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local parametrization ¢ : U — W, U being an open set in R*. Then d¢ : T(U)
— T(W) is a diffeomorphism. But 7(U/) = U X R* is an open subset of R2%,
s0 d¢ serves to parametrize the open set T(W) in T(X). Since every point of
T(X) sits in such a neighborhood, we have proved

Proposition. The tangent bundle of a manifold is another manifold, and
dim 7(X) = 2 dim X.

Now we prove a version of Whitney’s result.

Theorem. Every k-dimensional manifold admits a one-to-one immersion in
RZk-H‘

Proof. In fact, if X < R" is k-dimensional and N > 2k + 1, we shall
produce a linear projection RY — R2*+! that restricts to a one-to-one im-
mersion of X. Proceeding inductively, we prove that if f: X— RM is an
injective immersion with M > 2k - 1, then there exists a unit vector a € R™
such that the composition of f with the projection map carrying R™ onto the
orthogonal complement of a is still an injective immersion. Now the comple-
ment H ={b e RM:b | a} is an M — | dimensional vector subspace of
R, hence isomorphic to R™-!; thus we obtain an injective immersion into
RM—I. ’

Define a map 1: X X X X R— RM™ by h(x,y, ) = t[f(x) — fOD]
Also, define a map g: T(X) — R by g(x, v) =df,(v). Since M > 2k + 1,
Sard’s theorem implies that there exists a point @ € R™ belonging to nei-
ther image; note that a 7 0, since 0 belongs to both images.

Let 7 be the projection of R¥ onto the orthogonal complement H of a.
Certainly m o f: X — H is injective. For suppose that x o f(x) = = o f(3).
Then the definition of & implies that f(x) — f(») = ta for some scalar ¢, If
x 7% ythen t # 0, because fis injective. But then A (x, y, 1/f) = a, contradict-
ing the choice of a.

Similarly, = o f: X — H is an immersion. For suppose that v is a nonzero
vector in T (X)) for which d(x o f),(v) == 0. Because x is linear, the chain rule
yields d(z o f), = 7 o df . Thus 7 o df (v} =0, so df(v) = ta for some scalar
t. Because f is an immersion, f 7= 0. Thus g(x, 1/f) = a, again contradicting
the choice of 0. Q.E.D.

For compact manifolds, one-to-one immersions are the same as embed-
dings, so we have just proved the embedding theorem in the compact case.
In general, we must modify the immersion to make it proper—a topological,
not a differential problem. The situation is typical of differential topology;
quite often fundamental differential concepts are most naturally and intui-
tively developed for compact manifolds, then extended by technical tricks to
arbitrary manifolds. Rather than allow such technicalities to divert you now
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