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Abstract. We consider a system ofm linear equations inn variablesAx= d and give necessary and sufficient
conditions for the existence of a unique solution to the system that is integer:x∈ {−1,1}n. We achieve this by
reformulating the problem as a linear program and deriving necessary and sufficient conditions for the integer
solution to be the unique primal optimal solution. We show that as long asm is larger thann/2, then the linear
programming reformulation succeeds for most instances, but ifm is less thann/2, the reformulation fails on most
instances. We also demonstrate that these predictions match the empirical performance of the linear programming
formulation to very high accuracy.
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1. INTRODUCTION

We consider the system of linear equations in the real vector variablex:

Ax= d, (1)

whereA is a given real matrix inRm×n, d ∈ Rm and x ∈ Rn. We are interested in the
conditions under which this system has a unique solution which is integer, that is

Ax= d, x∈ {−1,1}n. (2)

This problem, which has also been studied in [12], can be considered a generalization of
the classical knapsack feasibility problem [11, 7, 4] of finding ann-dimensional binary
integer vectory∈ {0,1}n such that:

aTy = c, (3)

wherea is ann-dimensional column vector of positive integers andc is a positive integer.
An obvious generalization of this is the following generalized multi-knapsack feasibility
problem where there are no integrality or nonnegativity restrictions on them×n real matrix
A or the real vectorb∈ Rm:

Ay= b, y∈ {0,1}n. (4)

http://ees.elsevier.com/ejor/viewRCResults.aspx?pdf=1&docID=13940&rev=1&fileID=146049&msid={2E713B96-EC5B-40B9-9668-31B6273D6A70}
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2 O. L. MANGASARIAN & BENJAMIN RECHT

Using the transformation:

y =
e−x

2
, x = e−2y, (5)

wheree is a column vector of ones, we obtain the absolute value equation [11, 16]:

|x| = e,
Ax = d,

(6)

where:
d = Ae−2b. (7)

It is evident then that (6) is equivalent to our original problem (2).
Unfortunately, even if an integer solution is provided, determining the uniqueness of a

given integer solution of a problem such as (2) is an NP-hard problem [17, 15, 14]. To
circumvent this difficulty, we provide necessary and sufficient conditions that (1) has a
unique solution in the hypercube[−1,1]n which in turn is integer. We shall do this in
Section 2 by solving a linear programming problem. In Section 3 we give the probability
that a randomly generated solvable problem (2) will indeed have a unique integer solution.
In particular we show that as long as the number of rows is greater than half the number
of columns, then for most equations of the form (2) which have an integer solution, the
corresponding integer solution is unique and can be computed via linear programming.
A related probabilistic result is obtained in [3] that utilizes a face counting technique in
contrast to our simple linear programming uniqueness approach here. In Section 4 we
shall give some numerical examples illustrating our results and shall conclude the paper in
Section 5.

A word about our terminology and notation now. When we refer to an integer solution
x of either the linear equation (1) or the linear program (10) below, we mean exactly that
x ∈ {−1,1}n and exclude the case when a component ofx is zero. All vectors will be
column vectors unless transposed to a row vector by a superscriptT. For a vectorx∈Rn the
notationx j will signify the j-th component,|x| denotes the vector inRn whose components
are the absolute values of the components ofx, and‖x‖p denotes thep-th norm ofx. The
scalar (inner) product of two vectorsx andy in the n-dimensional real spaceRn will be
denoted byxTy. The notationA∈ Rm×n will signify a realm×n matrix. For such a matrix,
AT will denote the transpose ofA, Ai will denote thei-th row andAi j the i j th element. A
vector of ones in a real space of arbitrary dimension will be denoted bye. Thus fore∈ Rn

andx∈ Rn the notationeTx will denote the sum of the components ofx. A vector of zeros
in a real space of arbitrary dimension will be denoted by 0. The abbreviation “s.t.” stands
for “subject to”.

2. Linear Programming Formulation and Uniqueness of Solution that is Integer

Our analysis is based on the observation that ifx0 is integer and is the unique solution
of Ax = d in the hypercube[−1,1]n, thenx0 is the unique solution in{−1,1}n as well.
Finding a solution in[−1,1]n can be reduced to linear programming, and, moreover, we
can readily provide necessary and sufficient conditions that the resulting solution is unique.
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PROBABILITY OF UNIQUE INTEGER SOLUTION 3

Since the hypercube[−1,1]n is equal to the unit ball‖x||∞ ≤ 1 of theℓ∞ norm:

‖x‖∞ = max
1≤i≤n

|xi |, (8)

we can try to find a solution in[−1,1]n, by solving theℓ∞ norm minimization problem

min
x

‖x‖∞ s.t. Ax= d. (9)

Suppose that there exists anx0 ∈ {−1,1}n satisfyingAx= d. Under what conditions isx0

also the unique optimal solution of (9)?
Note that we can reformulate (9) as the following linear program

min
x,δ

δ s.t. Ax= d, −δe≤ x≤ δe. (10)

