speech
recognition is utilized for capturing the user’s requests for help
and requests to terminate the task.

Task controller—This component manages the flow of the
overall scenario. It keeps track of the current task phase (in-
task or between-task) and continuously solves the puzzle from
the current state so the robot can provide hints and help when
requested. The robot can provide general strategies or suggest
moves to make in completing the puzzle. If the user makes
five bad moves in a row or does not make a move for ten
seconds, the robot automatically provides help. The robot
also randomly provides positive feedback when it detects that
the user has made a good move. Providing these hints and
feedback has been shown in previous work to positively affect
people’s motivation to engage in a task [48].

Generating robot behavior—Depending on the current phase
of the scenario (introduction, in-task, between-task, closing),
the dialogue controller generates the robot’s speech appropri-
ately. If a request for help is detected, the dialogue controller
generates the response speech and the gesture controller gen-
erates a pointing gesture to the appropriate puzzle piece. The
gaze controller generates gaze shifts according to the person-
ality being expressed and the current phase of the interaction.
The values in Table are used to create distributions that the
robot draws from when planning and generating gaze shifts
toward the puzzle or toward the user. When gazing toward
the puzzle, the robot looks toward blocks that are in motion,
creating a stronger sense of responsiveness and lifelikeness.

Model Validation
After implementing the system, we conducted an online study
to determine if the extroverted and introverted gaze behaviors
generated by the gaze controller would actually be perceived
as such. We filmed four one-minute videos of the robot in-
teracting with a human user in the Tower of Hanoi scenario.
In two of the videos, the robot utilized the extrovert model
of gaze behaviors, with the other two videos depicting the

robot utilizing the introvert model. This study used a within-
participant design; all four of the videos were shown to each
participant in a random order. Following each video, partic-
ipants rated the perceived extroversion of the robot on six
five-point rating scales which have also been used in previous
research to rate the perceived personality of robots [23].

Participants in this study were recruited using Amazon’s Me-
chanical Turk. We recruited 30 participants (15 Female, 15
Male) with a mean age of 34.9 (SD = 8.5). Standard IP-
filtering techniques were employed to limit participation to
the United States and prevent multiple participation. In order
to eliminate participants that were not focusing on the videos,
we asked participants to indicate the color of the robot’s head
(blue) at the end of the study, discarding data from partici-
pants who failed to provide a correct answer. We also tracked
the amount of time that the browser window containing the
video stimulus remained in focus on the participant’s computer.
Eight participants failed the color question and/or unfocused
the stimulus window for a majority of the study time and were
therefore eliminated from analysis, leaving 22 participants.

We analyzed the effect of the robot’s gaze behavior on partici-
pant ratings of the robot personality using repeated-measures
analysis of variance (ANOVA). Results indicated that partici-
pants did perceive a difference in the personality of the robot
in the way that we intended. The extroversion rating of the
robot was significantly higher in the extrovert gaze behavior
condition (M=3.79, SD=0.54) than in the introvert gaze behav-
ior condition (M=3.53, SD=0.59), F(1, 84) = 5.09, p = .027.
This result is supported by previous work which demonstrated
that participants can accurately recognize a robot’s intended
personality based on its verbal and nonverbal behaviors [23].

EXPERIMENTAL EVALUATION
The validation study showed that the gaze manipulations in-
deed resulted in differential perceptions of the robot’s person-
ality. Next we present a more comprehensive study of the
effect of using these personality-expressing gaze behaviors
in motivational interactions with human users. The goal of
this study was to test the effect on compliance of matching or
mismatching the robot’s personality with that of the user.

Hypotheses
Three hypotheses were developed that predict the effect of
matching the personality of the robot—expressed through
gaze—to the personality of users, as well as the potential
effect of users’ intrinsic motivation.

Hypothesis 1—Matching the robot’s personality to the user’s
personality will improve the user’s subjective ratings of the
robot’s performance.

This hypothesis follows from similarity-attraction theory,
which predicts that a person will be more attracted to others
who match their personality than to those whose personalities
do not match [22]. Thus, we predict a strong interaction effect
between user personality and robot personality.

Hypothesis 2—Matching the robot’s personality to the user’s
personality will improve compliance with the robot’s requests
to engage in the task for a longer period of time.



This hypothesis also predicts a strong interaction effect be-
tween user personality and robot personality and follows from
similarity-attraction theory. Previous work in socially assis-
tive robots found a similar interaction effect on compliance
between user personality (extrovert or introvert) and robot
therapy style (challenging or nurturing) [44]. Our own data
collection, which we presented earlier, also lends some pre-
liminary support for this hypothesis, as the two personality-
matching dyads participated in the puzzle task longer than
both personality-mismatching dyads.

