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1 The Problem

Blur is a common and unwanted artifact of image acquisition. There are many reasons why images
become blurred such as movement, slow shutter speed or incorrect focal distance. Because blurry
images are confusing, they are often less appealing and so it is desirable to deblur images for purely
aesthetic reasons. Outside of photography, variable blurring creates problems for feature tracking
algorithms which rely on the existence of consistent image structures. Blur removal may be used to
precondition these algorithms and greatly improve performance.

The most common approach of blur removal is to treat blur as a noisy convolution operation.
This model has both its advantages and disadvantages which we discuss in greater detail in the
subsequent sections. From the perspective of convolution, there are two basic types of blur removal:
non-blind and blind, with the main difference being that in the case of non-blind deconvolution the
blur kernel is known.

For our project, we researched multiple blind and non-blind deconvolution methods to gain an
understanding of the current state of the art. Given the time limitations of the class project, we
were not able to probe much beyond this point, but we did learn of a few interesting and somewhat
counter-intuitive properties of the convultion blur model. We also performed some experiments to
acquire kernels directly from blurred images using cheap hardware. Finally, we implemented and
compared several recent methods which we discuss in this report.

1.1 History

The earliest formulation of this problem was given by Wiener along with a solution in the case
of noise with a known power spectrum [8]. Later, Richardson and Lucy proposed an alternative
method robust to arbitrary Poisson noise [5, 6]. Of course these methods fail when the measured
noise does not match the model, resulting in unpleasant ringing artifacts. To address this, there
have been many proposed regularization approaches based on techniques like the bilateral filter [9]
or edge statistics [7].

Unlike non-blind deconvolution, blind deconvolution is an ill-posed problem in the sense that a
single image does not contain enough information to reconstruct both an image and an arbitrary
kernel. To make this problem well-posed, it necessary to add some type of regularization. One of the
best priors in practice is to minimize the support of the kernel in the space domain, which results
in as small a kernel as possible. This technique was introduced by Levin to solve for motion blur,
though the same idea may be used in conjunction with non-blind deconvolution to obtain deblurred
image/kernel pairs [4].
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(a) Original image (b) Wiener filter

(c) Richardson-Lucy (d) Bilateral Richardson-Lucy

(e) Shan et al. (f) Total Variation Minimization

Figure 1: Shown above is a comparison of results using five non-blind deconvolution methods on a blurry
image of a plant. The kernel used for deconvolution is shown in the lower left corner of the original image
(a). Despite the severe blur in the original image, this is not necessarily a very difficult case. If the blur
kernel is accurate and the image has low noise, which we believe to be the case here, then the size of the
blur kernel is largely irrelevant.
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(a) Original image (b) Wiener filter

(c) Richardson-Lucy (d) Bilateral Richardson-Lucy

(e) Shan et al. (f) Total Variation Minimization

Figure 2: Shown above is a comparison of results using five non-blind deconvolution methods on a blurry
image of a statue of the Hindu goddess Lakshmi. The kernel used for deconvolution is shown in the lower
left corner of the original image (a). All methods perform reasonably well with the exception of the total
variation minimization method, which over smooths regions of high variation.3



2 Analysis

We begin with a formal description of the convolution model for blurred image formation:

I = L⊗ f + n, (1)

where I(x, y) is the resulting blurred image, L(x, y) is some unknown deblurred image, f(x, y) is the
blur kernel and n(x, y) an unknown noise term. There are several problems with this model, such as
the fact that it does not account for object motion or parallax effects, but it remains applicable in a
wide range of scenarios. For image deconvolution, our goal is to solve for L given I and (optionally)
f . If n = 0 then by the convolution theorem we have:

Î = L̂f̂

L̂ =
Î

f̂
,

which has a unique solution for L given any f̂ such that f̂(ωx, ωy) 6= 0 for all ωx, ωy (with f̂ denoting
the Fourier transform of f). This fact is easy to check numerically on artificially convolved images.

