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Let S = {ni,...,ns} be the indices of = corresponding to nonzero values so that zg :=

{Zpy, .., Tn,} is the support of x. Then, the DFT coefficients are given by
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where h; :=2,, #0 and t; :==w

Bk = (hatT )t} + -+ (hot)th.

Then the (m + 1)th column in the “Prony” Hankel matrix can be written as
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Thus the Prony Matrix can be written as
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where V' is the Vandermonde matrix given by
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and D is a diagonal matrix with (hi,...,hs) along the main diagonal. Now, note that the

Prony matrix will be full ranked if x has ezactly s non-zero elements.

Motivation for Prony’s method

To students familiar with the theory of difference equations, the form in equation (2) is
readily recognizable as a solution of a difference equation of order s. This observation was
made in [1]. Thus, & should satisfy the difference equation
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where the corresponding generating polynomial
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must have roots at ¢i,...,ts. Writing (6) in vector form we have
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When the sparsity of x is exactly s, we have established via the Vandermonde Factorization
that the matrix in the above equation is invertible. Thus the Axs and hence t;s can be
found. By solving a linear system of equations, the hgs can also be found.
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