Hypothesis 3—The user’s intrinsic motivation for the task will
interact with the personality-matching effect on compliance.
Users with low intrinsic motivation will be more affected by
personality-matching than users with high intrinsic motivation.

If a user has high intrinsic motivation for the puzzle-solving
task, they would inherently find the task interesting or en-
joyable and thus would not respond to external motivation
attempts from a socially assistive robot [38].

Participants
We recruited 40 participants for this experiment (16 Female,
24 Male) from a university campus. Participant ages ranged
from 20 to 58 (M = 30.6, SD = 9.4). For feasibility purposes,
all participants were healthy adults without need of physical
or cognitive therapy, a strategy that has been employed in pre-
vious research on socially assistive robots [44]. Participants’
countries of origin included France, the United States, China,
Romania, and Tunisia, and came from both technical and non-
technical backgrounds. The experiment was implemented in
both English and French (including the script of both the ex-
perimenter and the robot), and participants were allowed to
choose the language with which they were most comfortable
(10 chose English, 30 chose French).

Study Design & Procedure
The study followed a 2×2 between-participants study design,
with participant personality (extrovert or introvert) and robot
personality (extrovert or introvert) comprising the two factors.
The study contained four total conditions representing each
of the four personality combinations, with ten participants re-
cruited for each of these conditions. The robot’s gaze behavior
was the only difference between robot personality conditions;
experimenter instructions and the content of robot speech were
held constant for all conditions.

All participants were asked to complete and submit the Big
Five personality inventory prior to participation to determine
their position on the extroversion-introversion spectrum [19].
These items, as in the human-human task, took the form of
five-point rating scales. We used a median split to separate
participants into two groups. All participants with an extro-
version score less than or equal to 3.0 were labeled as “in-
troverted,” with participants scoring higher than 3.0 labeled
as “extroverted.” Participants were also asked to complete
and submit a questionnaire to assess their global motivation
toward activities in their life. This questionnaire contains 28
items assessed on a seven-point scale, with constructs for both
intrinsic motivation and extrinsic motivation [15].

Participants were randomly assigned to interact with either
the extroverted or introverted robot. After receiving informed
consent, the experimenter introduced the participant to the
Meka robot and explained the task. Participants were told that
they would be completing the Tower of Hanoi puzzle under
the supervision of the robot, and that the robot would provide
all the necessary instructions for the rules and for progressing
through the various stages of the puzzle. Participants were
seated in front of the robot, facing it at eye-level, with a table
between them. The physical Tower of Hanoi puzzle was placed
on the table between the robot and participant (as illustrated
in Figure 1). The participant was clearly instructed that it
was their decision as to when they wanted to terminate the
interaction and that they could indicate this to the robot at
any time they wished. A headset microphone was used for
capturing the speech of the participants, while the robot’s
speech was projected through its own speakers.

The experimenter then started the system implementation and
left the participant to interact with the autonomous robot. After
initial introductions, the robot carefully explained the goal and
rules of the puzzle and asked the participant to complete it.
After the participant’s first successful completion, the robot
explained that it would be asking the participant to complete
the same puzzle several times and reminded the participant
that it was up to them to decide when they would like to
stop. During the execution of each puzzle task—the in-task
phase—the robot monitored the task and provided help if the
participant got stuck or explicitly asked for help. Following
the successful completion of each puzzle—the between-task
phase—the robot first provided positive feedback and then
asked the participant if they would like to continue. If the
participant agreed, the robot indicated a new puzzle goal and
asked the participant to begin another iteration of the task.

Three levels of difficulty were implemented for the puzzle. The
easiest difficulty required the solution of the three-disk version
of the puzzle; the medium difficulty used four disks; and the
hardest difficulty involved five disks. The least number of disk
movements that can be made for each level of the puzzle are 7,
15, and 31, respectively. When the participant completed the
puzzle eight times at the same difficulty level (starting with
the easiest), the robot asked them to increase the difficulty
by adding another disk. If a participant reached the hardest
difficulty level, they stayed at this difficulty until they decided
to terminate the interaction.

When the participant indicated that they wished to terminate
the interaction, the robot thanked and instructed them to fill
out a follow-up questionnaire at a computer nearby. Once
participants finished this final questionnaire, the experimenter
returned and thanked them once again for their participation.

