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Abstract

Dimension reduction of metric data has become a useful technique with numerous applications.
The celebrated Johnson-Lindenstrauss lemma states thatpoiynt subset of Euclidean space can be
embedded irD (e =2 logn) dimension withl + ¢ distortion. This bound is known to be nearly tight.

In many applications the demand that all distances would be nearly observed is too strong. In this
paper we show that indeed under natural relaxations of the goal of the embedding, an improved dimen-
sion reduction is possible where the target dimension is independenafr main result can be viewed
as alocal dimension reductianThere are a variety of empirical situations in which small distances are
meaningful and reliable, but larger ones are not. Such situations arise in source coding, image process-
ing, computational biology, and other applications, and are the motivation for widely-used heuristics
such as Isomap and Locally Linear Embedding.

Pursuing a line of work begun by Whitney, Nash showed that egérynanifold of dimensioni
can be embedded ®2?*2 in such a manner that the local structure at each point is preserved isometri-
cally. Our work is an analog of Nash’s for discrete subsets of Euclidean space. For perfect preservation
of infinitesimal neighborhoods we substitute near-isometric embedding of neighborhoods of bounded
cardinality.

We provide a locall + ¢)-distortion embedding (preserving short distances) for any finite subset
of Euclidean space in dimensi@(e 2 log k), wherek is the cardinality of the neighborhoods within
which short distances are preserved. We also show that with some additional assumptions, a global
embedding that also keeps distant points well-separated may be obtained.

As an application of our result we obtain an (Assouad-style) dimension reduction for finite subsets of
Euclidean space where the metric is raised to some fractional power (the resulting metrics are known as
snowflakes). We show that any such metric can be embedded in dimehgiohdim(X)) with 1 + ¢
distortion, wherelim(X) is the doubling dimension, a measure of the intrinsic dimension of the set.
This result improves recent work by Gottlieb and Krauthgai26f o a nearly tight bound.

The new dimension reduction results are useful for applications such as clustering and distance la-
beling.

*A previous version of this paper was posted under the title: “A Nash-type Dimensionality Reduction for Discrete Subsets of
L>" [11). The work of the first and second authors was performed in part while at the Center for the Mathematics of Information,
Caltech.
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1 Introduction

Dimension reduction for high dimensional metric data has been an extremely important paradigm in many
application areas. In particular, the celebrated Johnson-Lindenstrauss L&%nag played a central

role in a plethora of applications. The lemma states that engrgint subset of Euclidean space can be
embedded in dimensio®(¢~2logn) with 1 + ¢ distortion. This bound is known to be nearly tighi.[
However, in many practical instances it is often the case that the high-dimensional data is inherently low
dimensional and it is therefore desirable to reduce its dimension close to its inherent dimensionality, which
is independent of the size of the data set. In this paper we offer a first theoretical study of such dimension
reduction methods.

In many large-scale data processing applications, local distances convey more useful information than
large distances and are sufficient for uncovering low-dimensional structure. Such situations would arise
if the large distances are inaccurate or do not reflect the intrinsic geometry of the application. Moreover,
there are a variety of situations that rely only on local distances, including nearest-neighbor search, the
computation of vector quantization rate-distortion curded}, [and popular data-segmentation and clustering
algorithms [B9]. In all of these cases, it is often desirable to reduce the dimension of the data set for
reductions of storage requirements or algorithm running times. If the long distances are unimportant, we
may be able to reduce the dimensionality only preserving the local information, and such reduction can be
into a far lower dimension than what is possible when attempting to preserve distances between all pairs of
points.

Our main result is docal dimension reductiolemma which replaces the dependency in the global size
of the datan in the Johnson-Lindenstrauss bound with a local parameter.

We then apply our lemma to provide dimension reduction for data with low “intrinsic dimension”, often
measured by the doubling dimensid) 21] of the data set. We show that the snowflake version of the
data, where distances are raised to some fixed fractional power, can be embedded in dimension close to
the doubling dimension. This result provides a nearly tight bound to this problem, a variant of Assouad’s
problem [g], recently raised and studied by Gottlieb and Krauthgai@elr [

1.1 Local Dimension Reduction

Two influential papers posited that if a high-dimensional data set lies on the embedding of a low-dimensional
Riemannian manifold, the intrinsic dimensionality could then be found by examining only the nearest neigh-
bor distances of the graph. The first algorithm, known as Ison¥), ises Dijkstra’s algorithm on the
nearest neighbors graph to compute the global distances and then applies multi-dimensional scaling to the
computed distances to find a low dimensional embedding of the data. The second, Local Linear Embedding
[36], computes the best linear approximation of each set of neighbors, and then stitches the neighborhoods
together by solving an eigenvalue problem constraining the mappings of overlapping neighborhoods. Based
on these initial results and their accompanying empirical examples, these two papers gave rise to an active
field, commonly referred to asanifold learning and the ensuing years have seen a multitude of appli-
cations of these algorithms in areas as diverse as protein fol@iBlgrhotion planning in roboticsZ4],
data-mining microarray assay@?], and face recognitior22]. All of these applications use the, distance,
even if itis not perfectly justified, because of its tractability and empirical power. Moreover, there have been
a variety of alternative algorithms proposed to reduce dimensionality nearest neighbor distances problems,
employing kernel method4l®], generative probabilistic modeld4], semidefinite programming4p] or
neural networks43).

Despite their wide appeal, all of these algorithms assume some sort of manifold model underlies the data,
and make implicit assumptions about intrinsic curvature, Riemannian metrics, or volume. More importantly,



not one of these manifold learning algorithms come with any provable guarantees for discrete data sets, and
many authors have pointed out that the geometric assumptions of these algorithms are not reasonable in
practice. For example, the algorithms are quite sensitive to the determination of neighborhood sifjjcture [
have problems recovering non-convex domains or manifolds with nontrivial homalalygnd cannot

recover manifold structures that require more than one coordinate 8Bprt [

From a more theoretical perspective, the concept of a “local embedding” was first introduced in the
context of metric space embedding B].[ Local embeddings share the same objective as manifold learn-
ing: to find a mapping of a metric space into a low-dimensional metric space where distances of close
neighbors are preserved more faithfully than those of distant neighbors. The field of metric embedding
has been an active field of research both in mathematics and computer science and has emerged as a pow-
erful tool in many algorithmic application areas. Two cornerstone theorems in this field are the theorem
of Bourgain [L3] stating that that any.-point metric space embeds i, with O(logn) distortion, and
the Johnson-Lindenstraus®5] dimension reduction lemma. Both these theorems have many algorithmic
consequences.

Abraham, Bartal and Neima(2][show that many of the known classic embedding results can be ex-
tended to the context of local embeddings. In particular, generalizing Bourgain’'s theorenijatey
provide local embeddings requiring ory(log k) dimensions to achieve distorti@n(log k) on the neigh-
borhoods with at most-points, assuming the the metric obeys a centediak growth ratecondition, and
[4] remove this assumption at the cost of increasing the dimensionltg? k). This numbetk could have
no relation ton, and in practice could be arbitrarily smaller thanlt should be emphasized that this type of
embedding is aimmersion that is it preserves well the short distances but may arbitrarily distort the long
ones. This is reasonable, for instance, if we desire a conditence oraclg41] for close neighbors.

In this paper, we provide a local version of the Johnson-Lindenstrauss lemma. Such a construction
is challenging to achieve because all of the previously discussed algorithms based on this lemma require a
globally consistent choice of random variables. For this reason, results extending the Johnson-Lindenstrauss
lemma to the projection of smooth manifolds end up depending on the dimension where the manifold is
embedded, and both the volume and curvature of the man8ldHere, we present an embedding of
dimension that has no dependence on the volume. We show that ferafilyonly O(¢~2 log k) dimensions
are required embedding with distortidnt e on the neighborhoods with at mdsipoints, assuming the the
metric obeys the weak growth rate condition defined by Abrakaml. [2]. Another way to state our
result is that the + e distortion is preserved inside a core neighborhood of diameter at(dést/ log k)
factor of the diameter of the-neighborhood. Some assumption of this form is necessary, as follows from
a lower bound by Schechtman and Shraibnf@ifj howing that there are worst case examples where no
near-isometric local dimension reduction method can beat the Johnson-Lindenstrauss bound. Prior to our
work the only case where such a result was known is when the input set is isometric to an ultri&jetric [

For general metrics, this embedding is an immersion, but under the assumption that the metric has low
intrinsic dimensionality (i.e., small doubling dimension) we can transform our immersion igtobal
embeddingsuch that distances between far points can be bounded below so they don't intrude on the local
structure. This extension to a global embedding can be useful in applications of dimension reduction where
it is necessary to maintain the local neighborhoods, such as nearest neighbor search. Unlike the results in
manifold learning, we make no assumptions that our data lie on some compact manifold, and further assume
nothing about the volume or cardinality of our data set.

As an example application that our embedding is suited to, the principal computational problem in vector
quantization/19] is formally one of clustering (with3 costs), but the parameters are different than in the
clustering literature: primarily, one studies here the limit that the number of clustéeads toxo, while the
distortion (the average distance to a codeword) ten@s Tdis means that only the small distances between



data points are germane to the problem. Known algorithms for construction of near-optimal clusterings are
exponential in eitheg or the dimension of the space. Our embedding is well-suited to taking advantage of
dimensionality reduction for vector quantization, since our target dimension depends only on the size of the
small regions in which thé, distance needs to be preserved. Using our embedding, the vector quantization
algorithm can be run in a low-dimensional space, and the clustering (“codebook”) can then be lifted back to
the original space.

