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Limitations of Lasso

In the p > n case, the lasso selects at most n variables before
it saturates

If there is a groups of variables among which the pairwise
correlations are very high, then the lasso tends to select only
one variable from the group and does not care which one is
selected

For usual n > p situations, if there are high correlations
between predictors, it has been empirically observed that the
prediction performance of the lasso is dominated by the ridge
regression
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Naive Elastic Net

Naive Elastic Net

Definition

Suppose that the data set has n observations with p predictors.
Let y = (y1, . . . , yn)

T be the response and X = (x1| . . . |xp) be the
model matrix, where xj = (x1j , . . . , xnj)

T , j = 1 . . . , p,are the
predictors. Assume the response is centered and the predictors
are standardized. For any fixed non-negative λ1 and λ2, we define
the naive elastic net criterion:

L(λ1, λ2, β) = |y − Xβ|2 + λ2|β|
2 + λ1|β|1 (1)

The naive elastic net estimator β̂ is the minimizer of equation 1:

β̂ = arg min
β
{L(λ1, λ2, β)} (2)

Zou, Hastie, etc Presenter: Zhiting Xu

Elastic-Net and algorithms for computing the regularization paths



Motivation Elastic Net Computation

Naive Elastic Net

Solution

Lemma

Given data set (y,X) and (λ1, λ2), define an artificial data set
(y∗,X∗) by

X∗(n+p)×p = (1 + λ2)
−1/2

(
X
√
λ2I

)
, y∗(n+p) =

(
y
0

)
. (3)

Let γ = λ1/
√

1 + λ2 and β∗ =
√

1 + λ2β. Then the naive elastic
net criterion can be written as

L(γ, β) = L(γ, β∗) = |y∗ − X∗β∗|2 + γ|β∗|1 (4)

Let β̂∗ = arg minβ∗ L{(γ, β∗)}, then β̂ = 1√
1+λ2
β̂∗
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Naive Elastic Net

The grouping effect

Theorem

Given data (y,X) and parameters (λ1, λ2), the response y is
centered and the predictors X are standardized. Let β̂(λ1, λ2) be
the naive elastic net estimate. Suppose that
β̂i(λ1, λ2)β̂j(λ1, λ2) > 0. Define

Dλ1,λ2(i, j) =
1
|y|1
|β̂i(λ1, λ2) − β̂j(λ1, λ2)|

then
Dλ1,λ2(i, j) ≤

1
λ2

√
2(1 − ρ)

where ρ = xT
i xj , the sample correlation.
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Elastic Net

The Elastic Net Estimate

Given data (y,X), penalty parameter (λ1, λ2) and augmented
data (y∗,X∗), the naive elastic net solves a lasso-type problem

β̂∗ = arg min
β∗
|y∗ − X∗β∗|2 +

λ1
√

1 + λ2
|β∗|1

The elastic net(corrected) estimates β̂ are defined by

β̂(elastic net) =
√

1 + λ2β̂
∗

Recall that β̂(naive elastic net) = 1/
√

1 + λ2β̂
∗, thus

β̂(elastic net) = (1 + λ2)β̂(naive elastic net)
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Elastic Net

Theorem

Given data (y,X) and (λ1, λ2), then the elastic net estimates β̂ are
given by

β̂ = arg min
β
βT (

XT X + λ2I
1 + λ2

β) − 2yT Xβ+ λ1|β|1 (5)

It is easy to see that

β̂(lasso) = arg min
β
βT (XT X)β − 2yT Xβ+ λ1|β|1

The theorem interprets the elastic net as a stabilized version of the
lasso.
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Adaptive Elastic Net

Adaptive Elastic Net

Definition

Suppose we first compute the elastic-net estimator β̂(enet), and
then we construct the adaptive weights by

ŵj = (|β̂j(enet)|)−γ, j = 1, 2, . . . , p

where γ is a positive constant. We solve the following optimization
problem to get the adaptive elastic-net estimates

β̂(AdaEnet) = (1+
λ2

n
){arg min

β
||y−Xβ||+λ2||β||

2
2+λ∗1

p∑
j=1

ŵj |βj |} (6)
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Adaptive Elastic Net

