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Introduction

Fundamental principal of Compressive Sensing

K-sparse signal x ∈ Rn can be recovered from relatively few
incomplete measurements, b = Ax by solving a l0-minimization
problem:

min
x∈Rn

‖x‖0 s.t. Ax = b (1)

Basis Pursuit

min
x∈Rn

‖x‖1 s.t. Ax = b (2)

which is proposed by Candes,Romberg,Tao, is more tractable. Under
some reasonable conditions on x and A, the sparsest solution x of
problem (1) can be found by solving (2).
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Introduction

Greedy algorithm for (1): Orthogonal Matching Pursuit
Solve a sequence of subspace optimization problems of the form:

min
x

‖AT xT − b‖2
2 s.t. xi = 0,∀i /∈ T (3)

Start from T = ∅, x = 0, and in each iteration,add to T the index of the
largest component of the current gradient of ‖Ax − b‖2

2

Regularization for (2)

min
x∈Rn

ψµ(x) = µ‖x‖1 + ‖Ax − b‖2
2 (4)

Theory of penalty functions implies that the solution to (4) goes to
solution to (2) when µ goes to 0.
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Introduction

Challenges for standard LP and QP
Large-scale real-world applications

A is usually dense

real-time processing is required

Special structure
Measurement matrix A often corresponds to partial transform
matrices(eg, discrete Fourier), so fast matrix-vector multiplication
are available.

Sparsity feature of the solutions.
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Outline

Outline of the algorithm
This paper proposed a two-stage algorithm for the regularized l1
minimization problem, it combines the good features of both greedy
algorithms and convex optimization approach:

step1 convex optimization
Do not require prior information.
A first-order method based on shrinkage is applied.
obtain an approximation solution and identify a working set T .

step2 greedy algorithm
takes advantage of the sparsity structure.
A second-order method is applied
solve a smooth subspace problem.

Embed the two-stage algorithm into a continuation approach by
assigning a decreasing sequence of values to µ.
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Shrinkage

Iterative Shrinkage Algorithm
For the problem

min
x∈Rn

φ(x) :=
1
2
‖Ax − y‖2

2 + τc(x) (5)

Iterative Shrinkage algorithm:

xk+1 = ψτ/α(xk −
1
α

AT (Axk − y)) (6)

where

ψλ(u) := arg min
z

1
2
‖z − u‖2

2 + λc(z) (7)

Features

Products by A and AT are efficiently computable.

Ensure convergence under mild conditions.
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Shrinkage

Derivation of Iterative Shrinkage
Expectation-Maximization [Figueiredo, Nowak, 2001].

Majorization-Minimization [Daubechies,Defrise,DeMol, 2004].

Forward-Backward Splitting [Hale, Yin, Zhang, 2007].

Separable Approximation [Wright,Figueiredo,Nowak,2009].

Benefit of Iterative Shrinkage
Iterative shrinkage yields the support and the signs of the optimal
solution x∗ of the problem (4) in a finite number of iterations, that is, ∃k
such that sgn(xk ) ≡ sgn(x∗) for all k > k .
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Use shrinkage in step 1

Notation

f (x) = ‖Ax − b‖2
2

g(x) = Of (x)

x ¯ y : component-wise product of x and y

Special shrinkage for c(x) = ‖x‖1

S(y , γ) , sgn(y) ¯ max{|y | − γ, 0} (8)

which is the unique minimizer of the function

γ‖x‖1 +
1
2
‖x − y‖2

2 (9)

and we use the iteration:

xk+1 , S(xk − γgk , µλ), λ > 0 (10)
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Shrinkage

Shrinkage phase of the algorithm

Select a parameter λk and compute a direction
S(xk − λkgk , µkλk ) − xk

Do a line search on the direction dk ,and set the new iteration point
xk+1 = xk + αkdk

The set of indices corresponding to 0 and nearly 0 components of
xk (say, xk ≤ ξk ) is selected as a working set,which during the step
2, the subspace problem is formed by fixing these components to
be 0.

Note
We may not do a subspace optimization problem in every iteration, we
only do that if certain conditions hold for the iteration point in shrinkage
phase.
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Subspace optimization phase

motivation
The iterative shrinkage scheme essentially reduces to a gradient
projection method for solving a subspace minimization problem
after sufficiently many iterations.

A second-order method might be faster than the iterative
shrinkage to solve the subspace problem.

subspace problem, definition
The active set A(x) := {i ∈ {1, ..., n}||xi | = 0}

The inactive set I(x) := {i ∈ {1, ..., n}||xi | > 0}

When A(xk ) is a good estimate of the true active set, we approximate
sgn(x∗

i ) by sgn(xk
i ) and replace the original φµ(x) by the smooth

function(suppose the approximation set are Ak , Ik )

ϕµ(x) := µsgn(xk
Ik )

T xIk + f (x) (11)
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Subspace optimization phase

Smooth subspace problem
Now we come up with a nice subspace problem, we can use efficient
and fast algorithm in NLP to solve this simply-constrained problem:

min ϕµ(x)

s.t. x ∈ Ω(xk )

where Ω(xk ) := {x ∈ Rn|sgn(xk
i )xi ≥ 0, i ∈ Ik ; xi = 0, i ∈ Ak}

In the paper, they use a limited-memory quasi-Newton method with
simple bound constraints.
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Alternating strategy of the two phases

Idea of stopping criteria for shrinkage phase
We want to start subspace optimization as soon as possible

we want the active set that defines the subspace optimization
problem to be as accurate as possible

In all, we want to make both phases work efficiently, if either of
them does not, switch to the other

Idea of identification of the active set
The efficiency of the algorithm depends on how fast and how well
the active set is identified.

One approach is to replace the active set A(xk ) and the support
I(xk ) by the sets:

A(xk , ξk ) := {i ∈ {1, ..., n}||xk
i | ≤ ξk},

I(xk , ξk ) := {i ∈ {1, ..., n}||xk
i | > ξk}

Yongjia Song (UW-Madison) Project for CS 838 April 22, 2010 12 / 14



Continuation strategy

Idea
objective: create a path of solutions that converge to the solution
of the original problem

A fixed fractional reduction of µk should be enforced
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Summary

objective: solve a l1-regularized minimization problem
approach: two-phases

shrinkage phase: do not use prior information, partially use
sparsity, take some iterations to obtain an estimate subset of the
active set and the support.
subspace phase: take advantage of the prior information,
reconstruct the problem to be a smooth problem, use fast
algorithms.
Reasonable strategy to switch between the two phases.
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