Our approach for local dimension reduction combines several metric embedding techniques. We first
employ probabilistic partitioningd] of our metric space (Secti®). These partitions, developed ity , 4],
decompose the metric space into clusters of bounded diameter and allow the coordinates of the embedding
to smoothly transition between neighborhoods. As opposed to the standard decompositions where cluster
diameters are similar, the partitions @] [allow varying diameters to capture neighborhoods of similar
cardinality. The idea is to apply for each of the clusters of the partition separately a dimension reduction
method on the points within the cluster and then assemble these embedded neighborhoods into a global
immersion.

While this idea sounds simple it in fact fails if we attempt to directly apply the Johnson-Lindenstrauss
embedding method in each of the clusters. The reason is that the values the embedding takes may be as
large as the diameter of the cluster and that may temper the Lipschitz condition between points in separate
clusters (that is the ratio of the embedded distance to the original distance may be unbounded). To avoid that
we need to combine the dimension reduction method with a truncation mechanism. While there are several
ways in which this may be done we introduce a natural and elegant mechanism for this aim which we call
the randomized Nash device. To ensure the Lipschitz condition we finally apply a smoothing operator.

Our methods owe a substantial debt to seminal papers in several areas of mathematics. Pursuing a line
of work begun by Whitney43, 44], Nash showed that every Riemannian manifold of dimenglocould
be embedded iiR?P+2 by aC'! mapping such that the metric at each point is preserved isometriga]ly [

Nash achieves this embedding using a device which locally perturbs a non-distance preserving embedding
provided by Whitney. The randomized trigonometric embedding of Se@itms adapted from Nash'’s
deterministic embedding procedure, and we give a probabilistic analysis showing that with high probability
this yields an embedding of the local distances in each neighborhood. As obser@dtimthe context

of fast algorithms for pattern recognition, our random trigonometric functions form an embedding into a
Euclidean space where the inner product approximates a positive definite shift-invariant kernel function.
In our case, we sample frequencies from a Gaussian distribution and use the smoothness properties of the
gaussian kerndl(z,y) = exp(—~||z —y||?) to ensure the quality of our randomized Nash device. Our Nash
device can also be viewed as a discretized version the the continuous truncation technique of Schoenberg
[38] which has appeared in the embedding literature (€28, 28, 20]). (These methods, combined with

the Johnson-Lindenstrauss dimension reduction, could have replaced the Nash device, but the latter is itself
elegant, computationally efficient and simple to use, and may be of independent interest).

The existence of our embedding is guaranteed using th@dzlzocal Lemmadlg], and we rely on
algorithmic implementation of the LLL by Moser and Tard@€)][to provide a randomized algorithm to
generate our embeddings.

Our main contribution is in the combination of these various ingredients to allow local dimension reduc-
tion. Following our work, this methodology has been appliec@] [n additional cases of dimensionality
reduction. We mainly focus on applying these tools to obtairear optimallocal dimension reduction.

Most notably, obtaining the near optimal bound requires a delicate probabilistic argument. The embed-
ding must compose the coordinates associated with the probabilistic partitions and those associated with the
Nash-type dimension reduction in an interlacing manner. The analysis follows with carefully balancing the

We note that the application of the LLL together with probabilistic partitions was first appli&sjn |



contributions of the different components through the dependencies of the relevant probabilistic events.

In some applications it may be important that the dimension reduction procedure will keep the embedded
distant pairs away from the local neighborhoods. In general, this is impossible if no further assumptions are
made. However, under the additional assumption that the metric space has low doubling din@:2dipn [
we ensure that our mapping has this property.

1.2 Dimension Reduction for Snowflakes

Let X be a subset of Euclidean space. The doubling constaiif &f the minimumA such that every
ball can be covered by balls of half the radius. Thdoubling dimensiomf X is defined aslim(X) =
logs A. The question of whether the dimension bound in the Johnson-Lindensrauss lemma can be reduced
to O(e~2dim(X)) has been posed by several researct@&rsdl, 3]. While this question remains open,
it has been recently asked by Gottlieb and Krauthgai®€lrif a result along this line is possible for the
“snowflake” version of the metric, i.e, if the distance functiti, y) = ||z —y|| is replaced withi*(z, y) =
|lt—y||“ for somed < a < 1. Such an embedding may suffice for certain applications. From a mathematical
standpoint, this problem is motivated by Assouad’s theoi@nwhich states that the snowflake version of
any metric space can be embedded in Euclidean space with dimension and distortion depending solely on
the doubling dimension. Gottlieb and Krauthgani@][use a similar approach to ours to prove that such
a dimension reduction is possible where the target dimension(is — o) 3¢ ~*(dim(X))?). We observe
that the main ingredient needed in the solution for this problem is a local dimension reduction theorem.
Using a variant (in fact a simplified version) of our main local dimension reduction thedreeofem }
we improve their result to a nearly tight bour@((1 — o) ~2¢~3dim(X)).

This theorem has applications for distance labeling schemes, problems such as nearest neighbor search
where only relative relation between distances need to be preserved, and optimization problems where the
objective function is composed of powers of distances, e.g., clustering problems.

1.3 Structure of the Paper

In'Section Ave provide the and background on the probabilistic partitions that wéllsmrem lis proved

in [Section 3 The local Nash-device is describedSection 3.1 We first give the main component of the
embedding irSection 3.2vhich provides the guarantee for “close” pairs. The/section 3.3ve provide

the complete definition of the embedding which now deals with farther pairs that are still within the range of
application of our main theorerheorem J. In[Section 4we show how to extend the embedding to deal
with all pairs and maintain separation of local and distant pdine6rem 2. Finally, in'Section Swe prove

the dimension reduction for snowflak@heorem 3.

2 Preliminaries

We start with some basic definitions: et N. For a pointz € X andr > 0, the ball at radiug aroundz
is defined a3 (z,r) = {z € X ||| — z|| < r}. Forapointz € X let Ai(z) be the smallest radiussuch
that| B(z,r)| > k. For a pairz,y € X, define:Ag(z,y) = max{Ag(z), Ax(y)}

For any pointz € X and a subse$ C X letd(z, S) = minses d(z, s). Thediameterof X is denoted
diam(X) = max, yex d(z,y).

One of the tools we use are local probabilistic partitions. In particular, the following constructions are
generalizations of the local probabilistic partitions 2 and their analysis appears [



Definition 1 (Probabilistic Partition). A partition P of X is a collection of disjoint set aflustersC(P) =
{C4,Cy,...,C,} such thatX = U;C;. A partition is calledA-boundedwhereA : P — RT if for all j,
diam(Cj) < A(Cj). Forz € X we denote byP(x) the cluster containing. A probabilistic partition of
a finite metric spacéX, d) is a distribution over a sé? of partitions of X. Such a partition ig\-bounded
if it is A-bounded for every € P.

Definition 2 (Locally Padded Probabilistic Partition). Let 7 be aA-bounded Aprobabilistic partition of
(X,d). Let L(x) denote the event th@(x,n - A(P(x))) C P(z). Foré € (0,1], P is called(n, ¢)-locally
paddedfforany z € X andZ C X \ B(z, 16A(P(x))): Pr[L(z)| A\,c; L£(2)] > 6.

Lemma 3 (Locally Padded Cardinality-Based Probabilistic Par‘fitions). Let (X, d) be a finite metric
space. Lek € N. There exists @-bounded probabilistic partitior? of (X, ) with the following proper-
ties:

e ForanyP € Pandanyz € X: |P(z)| < k.
e ForanyP € Pisand anyr € X: 275 < A(P(z))/Ax(z) <274
o Pis (9, §)-locally padded fom® = 2= /Ink - In(1/4), wheres € (1/k, 1].

Lemma 3is a reformulation of Lemma 5 fron#]. A simple application of the Lo&sz Local Lemma
implies:
Lemma 4. Let (X, d) be a finite metric space. Léte N and¢ > 0. Let{P®"},cr be a collection of size
|T| > 8log k/¢ of independent\-bounded probabilistic partitions dfX, d) as in Lemm@. Letd =1 — ¢
and £!° (z) denote the event thak(z,n® - A(PB(z))) € PO (z), wheren® = 2711 /Ink - In(1/6).
Then with positive probability for everyc X there exists a sét®) (x) C T of size/T) ()| > (1—2¢)|T)|
such thatﬁg‘s) (z) occurs forallt € T'.

3 Local Dimension Reduction

Given a discrete set of point§ of cardinalityn in U-dimensional Euclidean space we construct a low
dimension local embedding, one that preserves distances to close neighbor$ withraultiplicative error.
The main result of this paper is summarized by the following theorem.

Let k£ € N. Recall that for a point € X, Ag(x) denotes the smallest radiusuch that B(z, )| > k,
and for a pairr,y € X: Ag(x,y) = max{Ay(z), Ax(y)}. Let Ay (z) = creAg(x)/log k, wherec; < 1is
a universal constant, ami; (z, y) = max{Aj(z), A7 (y)}.