In the real world, the solution for Eq. (1) is substantially complicated by the existence of noise.
In fact, the ringing artifacts associated with most deblurring algorithms are a result of incorrectly
modeling noise, not Gibbs phenomena as they are often incorrectly attributed to. We view the way
different algorithms deal with noise as their distinguishing characteristic.

2.1 Wiener

One of the earliest attempts at robust deconvolution is due to Wiener[8]. He observed that the mean
squared error of some estimated signal, L′, may be expressed as:

ε(ωx, ωy) = E(|L̂(ωx, ωy)− L̂′(ωx, ωy)|2)

Where E(·) denotes the expectation taken with respect to the set of all possible signals and noise
vectors in this case. If we substitute L′ = f ′ ⊗ I into the above equation then take the derivative
with respect to f , we find that the solution for f ′ which minimizes this error is:

f̂ ′(ωx, ωy) =
1

f̂(ωx, ωy)

 |f̂(ωx, ωy)|2

|f̂(ωx, ωy)|2 + E(|n̂(ωx,ωy)|2)
E(|Î(ωx,ωy)|2)


The tricky part is finding a good guess for E(|Î(ωx,ωy)|2)

E(|n̂(ωx,ωy)|2) , also known as the signal to noise ratio.

Once we have an expression for f̂ ′, solving for L′ is performed exactly as in the noiseless case as
described above.

2.2 Richardson-Lucy

Richardson [6] and Lucy [5] both independently discovered what is now referred to as the Richardson-
Lucy (RL) deconvolution method (Richardson discovered it first and then Lucy discovered on his
own soon after). RL deconvolution, unlike the Wiener method, is more robust to noise because it
explicitly models it as a Poisson process. Although this does not very accurately reflect real noise,
it works better than the power spectrum used by the Wiener method.

The major benefit of the RL algorithm is that it is simple and fast. The RL method reduces to
the following update equation.

It+1 = It

[
f∗ ⊗ L

It ⊗K

]
, (2)

where f∗ is the adjoint of f and t is the time step. Significant ringing is still present in RL results
(shown in the following sections) because of the poor noise model.
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2.3 Bilateral Richardson-Lucy

A simple extension of the RL method called the Bilateral Richardson-Lucy (BRL) method, as
described in Yuan et al.’s work [9], does not improve the noise model of the RL method, but instead
directly tackles the ringing problem by applying a bilateral filter at each iteration. The BRL update
equation is simply

It+1 = It

[
f∗ ⊗ L

It ⊗K

]
·B(It), (3)

where B(It) is the bilateral filter portion. B(It) has a regularization weight λ that must be set
differently depending on the input image characteristics, which Yuan et al. [9] describe in more
detail. Intuitively, a bilateral filter smooths nearby and similar pixels, but not distant and/or
dissimilar pixels. We show in Section 3 that the ringing artifacts are reduced by applying a bilateral
filter at each iteration. However, this comes with a price as some detail is lost and color and intensity
boundaries can become unnaturally sharp.

2.4 Joint Bilateral Richardson-Lucy

As a final extension, Yuan et al. [9] implemented what they call the Joint Bilateral Richardson-Lucy
(JBRL) method. Again, this extension does not improve the noise model of the RL method, but it
does target the noise problem. JBRL creates a set of progressively more down-sampled versions of
the original blurry image. It starts by deconvolving the most down-sampled image, then uses the
result to “guide” the deconvolution of the next higher resolution image. This continues until the
highest resolution image is deblurred. More specifically, JBRL changes the bilateral filter portion
of the BRL update function to include an extra multiplicative penalty dependent on the intensities
of the previous, lower resolution image. In practice, they implement JBRL by approximating the
down-sampling with a small Gaussian blur. Intuitively, JBRL starts by aggressively removing noise,
which results in a poor deconvolved result in terms of lack of sharpness, but one that is relatively free
of ringing artifacts; this result then serves to dampen the ringing that arises in the deconvolution of
the next higher resolution image.

