CS 525 - Fall 2011 - Homework 3*

$$
\text { assigned } 9 / 21 / 11 \text { - due } 9 / 28 / 11
$$

Hand in an annotated diary file, constructed as outlined in the MATLAB Setup handout and in Homework 1.

1. The ℓ_{∞} norm of a vector z is given by

$$
\|z\|_{\infty}=\max _{1 \leq i \leq m}\left|z_{i}\right| .
$$

The ℓ_{1} norm of a vector is given by

$$
\|z\|_{1}=\sum_{i=1}^{m}\left|z_{i}\right|
$$

Reformulate the following optimization problems as linear programs in standard form, that is, all variables are nonnegative variables and all general constraints are \geq constraints.
(a)

$$
\operatorname{minimize}\|A x-b\|_{\infty}
$$

x is the variable and it is free. A is $m \times n, b$ is $m \times 1, x$ is $n \times 1$.
(b)

$$
\begin{array}{ll}
\operatorname{maximize} & c^{\prime} x \\
\text { subject to } & \|x\|_{1} \leq \delta \\
& A x=b
\end{array}
$$

x is the variable and it is free. A is $m \times n, b$ is $m \times 1, x$ is $n \times 1$, and δ is a constant.

[^0]2. We would like to construct a quadratic polynomial
$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}
$$
with the properties that $p(0) \leq 1, p(1) \geq 1$, all of the coefficients are between -2 and 2 , and $p(1 / 2)$ is as large as possible. Write this problem as a linear program in standard form where the variable is the vector of coefficients $\left(a_{0}, a_{1}, a_{2}\right)$.
3. Do exercise 3-1-2.
4. Do exercise 3-2-1.
5. Do exercise 3-3-2.
6. Do exercise 3-3-7.

[^0]: *Hard copy to be submitted in class on the due date. No late homework accepted.