'[heorem 1. Letk € N. GivenX a discrete subset @Y, then for anye > 0 there exists an embedding
d: X — RP, whereD = O(log k/¢?) with the following properties:

a. Forallz,y € X, [|&(z) - &(y)| < (1 +¢)l|lz -y
b. Forall z,y € X:
L+e) o -yl if lz -yl < Vedi(z,y)

W =q@+) -yl if |lz—yl=VeAi(z,y) st.e<e <1 (1)
LA;(z,y) it Af(z,y) < ||z —yll < 3A(2,9)

o>
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c. Forallz € X, ||®(z)|| < A%(z)

We comment that property:) is not needed in general but is useful for the application in Seétion

We note that although Theoretmaintains(1 + ¢)-distortion only in a core neighborhood within the
k-neighborhood of a point, this implig€s + ¢)-distortion forall pairs within the entiré-neighborhood if
we demand thak™ satisfies aveak growth rateconditior? (defined by 2]), where there exists a constant
v < lifforeveryz € X andry,ry > 0, |B(x,72)| < |B(x,r1)|"2/™)7, and further assume < 0.2.

In the rest of this section we describe the embedding and analysis to prove Thtbrdihe main
ingredients are a set of probabilistic partitions described in Se2fiand a compact embedding, based on
a randomization of a device of Nash, provided in Sec8dih The core of the construction is presented in
Section 3.2vhere we prove the existence of an embeddinsatisfying all of the properties in Theorein
for all z,y € X which are “close neighbors” in the sense that— y| < Aj(z,y), as well as the upper
bound for all pairs. For farther neighbors, we use a simple additional construction in S&6étion

3.1 The Randomized Nash Device

In this section we introduce a new construct we call the randomized Nash device.
For anyw € RY ando > 0, we define the functiop : RV — R? as

oy =1 [ 2o .

o | sin(ow'z)

wherew’z denotes the inner product betweerandz. ¢(z;0,w) maps onto a circle with radius™! in
R2. These functions were used by Nash in his constructio@'efsometric embeddings of Riemannian
manifolds B1], with the parameters chosen to correct errors in the metric. Note that as the parameter
grows, the frequencies of the embedding function grow, but the amplitude becomes increasingly small.

In this section we present a sequenceasfdomparameter settings for these functiansfirst studied
in [34], that with high probability approximate small distances in discrete metrics and bound large distances
away from zero. Fix» > 0 and letw be a sample from &-dimensional Gaussia (0, I;;). For this
choice of parameters, one may interpret Equai®)mé a random projection wrapped onto the circle. Using
the intuition provided by the Johnson-Lindenstrauss lemma, one would expect nearbyrpaialtg to be
mapped to nearby points on the circle since the sine and cosine are Lipschitz. This intuition can be further
reinforced by considering the expected distance between two points.

Claim 5. Foranyz andy inRY, |o(x; 0, w)—¢(y; 0, w)|> = 2072(1—cos(ow'(z—y))) andE[|p(z; 0, w) —
p(y;0,w)[*] = 207%(1 — exp(—50? |z — y||?).

The main result of this section is to note that these random variables are very well concentrated about
their expected value and hence inherent their distance preserving property from this Gaussian kernel func-
tion. Hence, a concatenation of sevegatorresponding to different samples ©fwill provide a low-
dimensional embedding.

Letoy,...,op > 0be givenreal numbers bounded aboverlyy, and letuq, . . ., wp be D samples from
aU-dimensional Gaussia'(0, I7). Let () (z) := o(z; 01, w;) and, forz andy € RY, let© : X — R2P
denote the mappin§ = % D1<i<p ¥ The main result of this section is the following lemma:

2The dimension can be bounded (e 2 log k[ (¢ =3/ log k)'°8= #1) and so for instance i = 2 anda = ¢3/?log k we
get dimensiorO (e~ 2 log k). This bound is similar in flavor to bounds given @[

3The reason this condition is called weak is that it does not exclude rapidly expanding metrics.

“We note that the constants may differ but a rescaling of the parametauld yield this formulation of the theorem.



Lemma 6. Let > ¢ > 0 andz andy € RV.

w

a. [0(x) — O()|I* < (1 + €)||= — y||* with probability exceeding — exp(—2 (5 — £)).

b. If |lz — y|| < Uﬁ,

() — O(y)|I> > (1 - ¢)||z — y||* with probability exceeding — exp(—32<).

c. If | —yll > 55—, [6(z) — O(y)|]* > 575 with probability exceeding — exp(—55)-

The randomized embeddn@;maps onto a product of circles of varying radii, a subset offhesphere.
The different values of will be necessary in the following sections to stitch together regions of the metric
space with differing densities, but the important point is all of the concentration results are only a function
of the largest value of the;. Intuitively, one can interpret this as saying the high frequency information is
the dominant source of error in the approximation. The analydieoima Gappears ilAppendix A

3.2 Embedding Close Neighbors

We now turn to a recipe for combining multiple instances of these trigonometric embeddings into a global
map that preserves local distances using the probabilistic partitions discugection 2 Specifically, we
concern ourselves with the “close neighbors,” paisndy satisfying|lz — y|| < Aj(z,y) (for the lower
bound, while the upper bound is proved for all pairs). Det= C’[log k/€*], whereC' is some universal
constant to be determined later. We construct a locally padded cardinality-based probabilistic gaiftition
as in Lemma4, whereT = [D] and¢ = . Now fix a partitionP® e P(®). We define a trigonometric
embedding foevery clustelC' € P().

Let oc = 22Ink/e - A(C)7, and let{wc|C € P®, 1
U-dimensional Gaussiat (0, I;;). Forz € C definec® (x)
min {d(z, X \ C),o®(z)~'}, and let

< t < D} be iid. samples from a
= o0, wY(z) = we, and AW (z) =

20 (z) = A (2)p ()

where, " ©
P0@) =00 @) @) = Z?j((;t) g)):(o ((i))i))

The functionA® serves as the amplitude of the embedding. For paddetis number is equal to the
amplitude defined in SecticB.1, and the amplitude rolls off to zero near the boundary of each cluster.
In each cluster, we have a different trigonometric embedding, and continuity is maintained because the
amplitude is zero at the boundaries of the clusters.

We define our embedding : X — 137 by concatenating instances ofo): @ = = @, _,.p 2.

Analysis Overview: Our goal is to show that the embeddingsnd the Nash-device based embeddings
of Section3.1 have similar distortion guarantees. The purpose of the padded probabilistic partitions and
the smoothing amplitude function is to allow a smooth transition between the different local embeddings in
different clusters. For a close pair the padded probabilistic partition guaranteesthatir of the coordi-
nates they fall in the same cluster and therefore their distortion is governed by the local Nash-device based
embedding, which still maintains its distortion guarantees over the random set of successful coordinates.
With probability~ ¢ that this fails we rely on the Lipschitz property (that the smoothing amplitude function
provides) to make sure the distortion only deviates slightly and the overall distortion remaitxe). To
enable this probabilistic argument our proof utilizes thedswlLocal Lemma, showing that the necessary
constraints are satisfied everywhere with positive probability. The rest of this section is devoted to carrying
out this proof strategy.



Embedding Analysis. We start with the following lemma which will be useful to bound the distance
between embedded points:

Lemma?7. Letz,y € X. Then,
z) # PU(y), [2W(z) — @O (y)| < 2]z —y].

)
2. If P(t)(:v) ;é P )(y), d(z, X \ PO (z)) > 200 (z)~T andd(y, X \ PO (y)) > 20 (y)~1, then
180 (2) — @D (y)|| < [l — yll.

3. 1f PO(2) = P(t)(y ), [0 (z) — @O ()12 < |z — y[|® + [P (2) — B (y) 2.

4. 1f C := PO (z) = PO(y), 05" < d(z, X \ PY(x)) ando;' < d(y, X \ P (y)), then||®@® (z) —
D)l = lle" (= ) 90“( )II

Proof. First, we observe that for all andy
120 (2) — 2O (y)|| = | A (2)p) (z) — A (y)p" ()|

We now proceed case by case.
For (1), note that since® (u)|| = 1, we have

1. If P

1®(2) =W ()l < AY(@)[e" ()| + AV W[V ()] < AV (2) + AV (y)
<

For claim (2) we have that®) (z) + A®)(y) d(a; X\ PO(x)) +d(y, X \ P (y)). Now if = andy
fall in different clusters||z — y|| > d(y, X \ P (y)) and|z — y|| > d(z, X \ P (z)), and the assertion
follows. Claim (3) follows asA® (z)+ A®) (y) < ¢ (2) " +0® () ! < 2max{c® (z)~!, 0¥ (y)~1} <
max{d(z, X \ P"(x)),d(y, X \ PV (y))} < ||z —y]|.

We now turn to claims (4). Assun@ := P®)(z) = P! (y). Then

[209(@) — 2O )[* = (40 (@) - A0 ()* + A0 @) A )| () — GO W),

using||¢™® (u)|| = 1. In this case we have that®) (z) A (y) < 0. We also need to show that®) (z) —
A )| < ||z —y| for all z,y € PO (z). We show thatd® (z) — AW (y) < ||z — y|| and the claim
holds by reversing the roles afandy. There are two cases: ) (y) = o' thenA®(z) < o' and
AW (z) — A®(y) < 0. OtherwiseA® (y) = d(y, X \ P (y)) andA® (z) < d(x, X \ PY(z)) implying
AW (z) — AD(y) < d(z, X \ PO (2)) - d(y, X \ PD(y)) < ||z — y|| sinceP!) (x) = PU) (y).