Measures
The study included three objective measures of participant
compliance: total time spent working on the task, total number
of puzzles solved, and total number of disks moved across all
instances of the puzzle. The follow-up questionnaire contained
several seven-point rating scales for assessing the performance
of the robot. Five items from this questionnaire were com-
bined into a single construct of perceived robot performance,
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Figure 4. Left: objective results of compliance for total participation time.
A personality matching effect predicted by similarity-attraction theory was
found. Right: subjective results of perceived robot performance. Introverted
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including questions about the robot’s skills as an instructor and
motivator, as well as questions relating to the usefulness of the
robot’s information and advice. This construct was found to
have good internal reliability (Cronbach’s α = .75).

The follow-up questionnaire also included open-ended ques-
tions about why the participant chose to participate for as long
as they did and why they chose to eventually terminate the
interaction. In order to obtain a more task-specific measure of
intrinsic motivation, these open-ended responses were coded
for explicit mention of the participant’s inherent desire to
solve the puzzles, without mention of any external motivation
coming from the robot.

Results
Analysis of the data was conducted using a between-subjects
analysis of variance (ANOVA). Participant personality, robot
personality, and the interaction of both were modeled as fixed
effects. Participant gender, language (English or French),
and previous experience with robots (yes or no), were found
to be non-significant covariates on all measures and are not
discussed further. Participant background (technical or non-
technical) was found to have a significant effect on some mea-
sures and it has been retained as a covariate in the statistical
model. A Bonferroni correction was employed to control for
the experiment-wise error in multiple comparisons.

Compliance—Regarding the measure of total participation
time, there was no main effect of either participant per-
sonality, F(1, 35) = 0.75, p = .39, or robot personality,
F(1, 35) = 0.16, p = .69. A significant interaction effect
was observed, F(1, 35) = 14.80, p < .001, with a significant
effect of extroverted participants participating longer with the
extroverted robot, F(1, 35) = 5.97, p = .039, and for intro-
verted participants participating longer with the introverted
robot, F(1, 35) = 8.97, p = .010. Participant background also
had a significant main effect on participation time, with non-
technical participants participating for longer than those from
technical backgrounds, F(1, 35) = 7.31, p = .011.

On the total puzzles solved measure, there was no main effect
of either participant personality, F(1, 35) = 0.36, p = .55,
or robot personality, F(1, 35) = 0.57, p = .45. We found

a significant interaction effect, F(1, 35) = 8.07, p = .007,
with a significant effect of extroverted participants solving
more puzzles with the extroverted robot, F(1, 35) = 6.51, p =
.031, but no significant effect among introverted participants
F(1, 35) = 2.16, p = .30. Participant background did not have
a significant effect on this measure, F(1, 35) = 0.51, p = .48.

On the measure of total disks moved across the entire in-
teraction, there was no main effect of either participant per-
sonality, F(1, 35) = 0.14, p = .71, or robot personality,
F(1, 35) = 1.72, p = .20. Our analysis found a significant
interaction effect, F(1, 35) = 5.42, p = .026, with a significant
effect of extroverted participants moving more disks with the
extroverted robot, F(1, 35) = 6.65, p = .028, but no significant
effect among introverted participants F(1, 35) = 0.52, p = .94.
Participant background was not found to have a significant
effect on this measure, F(1, 35) = 1.03, p = .32.

Perceived Robot Performance—On the subjective rating of
the robot’s performance, there was no main effect of either
participant personality, F(1, 35) = 0.25, p = .62, or robot
personality, F(1, 35) = 0.58, p = .45. We found a significant
interaction effect, F(1, 35) = 4.70, p = .037, with no significant
effect among extroverted participants, F(1, 35) = 0.99, p = .66,
and a marginal preference among introverted participants for
the introverted robot, F(1, 35) = 4.27, p = .092. Participants
with a non-technical background also expressed marginally
higher ratings of the robot’s performance, F(1, 35) = 3.10, p =
.087. Results for compliance and perceived robot performance
are visually presented in Figure 4.

