CS 525 - Fall 2011 - Homework 1 For practice only (not for submission) *

assigned 9/7/11

The data for this problem, namely

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & 2 & 6 \\
3 & 4 & 5
\end{array}\right], \quad B=\left[\begin{array}{lll}
1 & 3 & 5 \\
4 & 1 & 8 \\
1 & 1 & 1
\end{array}\right], \quad C=\left[\begin{array}{ccc}
2 & 1 & -3 \\
1 & 0 & 1
\end{array}\right], \\
x=\left[\begin{array}{c}
1 \\
3 \\
4 \\
0 \\
-2 \\
6
\end{array}\right], \quad y=\left[\begin{array}{l}
1 \\
2 \\
1 \\
5 \\
2 \\
3
\end{array}\right], \quad z=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], \alpha=3,
\end{gathered}
$$

can be loaded within MATLAB from hwk1.mat by issuing the load hwk1 command as indicated below in the description of the diary file.

Write a MATLAB m-file called hw1run.m to carry out the following operations. Make your answers as concise as possible. Hints for the MATLAB commands you should use are given as help statements.

1. Clear the workspace of all variables (help clear).
2. Load the data from hwk1.mat and then print out a list of all variables currently in scope (help who).
3. Calculate $F=A B$ without printing the result.
4. Calculate and print $A-2 \alpha C$.
5. Print F.

[^0]6. Calculate v, where $v_{i}=2 x_{i} / y_{i}$, outputting the solution immediately.
7. Change the 5 th component of x to -8 , without printing the result.
8. Calculate and print $w=\left(x_{6}, x_{2}, x_{4}, x_{1}, x_{3}, x_{5}\right)$ (a row vector).
9. Calculate and print $\min _{i=1,2, \ldots, 6} x_{i}$ (help min).
10. Calculate and print $D=C^{\prime} A+2 B$.
11. Calculate the $L U$ decomposition of D (help lu). Check that $D=L U$ holds to within high accuracy by calculating and printing the element of largest absolute value in $D-L U$ (help max, help abs). (Be careful! If X is a matrix, $\max (\mathrm{X})$ returns a row vector whose i th element is the maximum element in column i of X . This is not quite what you want.)
12. Extract the diagonal of the matrix U into a vector d (help diag)
13. Sum up the elements of d and prints the result with 15 figures of accuracy (help format).

Create a diary file called hwk1.lst that lists the contents of hw1run.m and lists its output. You can do this by typing the following lines into your MATLAB session:

```
 diary hwk1.lst
%hwk1.yourlastname.yourinitial
type hw1run.m;
hw1run
%end hwk1
diary off
```


[^0]: *Refer to the MATLAB Primer and other documentation for MATLAB, linked to from the class web site, for information about how to use these MATLAB commands.