Finally, for claim (5), we only need use the fact thtlt) (z) = A® (y) = o' O

We now proceed to provingheorem 1 Forz,y € X, let us now classify the different coordinates
according to the cases of LemiriaDefine the sets

Tye(e,y) = {t|PYV(2) # POy)} , T-(a,y) = {t|PY(2) = PV (y)}

3
To(,y) = {t|d(z, X \ P! (Cv)) > 20" (2)"" Ad(y, X\ PP(y)) = 20" (y) '} ©

so that we have the upper and lower bounds for our embedded distances

1®(z) — @)* > 5 > le' (@) = e ()]?, and (4)

teT=(x,y)NTo(x,y)



‘P(I)‘1>(y)2<11){ Yoo eP@ =PI+ Y lz—ylP Y Mz —ylP| . 6

teT=(z,y) teT(z,y) teT\To(x,y)

We now turn to show that the properties of the embedding hold with positive probability. a@t, let
o®(z,y) = min{c®(z), s (y)}. Recall that we have appliedemma 4with £ = ¢, so thats = 1 — e.

Considert € TO)(x) then B(z,n©® - A(PW(z)) € PW(z), wheren® = 2-11¢/Ink. It follows
thatd(z, X \ P (x)) > n® . A(PW(z)) > 200 (x)~1, by definition. Similarly, ift € T (y) then
d(y, X \ PO (y)) > 260 (y)~1. Hence, T (z) N TO)(y) C To(x,y), implying that|T" \ Ty (z,y)| <
T\ (TO(2)NTO (y))| < |T\TO ()| +|T\ T (y)| < 4eD, bylLemma 4 Plugging this bound intb]
we conclude that:

Srer (wy) 1P (@) — O ()|
T=(z,y)|
Now consider pairs:, y that are close neighbors, that iz — y|| < A*(:c y) where Ay (z,y) =
cive/Ink - Ag(z,y), ande; = 2719, Note thate; is chosen so thato® (z,y)~! < A*(x y) <
$o®W(2,y)! (this follows from Lemma 3. Assume w.l.o.g that®)(z,y) = o® () ( otherwise switch
)

the roles ofz andy). Considert € T (z) then we've seen that(z, X \ P(z)) > 20¢®(z)~!. Now
considery € X such thatz — y|| < Aj(z,y) < 30®(z)~! thenPW(y) = P!
T

1@(z) — @(y)|* < % T=(z,y)|- + [ Te(z,y)| - llz — yl?| +dellz — yl*. (6)

~

= p (a:), |mplying that
T (z) N TON(y) C T=(x,y) N To(x,y) implying that|T_(z,y) N To(z,y)| > [T () N TO)(y)| >

(1 — 4¢e)D. Plugging this bound intd yields:

Y T (@) (a) 190 (@) — 0O ()]
Pl(x)— P 2 > 1 — 4¢) - = z,y) O(m:y) ,
o)~ 2w > (140 i

We will next apply the Local Lemma again over events related to the Nash-type embeddings in Sec-
tion[3.1 for the different clusters. Define:

Y et (@) T (a) 90 (@) — 0O (1) and U(e.y) = et g 109 (@) — D (@)|I?
’T:(l’,y)ﬁTo($,y)| |T—($ y)|

We define the following events for pairs. Lét;(x, y) be the event that (z,y) > (1+¢)|lz —y||*. For
pairsz, y that are close neighbors, that js:—y|| < A% (z,y). Lete' (z,y) = max{e, A} (z,y) 2|z —y|?},
and defined (z, y) be the event thal(z,y) < (1—¢(z,y)) ||z —y|]?. LetA(z,y) = AL(z,y)V Ay (z,y).

If =,y are not close neighbors thet{x,y) = Ay (z,y). The rest of the argument utilizes the l&sz Local
Lemma to prove that there is positive probability that none of the evéfitsy) occurs; the details that
complete this argument can be found in Apperiglix

For property (c) ofTheorem Inote that it follows directly from the definition @ andLemma 3

and (7

L(Sﬂ,y) =

3.3 Embedding Farther Neighbors

In this section, we extend the embedding to cover all pairs such|thaty| < %Ak(x,y). To this end,
we add another component to the embeddingX — R”. The embedding’ is based on ideas similar to
those of B5,1]. For eachl < t < D, define a function?® : X — R? and let{v)(C)|C € PY,t € T}
be i.i.d symmetrid 0, 1}-valued Bernoulli random variables. The embedding is defined for eaclX as

U(z) = % 691§th w®) (x) with
v = /e v O(P(x)) - d(z, X \ PO (x)).
Our final embedding will bé = & @ ¥. The analysis appears/Appendix C
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4 Maintaining Separation of Distant Pairs

In many applications it is desirable that not only our distortion for neighbors is small but also that the distant
pairs (non-neighbors) will not become too close in the embedding so that the local structure is preserved.
If we assume nothing about the metric spacéhere is no such low dimensional embedding that will give
good guarantees. However, in this section we show that under reasonable assumptions on the local growth
structure of the space there exists an embedding that provides reasonable bounds and in particular guarantees
that the local structure of the space would be preserved.

To obtain this type of property we can use any non-expansive embedfding — ¢% that provides
guarantees for the distortion of the distant pairs via a similar trick to the one in S&8ohe., add a
component/eY to the embedding. Let® = & @ (/eY) then:

18(2) = (W)I* = [@(2) = S () |*+el| T (@) =L W)I* < (L+e)llz—yl* +ela—y|* = (1+2€)llz—y|,

whereas the lower bound for neighbors givendbstill holds and the lower bound for far neighbors is given
by T with just an additional /e factor loss.

In recent work 8] it is shown that every metric space embedg¢fhwhere D = O(dim(X)/6) with
distortion O(log**? n), wheredim(X) is the doubling dimension ak. Hence a possible choice for the
componentl could be this embedding, and combining it withas described above, we obtain a global
embedding in dimensio®(¢~2log k + §~1dim(X)) that guarantees that the distance distant pairs do not
shrink belowA(z, y)/ log' ™ n. However, as this bound depends on the global size of the set this still does
not promise full preservation of the local structure. To overcome this we give a refinement of this embedding
using ideas from2].>

In/Appendix Fwe give a local scaling embedding for doubling metrics satisfying the weak growth rate
conditior?. By using this embedding for the componéhtas explained above we obtain the following
theorem:

Theorem 2. Letk € N, and X a discrete subset d®V. Suppose thak satisfies a weak growth rate
condition then for any) < ¢,0 < 1 there exists an embeddidy: X — R”, whereD = O(logk/e? +
dim(X)/6) such that Theoreti holds, and additionally iflz — y|| > $Ax(z, y) then:

1®(2) — @)l = Ax(w,y) - c26V/e/ log V&, (8)

for some universal constans.

5 Dimension Reduction for Euclidean Snowflakes

In this section we provide a dimension reduction for snowflakes of finite subsets of Euclidean space.

Theorem 3. Given a subseX of Euclidean space, for evefy < a < 1 there exists an embeddin® :
X — RP, whereD = O(%e*i”dim(X)(log(dim(X)) + %)) such that for allz, y € X:

L+ &)l —yl* < [@(2) = 2(y)ll < 1+ )]z —ylI*

Note that an alternate choice fiircould be our snowflake embedding®éction 5 which would provide lower bound on the
contraction of distant pairs which is a function of their distance. However, we prefer a bound as a funktion of

X satisfies aveak growth ratecondition 2] if for some constants: > 3 > 1 if for everyz € X andr > 0, |B(z, ar)| <
|B(x,7)|?, and further assumieg,, 3 < 0.2.

10



The proof proceeds in two steps: we first I$eorem lto give an embedding of pairs of points whose
distances fall in a single scale in dimensiftie 2dim(X)) and then use it to obtain the embedding in
Theorem 3hat preserves small distortion for snowflakes in all scales simultaneously.

We apply a variant aTheorem 1(in fact we only use a special case of it wherefaheighborhoods
are bounded below by a fixed parameter). We observe that the funkfjon) can be replaced by any
Lipschitz functiod A, (z) bounded above byA(z), applying the same prddf In particular, for our
application we need to introduce a parameter> 0, and define:Ay(z) = min{A(x), A} and let
Af(z) = creAg(z)/ log k. This provides the one scale embedding:

Lemma 8. Given a subseX of Euclidean space, for every> 0 ande, § > 0, there exists an embedding
$: X — RP, whereD = O(e~2dim(X ) (log(dim (X)) + log((e5)1))), with the following properties:

L flo(z) — )l < [l= -y
2. Forall z,y € X such thathr < ||z —y|| <7 [|®(z) = B(y)|| > (1 +€) 7 z —y]|
3. Forallz € X, ||®(z)]| <7/\e

Proof. Let X be anedr-net of X. We show the theorem holds féf. As in [20] claim (1) of the theorem
can be easily obtained by using Kirszbraun's extension thehrana observing that if, y € X are such
thatér < || —y|| < r then there exist’, 3’ € X such thad(1 — 2¢)r < ||z’ — ¢/|| < r(1 + 2¢) and a small
adaptation of the parameters provides the statement in the theorem.
Let k = 2¢ dim(X)(log(dim(X))+log((e) ™)) \wherec’ is an appropriate constant to be determined, and let

A = logk/(cie) - 7/ /e. Leta be an arbitrary point € X then|By (z,A)| < 2dim(X)log(a/(er)) <
odim(X)log(logk/(c1€?6)) [ (for an appropriate choice ef) and therefore for alt € X, Aj(z) > A and
S0Aj(x) = r/y/e. The lemma now follows from the variant @heorem Idescribed above. O

Theorem 3follows from a delicate application of Assouad’s technig@e(p similar somewhat more
involved argument was used i@d] and it may also be seen as inspired g]). The proof is deferred to
Appendix D
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A Randomized Nash Device Analysis

In section we prove Lemmnmii

To prove part (a) of the lemma note that cos(a) < o?/2 forall a. Letl = ||z — y|. 7 := wi(z —y)
is distributed as a one-dimensional Gaussian distributi@n, ¢/?) andr, ..., 7p are independent and we
have

D D 9 D
16(z) —O®)|> = Z (y)|? = ZTQ (1 — cos (oy7)) Z )]

It therefore follows that

D & &
2

Pr[|O6(z) — O(y)|? > (1 + €)?] < Pr <e 2 23 (10)

1 D
D ZTtQ > (14 )02
t=1

where the second inequality is a well known known concentration inequalitgguared random variable
(see, e.g./16)).