Motivation—We conducted a regression analysis on the ef-
fect of the participant’s reported global intrinsic motivation
(collected in the pre-test survey) on all measures of compli-
ance. No significant results were found for any of the mea-
sures. However, significant effects were observed for the
task-specific measure of intrinsic motivation, in which we
coded participant responses to the open-ended question: “Why
did you participate for as long as you did?” Participants who
indicated an inherent interest in solving the puzzle, rather
than participating because of the presence of the robot and
its feedback, were labeled as having high intrinsic motiva-
tion. Twenty-seven participants (14 extroverts, 13 introverts)
were found to have high intrinsic motivation. We observed
a three-way interaction effect between this measure of in-
trinsic motivation, participant personality, and robot person-
ality on the compliance measure of total participation time,
F(1, 34) = 5.62, p = .006. Among participants with high intrin-
sic motivation, there was no significant effect of personality
among extroverted participants, F(1, 34) = 1.43, p = .24, or
introverted participants, F(1, 34) = 2.08, p = .16. However,
among participants without high intrinsic motivation, extro-
verted participants participated for significantly longer with
the extroverted robot, F(1, 34) = 15.84, p < .001 and intro-
verted participants participated for significantly longer with
the introverted robot, F(1, 34) = 19.44, p < .001. The results
involving intrinsic motivation are visualized in Figure 5.

DISCUSSION
The goal of the experimental evaluation was to test the effec-
tiveness of matching a socially assistive robot’s personality—
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as expressed via our designed gaze behaviors—to that of the
participant in a repetitive task requiring persistent motiva-
tion from the robot. The robot’s personality was manipulated
purely through its gaze behavior, gazing much more toward
the participant when expressing an extroverted personality and
much more toward the task space when expressing an intro-
verted personality. These behaviors were validated in an online
study to express their intended personality, and we were inter-
ested in whether an extroverted and introverted robot would
elicit more compliance and positive subjective perceptions
from extroverted and introverted participants respectively.

Our first hypothesis predicted that, in line with similarity-
attraction theory, participants would give higher subjective
ratings to the performance of a robot that matches their per-
sonality. This hypothesis was partially supported in the ex-
periment, in that introverted participants reported a marginal
preference for the introverted robot behaviors. Extroverted
participants reported no difference in ratings. Introverts may
have been more consciously sensitive to the behaviors of the
robot, as previous work has shown introverts have a superior
detection rate and perceptual sensitivity than extroverts [7]. In
a study involving the rating of other people, previous work
has also found that introverts preferred other introverts on the
measures of “reliable friend” and “honest and ethical,” while
extroverts were ambivalent in these measures [16].

The experiment provided support for our second hypothesis,
which predicted that participants would comply more with
robots that matched their personality. On the measure of total
participation time, both extroverts and introverts exhibited sig-
nificantly greater compliance with the personality-matching
robot. However, in the measures of total puzzles solved and to-
tal disks moved, only extroverts exhibited significantly greater
compliance with the personality-matching robot. Previous
work in HCI has shown a similar result in that matching a syn-
thesized voice’s personality to a user’s personality improved
feelings of social presence, but only for extroverts [22].

Our third hypothesis predicted that the intrinsic motivation
of participants and the personality-matching effect would in-
teract. We found some support for this hypothesis, but not
from the pre-test survey asking participants to rate their in-
trinsic motivation towards tasks in general. Instead, when
we coded participants’ open-ended responses to a post-study
interview question asking why they participated for as long as

they did, we found that some participants were more intrinsi-
cally motivated to solve the puzzles, whereas others were more
extrinsically motivated by the robot. When we split the partici-
pants into these two groups, we found a significant interaction
between intrinsic motivation and personality matching. For
both extroverts and introverts, the personality-matching robot
was most effective in motivating those who were not highly
intrinsically motivated to solve the puzzles. We note, however,
that splitting our population into groups with intrinsic and ex-
trinsic motivation resulted in relatively small sample sizes and
that follow-up work with a larger participant population must
be carried out to more conclusively establish this relationship.

Design Implications
This work further demonstrates the importance of designing
social technologies that can adapt to user characteristics. We
have shown that a robot that matches the personality expressed
by its gaze behavior to the personality of its user can im-
prove compliance and subjective perceptions of the robot’s
performance. These outcomes are particularly critical for
socially assistive robots that must motivate their users to en-
gage in physical or cognitive exercises, especially when these
exercises are repetitive or boring. Social theories such as
similarity-attraction must be leveraged and further studied in
human-robot interaction, as they can have powerful implica-
tions for the effectiveness of these interactions. We believe that
the results presented in this work also extend beyond socially
assistive robots and point to similar design considerations for
embodied agents—including both robots and virtual agents—
in other domains, such as education and companionship.

Limitations & Future Work
A significant limitation of the current work is that the study
population was comprised of healthy adults all under the age
of 60. This choice was made for the purposes of feasibility
in testing a novel idea for socially assistive robots, similar to
what has been done in previous work in this domain [44]. We
expect our findings to hold for the targeted populations that
need socially assistive robots, such as the elderly or post-stroke
patients, but this expectation should be tested in future work.