Let Âenet = {j : β̂j(enet) , 0} and Âc
enet denotes its complement

set. Then we have β̂
Âc

enet
= 0, and

β̂
Âenet

= (1 +
λ2

n
){arg min

β
||y − X

Âenet
β||22 + λ2||β||

2
2 + λ∗1

∑
j∈Âenet

ŵj |βj |}

(7)
where β is a vector of length |Âenet|
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Adaptive Elastic Net

Regularity conditions

A1 We use λmin(M) and λmax(M) to denote the minimum and
maximum eigenvalues of a positive definite matrix M. Then
we assume

b ≤ λmin(
1
n

XT X) ≤ λmax(
1
n

XTX) ≤ B

where b and B are two positive constants

A2 limn→∞
maxi=1,2,...,n

∑p
j=1 x2

ij
n = 0

A3 E[|ε|2+δ] < ∞ for some δ > 0
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Adaptive Elastic Net

A4 limn→∞
log p
log n = ν for some 0 ≤ ν < 1. To construct the adaptive

weights ŵ, we take a fixed γ such that γ > 2ν
1−ν .

A5
lim

n→∞

λ2

n
= 0, lim

n→∞

λ1
√

n
= 0

and

lim
n→∞

λ∗1
√

n
= 0, lim

n→∞

λ∗1
√

n
n((1−ν)(1+γ)−1)/2 = ∞

A6

lim
n→∞

λ2
√

n

√∑
j∈A

β∗2j = 0

lim
n→∞

min(
n
λ1
√

p
, (

√
n

√
pλ∗1

)1/γ)(min
j∈A
|β∗j |)→ ∞

Zou, Hastie, etc Presenter: Zhiting Xu

Elastic-Net and algorithms for computing the regularization paths



Motivation Elastic Net Computation

Adaptive Elastic Net

Theorem

Given the data (y,X), let ŵ = (ŵ1, . . . , ŵp) be a vector whose
components are all nonnegative and can depend on (y,X). Define

β̂ŵ = arg min
β
{||y − Xβ||22 + λ2||β||

2
2 + λ1

p∑
j=1

ŵj |βj |}

for nonnegative parameter λ2 and λ1.
If we assume the condition A1, then

E(||β̂ŵ(λ2, λ1) − β
∗||22) ≤ 4

λ2
2||β
∗||22 + Bpnσ2 + λ2

1E(
∑p

j=1 ŵ2
j )

(bn + λ2)2
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Adaptive Elastic Net

Theorem

Let us write β∗ = (β∗
A
, 0), and define

β̃∗A = arg min
β
{||y − XAβ||22 + λ2

∑
j∈A

β2
j + λ∗1

∑
j∈A

ŵj |βj |}

Then with probability tending to 1, ((1 + λ2
n β̃
∗
A

), 0) is solution to (6).

The definition of β̃∗
A

borrows the concept of ”oracle”. If there was
an oracle informing us the true subset model, then we would use
this oracle information and the adaptive elastic-net criterion would
become that in 7.
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Adaptive Elastic Net

Theorem

Under conditions (A1)-(A6), the adaptive elastic-net has the oracle
property; that is, the estimator β̂(AdaEnet) must satisfy:

Consistency in selection: Pr({j : β̂(AdaEnet)j , 0} = A)→ 1

Asymptotic normality:

αT I+λ2Σ
−1
A

1+λ2/n
Σ1/2
A

(β̂(AdaEnet)A − β∗A)→d N(0, σ2), where
ΣA = XT

A
XA and α is a vector of norm 1.
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Least Angle Regression

1. Standardize the predictors to have mean zero and unit norm.
Start with the residual r = y − ȳ, β1, . . . , βp = 0

2. Find the predictor xj most correlated with r
3. Move βj from 0 towards its least-squares coefficient < xj , r >,

until some other competitor xk has as much correlation with
the current residual as does xj

4. Move βj and βk in the direction defined by their joint least
squares coefficient of the current residual on (xj , xk ), until
some other competitor xl has as much correlation with the
current residual

5. Continue in this way until all p predictors have been entered.
After min(N − 1, p) steps, we arrive at the full least-squares
solution.
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LAR: Lasso Modification

Let β̂ be a Lasso solution, with µ̂ = Xβ̂. Then it is easy to show that
the sign of any non-zero coordinate β̂j must agree with the sign sj

of the current correlation ĉj = x′j (y − µ̂)
Lasso Modification
4.a If a non-zero coefficient hits zero, drop its variable
from the active set of variables and recompute the
current joint least squares direction.
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