Parts (b) and (c) require a more detailed verification, but follow from a Chernoff Bound type analysis. We
explicitly bound the moment generating function of the everywhere non-positive praséss’ (z—y))—1
by using the upper boungkp(a) < 1 + a + o for all o < 0. Using this upper bound allows us to bound
E,[s(cos(ow'(z —y)) — 1)] by employing Clainb.

Using the identity||©(z) — O(y)[|* = 5 Zt 12 2 (1 — cos (oy71¢)) we have for any > 0

P[[|6@) - 0" <] (11)
=P %Z % (1 —cos (o)) < u] (12)
|~ = ot
(D
=P Z —5 (cos (oy7) — 1) +uD > O] (13)
—1 %t
Li=1 o,
=P |exp <S Z — (cos (oym) — 1) + uDs) > 1] Vs >0 (14)
—1 Tt
L tDl 2
<E |exp <s Z o (cos (opr) — 1) + uDs)] (by Markov’s Inequality)  (15)
t=1 ! 2
=exp (uDs) E H exp <s2 (cos (oy1t) — 1))] (16)
= It
. t=1 2
=exp (uDs) HEn [exp <32 (cos (oyt) — 1))} . (a7)
gt

We first bound the expectations with respectita_et  be a zero-mean Gaussian random variable with
variance/?. Sinceexp(t) <1+t +t2/2for allt < 0, we have, for alk, s > 0,

exp (5% (cos (o7) — 1)) < 1+ Z(cos(o7) — 1)s + Z[cos(oT) — 1252 (18)
=1+ %(COS(O‘T) Ds+ =5 21 —2cos(o7) + cos?(o7)]s (19)
=1+ 2(cos(or) — 1)s FB — 4cos(o7) + cos(207)]s% . (20)
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Using the fact thaE[cos(27)] = exp(—¢?22/2) for all z € R, we can compute the expectation B0)

E [exp(s%[cos(aT) —-1)] <E[1+ 0—22(005(07') —1)s+ %[3 —4cos(oT) + COS(207)]52] (21)
=1+ % (exp(—20%0*) — 1) s (22)
+ 0—14 (3 - 4exp(—%02€2) + exp(—202£2)) 2.
The negative of the term linear inis equal
b(o) = % (1 — exp(—%02€2)) (23)
and that the term quadratic s equal to
a(0) := 1b(0)* (1 + exp(—30°6%))* +2) . (24)

Both (o) anda(o) are positive decreasing functionsof> 0.
To complete the proof, suppose we can findsgn- 0 such that

b(oy)so — alor)sd < 1 forall1<t<D (25)
b(oy)so — alor)ss > v + uso forall1<t<D. (26)

for some constant > 0. Then, using the inequalitivg(1l — ¢) < —t for all t < 1 and the preceding
analysis, we would have the probability [(®(x) — O(y)||* < u being at most

D D
exp(uDsg) H(l —b(ot)so + a(oy)s?) = exp (uDso + Z log(1 — b(o¢)so + a(aﬁs%)) (27)
t=1 t=1

D
< exp (Z wso — b(o)so + a(m)s%) (28)

t=1
<exp(—yD). (29)

Part (b) would be proven if we find a# for which (25) and 26) hold when? < o, ~'\/e with u = (1—¢)¢?
andy = 137862. For part (c), we need to find ag to show that whed > (v/20)~!, (25) and 26) hold with
u = (40%)~" andy = 5.

The strategy for both parts (b) and (c)is the same. We show that chogssugh that the equality is
attained in/26) wheno = oy, suffices. That is, we set

b(om) — u = /(b(om) — u)? — da(om)y
2a(om) '

(30)

S0 —

If this choice ofsy is positive, then25) and 26) are automatically satisfied. F@&85), note that for alb > 0,

b(0)s0 — a(0)s§ = b(a)so(1 — § (1 + exp(—302%))* +2) b(0)s0) < b(o)so(1 — $b(0)s0) < §. (31)
For (26), a andb are both decreasing functions®ofo we have
(b(oe) — u)so — a(oe)s§ > (b(om) — u)so — a(or)sg =+ alom)sg — alor)sg > (32)

All that remains is to verify thatg is positive for the values af and~ in parts (b) and (c) respectively.
Note thatsy is positive ifb(om) > v andb(om) — u > 2y/va(om). Certainly, if the latter inequality is
strict, it implies the first, so we focus on the latter in the remainder of the argument.

15



For Lemméz6 (b), we setu = (1 — €)¢? andy = 3:¢2. Rearranging terms, we must shé(e,,) —

e\/ 155a(om) > (1 — €)¢? whenever! < oy~ 'y/e. That s, plugging in our definitions far(cy,), and
b(om), we must show

(1 — exp(—102,6%)) <1 26/ /(1 + exp(~102,02))% + 2) > (1—e)

forall ¢ < o ~'y/e. Using the bounds—exp(—t) > —t+t?/2fort > 0 and(1+exp(—302,62))*+2 < 6,

we can compute
o 12 ; o2 12\
<1—exp —— >> (126\/1528\/(14—6)([) <— 5 )) +2) (34)

2 52
. (33)

g

o2 2 oi !

> (5 - mE) (-4 (35)
o202 5\ 022  Bog
o2 0? 3okt

> _ m m

>(1—¢) 5 39 (37)

2 42
> (1 )"fgf (38)

Where B7) used the fact that < \/e/op,.
The argument for part (c) is more or less the same, nowwith(402)~! andy = %8 We must show

1
(1= exp(—3oml")) (1 =2/ s/ (1+ exp(— 302 2))2 + 2) > (39)
forall ¢ > (v/20m)~!. Sinceo2,¢? > 2, it follows that
(1= exp(-bo) (1 -2/ /(1 xn(—dotaet)? +2)

> (1—exp(—1)) (1 — 1‘%) ~ 0.1254 > %. (40)

B Close Neighbors Analysis

In this section we provide the Local Lemma argument which complete the prébemirem lin'Section 3.2

We create a dependency gra@h whose vertices are the evemt$r, y). Letdq, denote its maximum
degree. Note that the eveatz, 3y) depends only on the random variables associated with cluSterg(*)
where P()(z) = P®)(y). We place an edge between two everis:,y) and A(z',y’) if PV (z) =
P (2) for somet € T—(z,y) N T=(2',y'). Note that if there is no edge between the two events then
they are independent. On the other hand assume if there is an edge then far the) = P (y) =
PO (2" = PO (y). Thenmax{||z — '], ||z — ¥/||} < A(P®(x)) < Ax(x)/16, by Lemma&3, and hence
',y € B(x, Ag(z)). This implies that the number of such pairs is boundeddy < (%).

Now, by part (a) of Lemmi the probability that/ (z, y) > (1+¢)||z —y||? is at moste—P(*/4+<°/6) <
k=2 /4. For pairsz, y that are not close neighbors this implies that the probability that eventy) occurs
is at mostl/(e((5) + 1)) <1/(e-dg, +1).
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For pairz, y that are close neighbors we have that— y|| < Ajf(z,y) < %a(t)(x, y)~1, we have by
Lemma6(b) that the probability thak (z,y) < (1—max{e, o2, ||z —y|?})||z —y||? is at most =3P /128 <
k=2/4, whereoy, < maxier ol (z,y) < A% (x,y)~1/2. Hence the probability the evert(z, y) occurs is
atmostk—2/2 < 1/(e - dg, + 1). This complete the proof that the eventér, y) satisfy the conditions of
the Local Lemma, implying that there is positive probability that none of these events occur. Therefore we
have for any pair,y € X:

|0(z) — B2 < ‘T<Dy>' @(;,y”

and for all close neighbors, y such that|z — y|| < A% (z,y) we have:

Ulz,y) + Nl = ylI* + defle — yl* < (1 + 5¢)l|lz — 4#1)

[®(z) — @(y)|* > (1—4e)L(z,y) > (1 — e — max{e, Aj(z,y) ||z — y[I*}) ||z — y[?
> (1-5max{e,¢(z,y)})llz— yl*. (42)

C Embedding Farther Pairs Analysis

In this section we complete the proof of the embedding i&eution 3.3

For the analysis ob, first observe that the upper bound on the distance in the embedding is maintained
with only small loss. This follows sincg¥ (z) — ¥(y)|| < /e||z — y||, as follows by a standard argument
(see, e.g./1]), and we have

18(2) = 2(y)|* = | @(2) = @) 1> +]|¥(2) —L()|* < (1+5€) e~y +ellz—yl|* = (1+6€) |z —y]*.