The dual problem of (10) is given by

max
u,v,w

dTu s.t. ATu−v+w = 0, eT(v+w) = 1, (v,w)≥ 0. (11)

Note also that the primal linear program (10) is a convex relaxation of the absolute value
equation (6) where we replace the first equality of (6) by two inequalities, and we replace
the right hand sidee with a variableδe which we attempt to minimize. With this reformu-
lation, we can use the necessary and sufficient conditions of [9] to verify thatx0 is a unique
solution of the linear program (10):

THEOREM 1 [9, Theorem 2(iii)] Let x̄ be a solution of the linear program

min
x

hTx; s.t. Gx= g, Px≥ q. (12)

Let Peq denote the submatrix of P consisting of the rows of Px≥ q for which Pi x̄= qi . Then
x̄ is unique if and only if there exists no z satisfying

Gz= 0, Peqz≥ 0, hTz≤ 0, z 6= 0 (13)

With this in hand, we can state now our principal result.

Proposition 2 Uniqueness of Solution of (1) that is Integer A necessary and sufficient
condition that the linear program (10) has a unique integer solution is that it has a min-
imum value of1 with solution x∈ {−1,1}n such that for the diagonal matrix D of±1’s
defined as:

D = diag(x) (14)

the system:
DAT r > 0, (15)

has a solution r∈ Rn.

Proof: The constraints of the linear program (10) imply that‖x‖∞ ≤ δ. Hence a necessary
and sufficient condition forx∈ {−1,1}n to be a solution of (10) is that the corresponding
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4 O. L. MANGASARIAN & BENJAMIN RECHT

minimum value of the objective functionδ is 1. It follows from Theorem 1 above that
x∈ {−1,1}n is a unique solution of (10), if and only if the following holds for the diagonal
matrix of±1’s D = diag(x):

As= 0, Ds+eδ≥ 0, δ ≤ 0, has no solution(s,δ) 6= 0. (16)

Define nowz= Ds, and sinceDD = I , we also have thats= Dz. Hence condition (16) is
equivalent to:

ADz= 0, z+eδ≥ 0, δ ≤ 0, has no solution(z,δ) 6= 0. (17)

We can eliminateδ by reformulating (17) as follows:

ADz= 0, z≥ 0, has no solutionz 6= 0. (18)

To see that (18) is equivalent to (17), observe that ifADz= 0, z+ eδ ≥ 0, δ ≤ 0 and
(z,δ) 6= 0, thenz≥ −eδ≥ 0 implying thatz 6= 0, for otherwiseδ would also equal zero.
Conversely, ifADz= 0, 0 6= z≥ 0, then forδ = 0 we have that(z,δ) 6= 0 andz+eδ≥ 0.

Now, by using Gordan’s theorem of the alternative [10, Theorem 2.4.5], condition (18)
is equivalent toDAT r > 0 having a solutionr, which is the desired condition (15)

Note that Proposition 2 can be easily implemented by solving the linear program (10)
and checking that its minimum objective function value isδ = 1. Also, if there exists a
dual optimal solution withd′u= δ = 1 which has the property that for alli eithervi or wi is
strictly positive, then it follows from the complementarity conditions:vT(−x+e) =0 and
wT(x+e) =0 for the primal optimal solutionx, thatx∈ {−1,1}n. The search for such a
dual optimal solution can also be accomplished by linear programming.

We also note here that a somewhat different linear programming uniqueness characteriza-
tion [1] can be employed to obtain different uniqueness conditions than those of (14)-(15)
above. However our condition (15), which is equivalent to that of the columns of the ma-
trix AD lying in the same hemisphere ofRm, is key in deriving our probalistic results of
Section 3.

We now proceed to give conditions that the linear program (10) returns a unique integer
solution for problem (2) with a likely probability.

3. Probability that the Linear Program (10) Solves the Integer Problem (2)

While the conditions in Proposition 2 are completely deterministic and checkable, we have
not yet shown that there exist matricesA satisfying these conditions. In this section, we
show that as long as the ratiom/n is greater than 1/2, then we can solve the integer pro-
gramming problem for “most”A by solving the linear program (10).

The existence of anr ∈ Rm satisfyingDAT r > 0 is simply equivalent to the columns
of the matrixAD lying in the same hemisphere ofRm. We now quantify a very general
family of random matrices for which we can precisely calculate the probability that such
an event occurs. We say thatA is a generic random matrixif all sets ofm columns ofA
are linearly independent with probability 1 and that each column ofA is symmetrically
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PROBABILITY OF UNIQUE INTEGER SOLUTION 5

distributed about the origin. Wendel [18] showed via a simple inductive argument that the
probability of all of the columns of a generic random matrix lying in the same hemisphere
is precisely equal to

pm,n = 2−n+1
m−1

∑
i=0

(

n−1
i

)

. (19)

If A is a generic random matrix, then so isAD, and it follows that the probability that (10)
has a unique integer solution which is recovered by theℓ∞ norm heuristic isexactly pm,n.

