CS 525 - Fall 2011 - Homework 4*

assigned 10/5/11 - due 10/12/11

1. Do Exercise 3-4-2.
2. Do Exercise 3-4-3.
3. Solve the problem in Exercise 4-2-2 by adding dual labels to the tableau and applying Phase I and Phase II in the usual way. (Hint: If you need to add a row and column for Phase I, just use the usual addrow and addcol commands; the dual labels for the row and column will be left blank, which is OK.)
4. Do Exercise 4-4-3.
5. Consider the standard form LP

$$
\begin{array}{ll}
\operatorname{minimize} & p^{T} x \\
\text { subject to } & A x \geq b \tag{1}\\
& x \geq 0
\end{array}
$$

Let $u \in \mathbb{R}^{m}, u \geq 0$.
(a) Prove that if x is feasible for the LP, then it also satisfies the inequality $u^{T} A x \geq u^{T} b$.
(b) Prove that for any $u \geq 0$, the optimal value of the LP

$$
\begin{array}{ll}
\operatorname{minimize}_{x} & p^{T} x \\
\text { subject to } & \left(A^{T} u\right)^{T} x \geq b^{T} u \tag{2}\\
& x \geq 0
\end{array}
$$

is less than or equal to the optimal value of (1).

[^0](c) Show that (2) is bounded below if $A^{T} u \leq p$.
(d) EXTRA CREDIT: Derive a necessary condition on u such that (2) is bounded below.
(e) EXTRA CREDIT: When the LP is bounded, derive an expression for the optimal value of (2). Your expression will depend on the vector u.
(f) EXTRA CREDIT: Formulate the problem of finding the best such bound, by maximizing the lower bound over $u \geq 0$ subject to the conditions when the LP (2) is bounded.
(g) EXTRA CREDIT: How does the optimal value of the resulting optimization in part (f) problem compare to the optimal value of LP (1)?

[^0]: *Hard copy to be submitted in class on the due date. No late homework accepted.