We now turn to show that the embedding provides a lower bound on the distance between images of
neighbors which are not “close”. We can partition the pairg such that\} (z,y) < ||z —y|| < JAx(z,y)
into two sets as followsW_ = {{z,y}| |T=(z,y)| > D/2} andW. = {{z,y}| |Tx(x,y)| > D/2}.
For pairs inlW_ we show that th& component of the embedding gives a good lower bound on the distance,
whereas for pairs il such a contribution is obtain from the component of the embedding.

Consider first a pair if—. Recall that

Y@ 199 @) =D WP 1 PCier oy 190 (@) — D ()2

B(r) — b 2 S =(z,y) S 2 €T=(z,y) (43

o)~ 2w > - > s (43)
P et o 60 @)= @)

Let Lp(x,y) = T and define the everB(z, y) that Lg(z,y) < 27°A%(z,y)2

As before we create a dependency gréphwhose vertices are these events and place an edge between two
eventsB(z,y) and B(z/,y') if P (z) = P®(z) for somet € T—(z,y) N T=(z',y'). Note that if there

is no edge between the two events then they are independent. By the same argument made before we can
bound the degree @¥ 5 asdg,, < ().

We have that|z — y|| > Aj(z,y) > i(maxero®(z,y))™t > tozl. Now, by Lemmab, the
probability thatLp(z,y) < 2~ 7052 is at moste~P<*/128 < |=2/9 whereoy, < maxyero®(z,y) <
A%(z,y)~'/2. Hence, the probability that eveit(z, y) occurs is at most—2/2 < 1/(e((%) + 1)) <
1/(e(dg, + 1)), which satisfies the conditions of the Local Lemma, implying that there is positive proba-
bility that none of these event occur. We conclude that for everyapaiin W_,

[&(2) = D(W)[* > [ B(z) — S(y)]> > %LB(m,y) > 2707} (2, y)*, (44)
thatis: || ®(z) — ®(y)|| > tA%(2,y).
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Next we deal with pairs ifV.. Here we will make use of th& component of the embedding. By
applying Lemmad with £ = 1/4 we infer that with positive probability for every € X there exists a set
T'(z) = T7/®)(z) such thatT'(z)| > (1 — 2)D = 3D and for eactt € T'(z), B(z, n®/Y A(PW(z))) C
P (z), and thereforel(z, X \ P®(z)) > ¢®(x)~1/(4e), by definition. We note that this event is pos-
itively correlated with the former application of the lemma and so this assertion holds in conjunction with
our analysis ofp. Assume w.l.0.g that® (z,y) = o()(z) (otherwise switch the roles afandy), then we
have thate - d(z, X \ P®)(z)) > A} (x, ).

For such a pair;, y define B’(z,y) to be the event that¥(z) — U(y)|| < %AZ(:U,y). Define a de-
pendency grapkzr whose vertices are these events. We place an edge between two Bi(ents) and
B'(2',y') if one of {z, y} is in the same cluster &/, '} for somet € T. Note that if there is no edge
between two events then they are independent. On the other hand assume there@xistsuch that
PO (z) = PM(z'). As before we have thdltr — /|| < A(P®(x)) < Ay(z)/16, by Lemma3, and hence
2’ € B(xz,Ag(z)) and therefore there are at massuch points:’. Now consider all such pairs including
2’. Denote the other points in these pajts...,y.. Let z be the point which maximized(z) over all
yjs andz’. Since|z’ — yj|| < 3Ak(2',y}) = Fmax{Ax(z'), Ax(y))} < 3Ak(2). We conclude that
|2 =yl < llz = 2'|| + ||z’ — y[| < Ax(z) and therefore alj’s are in a ball around containing fewer than
k points so that < k. We conclude that there are at mastsuch pairs. The same calculation can be for
the case thaP*) (y) = P(*)(2'), giving a total bound ofk? pairs, which provides an upper bound on the
degreel ,, of the dependency graghp:.

Now, let 7" (z) = T'(xz) N W, then|T"(x)| > D/4. Then for eacht € T"(x) with probability
at leastl/4, v(PW(z)) = 1 andv(PW(y)) = 0, asP®(z) # P®(y). Applying a Chernoff bound
we have that the probability that there are less thghfraction of the coordinates € 7" (z) such that
0O (2) — O (y)| > fe-d(z,X \ PD(x)) > Af(z,y) is at moste=P/16. But this means that with
probability 1 — e=P/16 || ¥ (z) — ¥(y)| > ﬁAZ(m,y) > L A% (z,y). Therefore the probability that event
B'(z,y) occurs is at most~ /16 < k=2/4 < 1/(e(k* + 1)) < 1/(e(dg,, + 1), satisfying the condition
for the Local Lemma. We can therefore conclude that with positive probability none of the &/¢ntg)
occur. Therefore for every, y € W.. we have:||®(z)—&(y)|| > [|¥(z)—¥(y)| > LA} (z,y), completing

the proof of Theorerd.

D Proof of Dimension Reduction for Snowflakes

of Theorem 8 We may assume > 1/2, otherwise we can apply the embedding for this case to imply the
conclusion for smaller as well. Letpy = [logy . e_ﬁL pe = |logi .72 andp = 1+ pa + pa.
DefineA; = diam(X)(1 4+ €)™, wherei € I, I = {i € Z| — pa < i <logy, (diam(X)) + 1+ pg}. Let
®; be the embedding dfemma 8with » = ¢ 2A,; andd = (1 + e)‘leﬁ“. LetT; = &;/A; .

Forj € [p] let®; = > ;)= ; Vi and® = P, ;. The final embedding i®#/M : X — ng’,
wherelM is a parameter to be determined later @vds the dimension of the embeddingledmma 8

Fix some paitr,y € X. Leti* be such thatl + €)' A < ||z — || < Ay-.

Let A = {i* —pa,...,i% ...,i" + pp}, then for each € A: eTa < Ay /A; < e 2 and therefore
(1+ e)—leﬁAi < ||z — y|| < e 2A;. Then it follows fromLemma 8that fori € A:

llz—y T —y
1+ o 2t < o) - v < 22U

7
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We also have

r—y z—yl <« —(1—a)p-j T — y

V<1 =i V<iil=pi T j=1

Using the bound ®;(z)|| < e 2A;//e = e 25A,; fromLemma 8and assuming > 1/2 we have

—25A ,
Y@ -l = Y Eatsatt Y oA

V>0, =pi i'>i0,1 =pi i V>0, =pi
= o —yll
< 2ar Y (14 7w < o1 gl
Jj=1 ?

Hence we get for < 1/8:

2
o 2
I3 (o)~ B < (wx)wi(yw > wx)\m«y)) <+ (50

i £, =pi

2
2
DICEERAOIE (wmwi(y) > wx)%wy)) > 0 -op (12

i #i5'=pi
Summing over alf € A we get

_ 2 — 2
-0y () <o - s < a0ty (1524

1€A i €A
Finally,
Z |z — yll ? A llz =yl ? Z(l + 6)2(1%)(1’*—1') _(ll=—yl ? i (1+ 6)2(1fa)j
Alfa - Alfa - Alfa
i€A @ o i€A i J=-pa
ChoosingM = Y?2_ (1 + €)1=) and observing thatz — y[| < ”Ax%’a” < (1+ €)%z — y||*
completes the proof. O

E Probabilistic Partitions Preliminaries

E.1 Preliminaries

Consider a finite metric spadeX,d) and letn = |X|. The diameterof X is denoteddiam(X) =
max, yex d(x,y). For a pointz andr > 0, the ball at radius aroundz is defined asBx (z,7) = {2z €
X|d(z, z) < r}. We omit the subscripk when it is clear form the context.

The following definitions are used in the context of partition-based embeddings,jnto

Definition 9. The local growth rate of € X at radiusr > 0 for a given scaley > 0 is defined as
p(z,r,v) = |B(z,r)|/|B(z,r/7)|.

Given a subspacZ C X, the minimum local growth rate of at radiusr > 0 and scaley > 0 is
defined a(Z, r,v) = mingcz p(x,r,v). The minimum local growth rate at radius> 0 and scaley > 0
is defined ag(z,r,v) = p(B(x,r),7,7).
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The following simple fact about minimum local growth rate is useful:

Claim 10. Letz,y € X, lety > 0 and letr be such tha2(1 + 1/~)r < d(z,y) < (y —2 — 1/7)r, then
max{p(z,7,7), p(y,r,7)} = 2.

E.2 Uniformly Padded Probabilistic Partitions

We start with describing the basic definition that captures the properties needed for the application for
embeddings:

Definition 11 (Partition). Let (X, d) be a finite metric space. A partitia® of X is a collection of disjoint
set of cluster€(P) = {C4,Cs,...,C:} such thatX = U;C;. The setg’; are called clusters. Far e X
we denote byP(z) the cluster containing. GivenA > 0, a partition isA-boundedf for all 1 < j < ¢,
diam(C;) < A.

Definition 12 (Uniform Function). Given a partitionP of a metric spacé¢X, d), a functionf defined on
X is calleduniformwith respect taP if for any z, y € X such thatP(z) = P(y) we havef(z) = f(y).

Definition 13 (Probabilistic Partition). A probabilistic partition75 of a finite metric spacéX,d) is a
distribution over a seP of partitions ofX. GivenA > 0, P is A-bounded if eacl? € P is A-bounded.

