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Let S = {n1, ..., ns} be the indices of x corresponding to nonzero values so that xS :=
{xn1 , .., xns} is the support of x. Then, the DFT coefficients are given by

x̂k =
∑
n∈S

xnω
nk
D (1)

=
s∑

l=1

hlt
D
l where hl := xnl

6= 0 and tl := ωnl
D (2)

so that
x̂m+k = (h1t

m
1 )tk1 + · · ·+ (hst

m
s )tks .

Then the (m+ 1)th column in the “Prony” Hankel matrix can be written as
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Thus the Prony Matrix can be written as
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where V is the Vandermonde matrix given by

V =
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and D is a diagonal matrix with (h1, . . . , hs) along the main diagonal. Now, note that the
Prony matrix will be full ranked if x has exactly s non-zero elements.

Motivation for Prony’s method

To students familiar with the theory of difference equations, the form in equation (2) is
readily recognizable as a solution of a difference equation of order s. This observation was
made in [1]. Thus, x̂ should satisfy the difference equation

x̂k + λ1x̂k−1 + · · ·+ λsx̂k−s = 0 (6)

where the corresponding generating polynomial

G(z) = 1 +
s∑

k=1

λkz
k, (7)

must have roots at t1, . . . , ts. Writing (6) in vector form we have
xs
...

xs+k
...

x2s−1

 +
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...
...
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...

...
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
λ1

...
λs

 = 0 (8)

When the sparsity of x is exactly s, we have established via the Vandermonde Factorization
that the matrix in the above equation is invertible. Thus the λks and hence tks can be
found. By solving a linear system of equations, the hks can also be found.

References

[1] A Novel Interpretation of Prony’s Method, Pitstick et al. 1998
Proceedings of the IEEE, Vol 76 Issue 8 pp. 1052-1053

2