The gaze model presented in this work has a number of limita-
tions due to certain simplifications, including the small sample
size it was generated from, the fidelity of included gaze targets,
and the specificity to a single task in a controlled environment.
These simplifications were necessary and the resulting model
was sufficiently detailed for this initial effort and evaluation,
but future work should seek to build more sophisticated models
that overcome these limitations. While we observed partic-
ipants in our study to gaze almost exclusively toward either
each other or the task space, more complex interactions in
less controlled environments will need to take into account
more possible gaze targets. More sophisticated models will
also need to dynamically adjust to the task state. In our work,
we differentiate between on-task and between-task times, but
future work will need to include finer-grained task analyses.

We chose to median-split our populations from both the mod-
eling and the evaluation studies to establish “introverted” and



“extroverted” groups in order to investigate the effect of match-
ing/mismatching personality categories with balanced sam-
pling. To address the potential limitations of this simplifica-
tion, future work must model extroversion as a continuum, and
the robot should dynamically adjust its behaviors to match the
user’s location on this continuous spectrum.

In this work, we presented two models of gaze behavior that
can exhibit either an extroverted or introverted personality.
Previous work has also shown that some aspects of the Big
Five model of personality, including extroversion, neuroticism,
and openness, have consistent correlations with a person’s
gaze behavior, as measured by fixation frequencies and dura-
tions [35]. However, previous research has also demonstrated
that personality and nonverbal behavior are not always linked
in simple ways [13]. Personality can be expressed differently
in different contexts, group compositions, cultures, and com-
binations, and this richness should be taken into account in
future work to align robot behaviors with user personalities.
Additionally, future socially assistive robot systems should
detect user characteristics such as personality in-situ, rather
than requiring the user to explicitly provide this information,
e.g., by filling out a questionnaire before using the system.

CONCLUSION
In this paper, we presented the design and evaluation of gaze
behaviors for socially assistive robots that allow the robot to
match the extroversion dimension of personality to the user,
thereby more effectively motivating users to repeatedly engage
in a therapeutic task. These robot behaviors were designed
by analyzing the gaze behavior of participants in a human-
human data collection study, and were validated in an online
study to express either an extroverted or introverted personal-
ity. The evaluation also demonstrated the importance of taking
the user’s intrinsic motivation into account when attempting
to produce external motivation and increase compliance. In
general, socially assistive robots offer a particularly powerful
way of improving motivation and compliance in rehabilita-
tion settings due to their physical embodiment and ability to
use nonverbal communication channels. By effectively tak-
ing advantage of these abilities and designing methods for
adapting to the characteristics of their users, these systems can
dramatically improve the quality of life for people in need.

ACKNOWLEDGMENTS
This work was supported by the Chateaubriand Research Fel-
lowship. We thank Catherine Steffel for her editing help.

REFERENCES
1. Andrist, S., Tan, X. Z., Gleicher, M., and Mutlu, B.

Conversational gaze aversion for humanlike robots. In
Proc HRI’14 (2014), 25–32.

2. Bickmore, T. W., Caruso, L., and Clough-Gorr, K.
Acceptance and usability of a relational agent interface by
urban older adults. In Proc CHI’05 Extended Abstracts
(2005), 1212–1215.

3. Bruno, B., Mastrogiovanni, F., and Sgorbissa, A.
Functional requirements and design issues for a socially
assistive robot for elderly people with mild cognitive
impairments. In Proc RO-MAN’13 (2013), 768–773.

4. Bull, R., and Gibson-Robinson, E. The influences of
eye-gaze, style of dress, and locality on the amounts of
money donated to a charity. Hum Relat 34, 10 (1981),
895–905.

5. Burroughs, N. F. A reinvestigation of the relationship of
teacher nonverbal immediacy and student
compliance-resistance with learning. Commun Educ 56, 4
(2007), 453–475.

6. Christophel, D. M. The relationships among teacher
immediacy behaviors, student motivation, and learning.
Commun Educ 39, 4 (1990), 323–340.

7. Davies, D. R., Matthews, G., Stammers, R. B., and
Westerman, S. J. Human performance: Cognition, stress
and individual differences. Psychology Press, 2013.

8. Emery, N. The eyes have it: the neuroethology, function
and evolution of social gaze. Neurosci Biobehav R 24, 6
(2000), 581–604.
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