Definition 14 (Uniformly Padded Local PP). Given A > 0 and0 < & < 1, let P be aA-bounded
probabilistic partition of X, d). Given collection of functiong = {np : X — [0,1]|P € P} such that
np is a uniform function with respect t8. We say tha® is a(n, 9)-uniformly padded local probabilistic
partition if the eventB(z,np(x)A) C P(x) occurs with probability at least and is independent of the
structure of the partition outsidg(x, 2A).

Formally for allC C X \ B(z,2A) and all partitions”’ of C,

Pr(B(z,np(x)A) € P(x) | Po =P 2

E.3 Local Uniform Padding Lemma for Doubling Metrics

Lemma 15 (Local Uniform Padding Lemma). Let (X, d) be a-doubling finite metric space. Lét<

A < diam(X). Letd € (\~2,1/2], and letl’ = 64. There exists a\-bounded probabilistic partitior® of
(X, d) and a collection of uniform functionp : X — {0,1} | P € P} and{np : X — (0,1/1In(1/4)] |

P € P} such that for anyy < § < 1, andn(® defined by;\"(z) = np(x)In(1/5), the probabilistic
partition 7 is a (79, §)-uniformly padded local probabilistic partition; and the following conditions hold
forany P € P and anyx € X:

e np(z) >279/(In ).
o If&p(z) =1then:277/Inp(z,4A,T) < np(x) < 277/In(1/9).

o If ¢p(z) = 0then:np(z) = 277/1In(1/8) and p(z, 4A,T) < 1/0.
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F Embedding Distant Pairs

Theorem Zollows from the following theorem on local scaling embedding for doubling metrics.
Recall thatX satisfies aveak growth ratecondition (cf. B]): WGR(~) for some constants < 1 if for
everyz € X andry,ro > 0, |B(z,72)| < |B(z,1)|("2/m)", and further assume < 0.2.

Theorem 4. Given a metric spacéX, d) satisfyingWGR(v). Foranyl < p < oo, and0 < 6 < 1,
there exists an embedding &finto Elf? in dimensionD = O(dim(X)/6) and scaling distortion where the

distortion for pairsz,y € X andk s.t.d(z,y) < A;(x) is O(log" ™ k/6).

The lower bound on the distortion guaranteedTiyeorem 4is a monotonic function of the distance
from any particular point. This is stated in the following corollary:

Corollary 16. Given a metric spacéX, d) satisfyingWGR(). Foranyl < p < oo, and0 < 0 < 1, there
exists an embeddingof X into EI’? in dimensionD = O(dim(X)/#) such that for any,y € X andk s.t.

d(z,y) > A (x) then| f(z) — f(y)|P > Aj(x) - 0/ log!*+? /%)

In the rest of this section we prodéeorem 4

F.1 Proof of Theorem 4

The Embedding.

Letd > 0. LetD = [Ck’gﬂ wherec is a constant to be determined later. We will define an embedding
f:X - lf with scaling distortion where the distortion for pairsy € X andk s.t. d(z,y) < Ap(z)
is O(log't? k/0). We definef by defining for each. < ¢ < D, a functionf® : X — R* and let
f= D-1/p @1gt§D f(t)

In what follows we define the functiong®). Let Ag = diam(X), I = {i € Z | 1 < i < logAg}.
Fori € Z let A; = Ag/4%. For each) < i € I construct aA;-bounded uniformly padded probabilistic
partition P;, as inLemma 15with parametel’ = 64, § = 1/2. Fix someP; € P; forall i € I. Inthe
usual embedding via partitions scheme we obtain a lower bound for every paie X from only one
"critical” scale (which is approximately(z, y)). Here, we use the same idea, but since the cluster in the
critical scale may contain too many points, we get contribution from two scales lower than the critical one,
which is guaranteed to be small enough. For this reason we define a new fupesoiollows, for each
i1e€l,PeH:

; 1 p(u(Py(x)),44:,T1) > 2
Epilw) = { ¢pi(x) otherwise
wherev(C) is the center of clustef’ € P;. It can be seen that the functigris uniform as well.
Lete(k) =In"?k, 6(k) = 1 —e(k), and let¢ (k) = In'*?’ k. We define the embedding by defining the
coordinates for each € X. Define forz € X, 0 < i € I, k;(z) = |B(v(Pi(z)), (4T 4+ 1)A;)|. Define
¢§t> : X - Rt, as:

"y
e

~ () .
oD (@) - (i)

Let {al(t)(C)\C € P;,,0 < i € I} bei.i.d random variables uniformly distributed[{n 1].

For eachd < i € I we define afunctiorfi( : X — Rt andforz € X, let fV)(z) = Yoier fi t)( ).
The embedding is defined as follows: for each X:

o () =
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e For each) < i e 1 let {9 (@) = o(PD(2)) - gP(x), whereg” : X — R* is defined as:
9" (@) = min{¢{" (2) - d(z, X \ B (2)), Ai}.

We have the following claims:
Claim 17. For anyz,y € X andi € I if P,(z) = P,(y) theng!” (z) = ¢\" (y).

Claim 18. There exists universal constafit such that forany € X,1 <t < Dwe have_,, ¢§t) (z) <
/6.

Proof. Leth; = |In |B(z,4A;)||. Asd(v(P;(z)), z) < A; we have thalog k;(x) = log | B(v(Pi(x)), (4T+

(6(k;j () \—1
n; ()
0i(z) = R
Z ’ JEE): C(kj())
< Z 2"1n p(z,4A;,T) N Z 27

= 1 7 1
jergm=1 SEI @) MG0s)  jerg @mg (@y=0 SR () - (i)

3 p(z, 4A]7 97 9 bj—3 — ]+2 97
< 2 Z 1n1+9 Z 1+9 I’) <2 Z (b )1+9 Z h1+9
jez-é( )= jei ! jerg(x)=1 I3
< 2? Z Z h1+0 1/9 )< 21 Z h1+0 + O<1/9 (1/9
JEI h=bj s h=1

O

Defineg!” : X x X — R* as follows:g\"” (z,y) = min{$\"” () - d(z,y), A;}. We have the following
claim:
Claim 19. Forany0 < i € T andz,y € X: £ (z) — £ (y) < 37 (2, y).

)

Lemma 20. There exists a universal constaiit > 0 such that for any:, y € X:

1 (@) = W)l < (C1/0) - d(z, y).

Proof. FromClaim 19andClaim 18we get

S @) - 1P w) 3 @y < Y 6P (@) - dlz,y)

0<iel 0<iel o<iel

(01/0) ' d(x7 y)'

It follows that| f®) () — £ (y)| = | zwexff“ (2) — 1P(y)| < (C1/6) - d(x,y),and therefore

IN

IA

If () = fIp =D Y 1fW(@) = fO )P < (C1/6) d(x, y)".

1<t<D
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Lemma 21. There exists a universal constatif > 0 such that with constant probability for amyy € X
s.t.d(z,y) < Ap(x):
1F () = f@)llp = Coln™ =¥ & - d(x, y).

Proof. We will prove that with constant probability for everyy € X s.t.d(z,y) < A; (), there exists a
setT'(z,y) C {1,..., D} of size atleasD/2 such that for any € T'(x, y):

f@) — O 2 27k d(a,y). (45)
The theorem follows directly:

I£@@) = f@)le = D78 > 1fD2) = fOP =D Y [fD(@) - fO)P
1<t<D teT (z,y)
> D T(y)]- (20w ke d(ey)) > L (2 e d(a )
Il

The proof of @5) uses a set of nets of the space. For@nyi € I, andl < k = 2/ < n, let N¥ be a

60, ¢ (ah) -netof X. Let

M = {(i,k,u, v) |iel, u,ve NF3A;_4 < d(u,v) <1TA;_4,k < mm{fcz(u),fcz(v)} < Qk} )

Given an embedding define a functio” : M — 2[P! such that fort € [D] :
e(k)
C(4k)

Forall (i, k,u,v) € M, 1€tE(; 1 .. bE the eventT'(i, k, u,v)| > D/2.
Define the evenf = ﬂ(i’m’v)eM (i ku,v) that captures the case that all tripletslihhave the desired
property. The main technical lemma is tlfabccurs with non-zero probability:

te T, kuv) e |fOw) - fOw)| > A

N

Lemma 22. Pr[€] > 0.

Let us first show that if the evest took place, then the lower bound follows. Lety € X, and let
0 < i€ IbesuchthatA,_4 <d(z,y) < 16A;_4.

Consideru,v € N; satisfyingd(x,u) = d(z, NF) andd(y,v) = d(y, NF), thend(u,v) < d(z,y) +
d(u,z)+d(y,v) <1674+ 2%: < 17A;_4 andd(u,v) > d(z,y) —d(z,u) —d(y,v) > 40,4 — 2%’ >
3A;_4.

Let k be such thak < min{k;(u), k;(v)} < 2k. By the definition ofM it follows that (i, k, u, v) € M.

It also holds that: < |B(v(P;(u)), (4T + 1D)A)| < |B(x,40;_4)| < |B(z, d(z,y))| < k.

The next lemma shows that singey are very close ta, v respectively, then by the triangle inequality

the embedding of =, y cannot differ by much from that af, v (respectively).

