CS 525 - Fall 2011 - Homework 8*

$$
\text { assigned } 11 / 16 / 11 \text { - due } 11 / 30 / 11
$$

1. Which of the following sets are convex?
(a) $\left\{x \in \mathbb{R}: x^{2}=1\right\}$.
(b) $\left\{x \in \mathbb{R}: x^{2} \leq 1\right\}$.
(c) $\left\{x \in \mathbb{R}: x^{2} \geq 1\right\}$.
2. Let A be an $m \times n$ matrix. Verify that the set

$$
\left\{x \in \mathbb{R}^{n}: A x=b, x \geq 0\right\}
$$

is a convex set.
3. A point $x \in \mathbb{R}^{n}$ is a convex combination of points $x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}$ if there are scalars $\lambda_{1}, \ldots, \lambda_{m}$ such that

$$
x=\sum_{k=1}^{m} \lambda_{k} x_{k} \quad \sum_{k=1}^{m} \lambda_{k}=1 \quad \lambda_{k} \geq 0
$$

Show that a set C is convex if and only if every convex combination of a a finite number of points from C is contained in C. Hint: Note that a convex combination of two points is a line segment. Use proof by induction to show that any convex combination of m points lies in C provided that any convex combination of $m-1$ points lies in C.
4. Prove that $x=(1 / 2,1)$ is a global solution of

$$
\begin{array}{ll}
\operatorname{minimize} & 2 x_{1}^{2}+4 x_{1} x_{2}+5 x_{2}^{2}-6 x_{1}-12 x_{2} \\
\text { subject to } & -1 \leq x_{1} \leq 1 \\
& -1 \leq x_{2} \leq 1
\end{array}
$$

Hint: Use the optimality conditions in Section 7.1
5. Do exercise 7-2-1.

[^0]
[^0]: *Hard copy to be submitted in class on the due date. No late homework accepted.