2.5 Shan et al.’s Method

Shan et al. proposed yet another model for the noise within the image based on an extension of the
Weiner filter. Like before, they assume that the noise is a collection of independent identically dis-
tributed Gaussian functions, though they make the further assumption that within locally constant
regions the amount of noise is reduced. This removes ringing artifacts like the BRL method while
maintaining the theoretical advantage of being a MAP problem. In practice, the difference between
Shan’s method and Weiner filtering is only apparent when there exist many constant regions within
the blurred image.

2.6 Total Variation Minimization

Using the time we received for an extension, we also tried implementing total variation minimization
for deblurring [3]. Total variation minimization is unlike any of the above methods in that it does
not model noise, but rather the images. The key idea follows along the lines of compressed sensing:
assume that the image has sparse support in some basis, typically the Fourier domain or wavelets,
then find the smallest support within said basis that represents the image faithfully. For total
variation minimization, this is tweaked slightly to finding the basis with the minimal derivative (in the
Sobolev sense), which is also equivalent to minimizing the support of the frequency representation.
In the general case, finding an optimal basis is NP-complete, but an approximation via the L1
relaxation problem has been proven to give good results [2] and may be solved in polynomial time
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(a) λ = 0.0005 (b) λ = 0.001

(c) λ = 0.005 (d) λ = 0.01

Figure 3: Shown above is a comparison of results generated using different regularization coefficients, λ, in
the BRL method. Small λ behaves like RL (the bilateral filter becomes insignificant), and large λ results in
over segmentation.

using second order cone programming. To simplify programming, we used the L1 Magic library [1]
for MATLAB.

3 Experimental Results and Discussion

We experimented with several non-blind deconvolution algorithms [5, 6, 8, 9], and one blind decon-
volution algorithm [7]. We discuss our results in the following subsections.

3.1 Non-blind Deconvolution

In this section we discuss our non-blind deconvolution results, which are shown in Figures 1, 2,
and 4. These figures are best viewed electronically.

The simplest method of the five that we experimented with is the Wiener filter [8]. Noise tends
to confound the Wiener filter method most, which we discussed in Section 2.1. Figures 1(b), 2(b),
and 4(b) show that the Wiener filter produces noticeably more ringing artifacts than the other
methods due to its poor handling of noise. However, one benefit of the Wiener filter is its speed and
simplicity; it completes in one or two seconds on a medium size image.

Like the Wiener filter the RL method is very simple, but tends to handle noise slightly better at
a small price in computation cost. Figures 1(c), 2(c), and 4(c) show that the RL method produces
less ringing than the Wiener filter, but the ringing is still quite noticeable.
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(a) Original image (b) Wiener filter

(c) Richardson-Lucy (d) Bilateral Richardson-Lucy

(e) Shan et al. (f) Total Variation Minimization

Figure 4: Shown above is the result of an experiment to manually estimate the blur kernel from a point
light source in the original, blurry image. The blur kernel that we estimated is shown in the lower left
corner of the original image (a). The Wiener filter result (b) contains the most ringing, following by the
Richardson-Lucy result (c), Shan et al.’s result (e), the Bilateral Richardson-Lucy result (d), and finally
the total variation minimization result (f). Total variation minimization tends to over smooth the result in
regions of high variation. BRL performs well in this case, removing most of the ringing while still producing
a crisp result.
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The BRL method is more complicated than the RL method and runs much slower due to the
bilateral filtering, but is effective at reducing ringing artifacts. Figures 1(d), 2(d), 3 and 4(d) show
this. Yuan et al.seem to suggest applying the bilateral filter at each iteration, but this results in
a very slow algorithm and in our experiments it tends to either filter the image too much during
early iterations, or not enough overall (depending on the λ regularization weight). Instead, for our
experiments, we use 10 iterations of the RL method, following by one iteration of BRL. This is then
repeated until a satisfactory result is achieved, usually in less than 10 repetitions.