Lemma 23. Letz,y € X, leti be such thatlA; 4 < d(z,y) < 16A;_4, andu,v € Nik satisfying
d(x,u) = d(z, NF) andd(y,v) = d(y, Nf).
Givené, for anyt € T'(i, k,u,v):

0@ - £O)| 2 §
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Proof. SinceN¥ is % -net, therd(z, u) < % By Lemma 20|/ (z) — £ (u)| < (C1/6) -

)’
d(z,u) < %&(fg) A;, and similarly| f® (y) — fO(v)] < & ‘5(( ))A Then

() — O (y)]

= 1fP@)— O ) + £ (u)— f“() FOw)—fO(y)|
> [fO(u) = fO @)= fD(z) = F O (w)| - D (y) - D (0)]
1e(k) \ 1 e(k) k) A S 1e(k)

1e
2¢(4k) " T16C(ak) T T ACM@k) T T ac(h)

v

A; >

Letk(k) = [loglog(4k)]. Let (i, k,u,v) € M andt € [D]. DefineF; ; ...¢) be the event that:

Y ez g

0<j<itr(k)
Let £k u.0) be the event thalt(t|F(; ...} > D/2.
Claim 24. For all (i,k,u,v) € M, € ) IMPIESE(; 4. 0)-

Proof. Let S = {t[F(;kuvs}- Thenfort € S: }Zoqgi%(k) f(t)(u) J(t)(v)| > ;&k]g)Al , from

Claim 19it follows that | D jitn(k) fj@(u) — fj(t)( )| < D jsitn(k) B < : E((k))Az , which implies that

FO@) — 1) = | e £ ) — 1) 2 128 A, O

Lemma 25 (Lovasz Local Lemma - General Case)Let A, As,....A, be events in some probability
space. LetG(V, E) be a directed graph on vertices, each vertex corresponds to an eventclét — [m]
be a rating function of events, such thatil;, A;) € E thenc(A;) < ¢(A;). Assume that for all =
1,...,nthere exists; € [0, 1) such that

Al N\ 4

JjeQ

&H

Pr < z; H (1—2xj),

J:(i.5)€E

forall Q C {j: (A, Aj) € ENc(A) > c(Aj)}, then

Pr [/\ —|_,4i] >0
i=1
Define a graptG = (V,E), whereV = {€; .0 | (i,k,u,v) € M}, and the rating of a vertex
Y Ink
(5(1 kuv)) = 1. Leta?(Z kuy) — )\—GOln(QT).

Define that(é‘(z kuv)» 5(,,,6,,“,’@,)) € Eiff d({u,v},{v/,v'}) < 4A;, andi’ < i + k(k), and} <

log log(4k’)
log log(4k) <3.

A Ink
2;)

Claim 26. Let&(; 4.,.,) € V, then the number of edgé8; 4. ,..), £ k') € E is at mosp\ 20
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Proof. We bound the number of paits, v’ € N% such thatl&; x u.v), Eir b wr o)) € Efori < i’ <i+r(k)

1 log log(4k’)
andy < T pan < 3

Assume w.l.o.gl(u,u’) < 4A;, sinced(v/,v") < 17A,_4 we haveu’,v' € B = B(u,40A;_4). The

number of pairs can be bounded [y} N B|2. There is at most point from the nﬁti’f' in every ball of
radiusr = %Aiﬁ(k). Since(X, d) is A-doubling, the ballB can be covered bylos(404i—4/7)
balls of radius". Now, log(40A;_4/r) < 8Inlnk + 18 +log(1/6). It conclude that the number of possible

pairs is bounded above By n(*5), O

The construction of the graph is based on the proposition that vertices that do not have an edge are either
farther thare A; apart or have different scales and hence do not change each other’s bound on their success
probability.

Lemma 27.

A A 61 hl 21n k
Pr|=Eipuny | N\ i | <A,

forall Q C {(i’,k’,u/,v’) 1> A (5(,w) Eir ) ) ¢ E}

Before we prove this lemma, let us see that it impliesnma 22
Apply Lemma 25to the graphG we defined. US|n(£Ia|m 26 we can bound the number of edges

<€(ka),5(ﬂ Kt U,)> € EFisatmostd = A5 Recall thatr gy = A~ 60In(23E) - Also it

2Ink’

follows thata ;s s,y = A~0Te) < A~20m(*3%)  Therefore the probability bound iremma 27

satisfies the first condition dfemma 25\~ 61 In(*5*) (1 — A\~20m(355)d Therefore
Pr[€] = Pr{A¢ ik uvyens Eikuw)] > 0, Which concludes the proof demma 22

<A 601n(21“k)

F.1.1 Proof ofLemma 27
In what follows we use of the following simple technical claim.

Claim 28. Let A, B € R* and leta, 3 be i.i.d random variables uniformly distributed 0, 1]. Then for
anyC € R ande > 0:
Pr[|C + Ao — B3| < € - max{A, B}] < 2¢.

Proof. Assume wlogA > B. Consider the conditiofC+Aa—Bj| < e-max{A,B} =A. If C—Bf >0
then itimpliesa < e. Otherwisgla — 22:9| < . O

Claim 29. Let (i, k, u,v) € M, t € [D], thenPr [Fi; unp] =1 - 32(k).

Proof. Sete = (k) andd = 1 — . Consider soméi, k, u,v) € M. Then3A;_4 < d(u,v) < 17A,;_4. By
Claim 10 we have that

max{p(u, Aj—4,T), p(v, Aj—4,T)} > 2. Assume w.l.o.g thap(u,A;,_4, ") > 2. It follows that also
80k () ()1
_ (w)
p(v(Py(u)),4A;,T1) > 2 from Lemmel5thaté ) ;(u) = 1 which implies thab J(u) = n(té(w
(%) —1
(u)
As k;(u) > k we have that\” (u) > %

bound

. AsH® is (n®,1 — ¢)-padded we have the following

2

Pr(B(u, 1%, (wA) € PO ()] > 1 -«
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Therefore with probability at leagt— e:

(t) (t) () A;
g9 () = ¢ (u)-d(u, X \ P (u) = ————. (46)
C(Ki(u))
If ki(u) < 4k theng (u) > ciy- Otherwise it must be the case thiatv) < 2k. It follows that

p(v(P;(u)),4A;,T*) > 2 and thuipmﬂ-(v) = 1, and hence by analogues argument to the one above we
get thatg” (v) > Z(iky- We conclude thamax{g\" (u), g" (v)} >
Let .4 denote the event thed€) occurs.

Recall that we are interested in the expressidiy_ ;. . (fi” (1) — £\ (v))| and

A;
C(4k)"

1) = 170 = (B w) 4 () = o (P () - 1" )

Defined = g/ (u), B = ¢\ (u), 0 = 0! (P (w)), 8 = o[ (P (v)) @andC = 3" <4 i (£ () —

f;t) (v)). Sincediam(P"(u)) < A; < d(u,v) we have thaP” (v) # P (u). Thusa andg are inde-
pendent random variables uniformly distributed@n1], hence we can apply clai@8 and using 46) we
have:

A;
C(4k)

P Y (fw) - W) <e |A] = Pr[|C + Aa — BB|] < ¢ - max{A, B}|A] < 2.

0<j<i+r(k)

Therefore with probability at leagt— 3=(k):

A;. 47)

Claim 30. Let (i, k,u,v) € M,t € [D], then

Pr _‘f(i,k,u,v,t) ‘ /\ g(i’,k’,u’,v’) < 3€(k)7
(7 k' ' v EQ

for all Q - {(i’, k‘/, u',’u’) eM ’ 7> A (g(i,k’,u,v)7g(i’,k’,u’,fu’)) ¢ E}

Proof. If ' + k(k’) < i, then evenlff(l-@k/,u/,v/) depend on event§ ;s 1. . . 41y, and these events depend
only on the choice of partition for scales at masHence the padding probability far, v in scalei and the
choice ofo; is independent of these events.

Otherwise, ifi — x(k') < i < i, let (¢/,k',u/,v") € M such that(é’(i,k’w),5(1-17,{/,”/70/)) ¢ E. By
the construction of7 there are two cases. If,v' ¢ B(u,4A;) andu’,v" ¢ B(v,4A;) thenv’ v are
far from u, v and they fall into different clusters in every possible partition of s¢aleromLemma 1%
the padding ofu, v in scale: depends only on the local neighborhoodXu, 2A;) U B(v,24;), which
are disjoint from those of/,v’. The second case is thdf{u,v},{u/,v'}) < 4A,. Recall thatt’ <
ky(u') = |B(v(Py(u)),dl + 1)Ay)| andk > %k‘i(u) = %|B(U(Pi(u)),(41“ + 1)A;)|. We have
d(v(Py(u'),v(Py(u))) < d(v(Py(u),v) + d(u,u) + d(u,v(P;(u)) < Ay + 44, + A; < 6Ay and
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thereforek’ < |B(v(P;(u)),2(4T + 1)Ay)|. It follows from the WGR~) assumption that’ < o) A1)

implying log log(4k’) < loglog(4k) +2vr (k') < loglog(4k) + 3~ log log(4k’), and thereforé‘% <
1/(1 — 3v) < 3 assumingy < 0.2. A similar bound can be derived in the reverse direction which yields a
contradiction.

By Claim 29there is probability> 1 — 3=(k) to succeed, no matter what happened in scalésr “far

away” in scalel. O

We now proveLemma 27 By |Claim 3(the probability a single coordinatefails is at mosBe(k). It
follows from Chernoff bounds that the probability that more tfiaf2 coordinates fail is bounded above by:

2Ink
=),

Pr _'g(i,k,u,v) ’ /\ é(i/,k’,u’,v/) < (6@(35(]4;)))D/2 < )\—éln(
(& K ! v eQ

(48)

2Ink

Settinge large enough implies tha#8) is at most\ %' »(=5") | as required.
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