Shan et al.’s results are similar to the Wiener filter results in areas of high contrast, e.g., the leaf
in Figure 1 or the face in Figure 4. The ringing is only slightly reduced when compared with the
Wiener filter results in these areas. However, Shan et al.’s method does a good job of suppressing
ringing in locally constant regions, e.g., the background in Figure 1 or the wall in Figure 4. This
is due to a novel prior they introduce that constrains the unblurred image gradient to be similar
to the blurred image gradient in locally constant regions. We found that, despite a fair amount of
circumlocution and complicated math, this simple prior was the bulk of Shan et al.’s contribution
to deblurring.

Although the problem formulation is interesting, our preliminary results for the total variation
minimization method are not very good, as can be seen in Figures 1(f), 2(f), and 4(f). This is likely
due in part to a non-ideal setting of the coefficients/weights in the minimization equation. More
specifically, the L1 term in our equation may be too strong, which explains the over smoothing in
regions of high variation, e.g., the finer details in Figure 2. One of the disadvantages of this method is
the significant computation time required, which limited our ability to experiment with and optimize
coefficient values. For example, the result shown in Figure 2(f) took 5+ hours of computation time
on our unoptimized code. Furthermore, our code currently requires a square input image, hence the
cropped results.

3.1.1 BRL Regularization

The results of the BRL method depend heavily on the regularization coefficient λ of the bilateral
filter. Figure 3 shows a comparison of results generating using several coefficients. As the regular-
ization coefficient approaches zero, BRL behaves like RL. Large coefficients, on the other hand, tend
to over-segment the result.

3.2 Manual Kernel Estimation

In special cases it is possible to manually estimate the blur kernel with high accuracy. For example,
if a point light source exists in the scene and the blur in the image is due to camera motion, we
can trace the light source in the image to recover the blur pattern. We experimented with this idea
by taking a picture of a person holding a small key chain light with a moving camera. Figure 4(a)
shows this picture, which contains a noticeable amount of motion blur. The smear pattern of the
point light source reflects the blur pattern.

We can extract this pattern to get an accurate estimate of the blur kernel by (1) cropping the
point light source, (2) converting the cropped image to grayscale, (3) using a “magic wand” image
editing tool to select the bright region, and (4) setting the surrounding region to black. The resulting
small image can then be used as the blur kernel for any non-blind deconvolution method. We show
the results of four deblurring methods in Figure 4 using this manually estimated kernel.

3.3 Kernel Estimation and Blind Deconvolution

Levin [4] use the original blurry image and a deconvolved version of it to estimate the blur kernel.
The basic idea in Levin’s method is to solve for the kernel by minimizing its support within the space
basis. In a sense, this is dual to the total variation minimization method in that it performs the
minimization of the space support rather than frequency. Though we were able to achieve reasonable
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(a) Original image

(b) Shan et al.result

(c) Groundtruth kernel (d) Estimated kernel

Figure 5: Here we show the results of our implementation of Levin’s kernel estimation method [4]. The
original blurry image is shown in (a) and the deblurred image is shown in (b), which was recovered using
the groundtruth kernel shown in (c). Given (a) and (b), Levin’s method gives the kernel estimate shown in
(d). The quality of the kernel estimate is dependent on the quality of the deblurred result, which itself is
dependent on the quality of the blur kernel estimate.
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results from images which we deblurred using a known good kernel, we found that the deblurring
algorithms were too sensitive to the initial choice of kernel for this to be of much use in practice.

4 Conclusions

In this work we have investigated the characteristics of six different deblurring methods and one
kernel estimation method. The deblurring methods can perhaps be categorized along three lines:
(1) those based on the Wiener filter, (2) those based on the classic Richardson-Lucy method, and
(3) total variation minimization. We have found that state-of-the-art methods are typically founded
on one of these three basic approaches, with a set of heuristics-based extensions added on. The
extensions typically target undesirable artifacts in the deblurred result (i.e., ringing) as opposed
to the noise problem that underlies these artifacts. If the kernel is known, noise is the greatest
limiting factor when it comes to achieving a good result. Therefore, as part of future work, it would
be interesting to further investigate image noise in terms of its cause and how it might be better
modeled. With a better noise model, it is very likely that better image deblurring is possible.
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