It is rather surprising that not only can we can compute the probability of uniqueness in
closed form for this problem, but that it is equal to the probability that at most m-1 heads
appear in n-1 fair coin tosses. It is easy to check that for a fixedn, pm,n is an increasing
function ofm and that:

p1,n = 2−n+1, pm,2m =
1
2
, pn,n = 1, (20)

where the last two equalities are easily obtained by elementary properties of binomial
coefficients. Moreover, we can use standard tail bounds of the binomial distribution to
describe asymptotically when (10) has a unique solution. For instance, if we setγ = (m−
1)/(n−1), then Hoeffding’s inequality [6] states that

pγn,n ≥ 1−exp(−2(γ−1/2)2(n−1)) γ > 1/2

pγn,n ≤ exp(−2(γ−1/2)2(n−1)) γ < 1/2.
(21)

That is, for a fixed ratioγ, the probability that the heuristic yields a unique integer solution
goes to 1 exponentially withn for γ > 1/2, and the probability that the heuristic yields
a unique integer solution goes to 0 exponentially withn for γ < 1/2. Our computational
results of the next section will support these facts.

As a final note, we can use Wendel’s theorem to count the number of integerx0 that can be
recovered viaℓ∞ minimization. Suppose that all subsets ofm columns of the matrixA are
linearly independent. For how manyx0 ∈ {−1,1}n does it hold thatx0 is the unique integer
solution ofAx= Ax0? The answer is exactly 2npm,n. We can prove this probabilistically by
letting x0 be sampled uniformly from{−1,1}n. By Proposition 2,x0 is the unique integer
solution ofAx = Ax0 if and only if there exists anr ∈ Rm with diag(x0)AT r > 0. Since
Adiag(x0) is a generic random matrix, the probability of the existence of such anr is pm,n

which proves our assertion. This means that for most generic random matricesA, ourℓ∞
norm heuristic will succeed for most of the possibled vectors in (2) as long asm/n> 1/2.

4. Computational Results

We tested our linear programming formulation (10) by running it on randomly generated
linear integer equations (2). We summarize our computational results as follows.

In Table 1 we present average computational results for 10 runs for each of 9 cases of
solvable integer linear equations (2) solved by the linear program (10), utilizing the CPLEX
linear programming code [8] within MATLAB [13]. We generated them× n matrix A
containing pseudorandom values drawn from the standard normal distribution. The right
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Figure 1.Probabilities that the uniqueness of the integer solution of the system of linear equations (2)Ax= d by
the linear program (10), utilizing the CPLEX linear programming code [8] within MATLAB [13]. For eachn, we
selected various values ofm and ran 100 experiments. We declare a success if the returned solution equalled the
true integer solution. Empirical rates are plotted here forn= 50, 200, and 800. The solid vertical line denotes the
predicted phase transition wherem/n= 1/2.

hand sided of (2) was set equal toAzwhere each component ofz was set to 1 or−1 with
equal probability. The average times in column 3 of Table 1 are for a 4 Gigabyte machine
running Red Hat Enterprise Linux 5. Column 4 gives the average minimum over 10 cases
of the minimum value ofδ of the linear program (10) which indicates a unique integer
solution of (2) when it is equal to 1. Column 5 of Table 1 gives the number of runs out of
10 that the linear program (10) returned an integer solution of (1). We make the following
remarks regarding Table 1.

(i) We note that for all cases for whichpm,n > 1/2, that is cases for whichm> n/2, the
linear program (10) returned an exact integer solution.

(ii) Out of the 30 cases for whichm= n/2, exactly 14 linear programs (10) returned inte-
ger solutions of (2). This is in remarkable agreement with the probability ofpm,2m = 1

2
given above in (20).

For a graphic display of solution behavior, we ran numerous experiments for the cases
n = 50, 200, and 800. For each pair ofm and n, we tested 100 random instances and
declared success if the optimal solution was equal to the generatedz as defined in the
previous paragraph. As depicted in Figure 1, there is a dramatic transition between failure
and success of the heuristic as the ratiom/n increases. This transition is exactly predicted
by the results of Section 3. The solid vertical line in the plot is the predicted phase transition
where the probability of success is computed to be 1/2. Asn grows, the shape of this curve
rapidly approaches a step function equal to 0 form/n< 1/2 and 1 form/n> 1/2.
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PROBABILITY OF UNIQUE INTEGER SOLUTION 7

Table 1. Integer solution of the system of linear equations (2)Ax= d by the linear program (10), utilizing the
CPLEX linear programming code [8] within MATLAB [13]. Each line in the first four columns represents the
average of ten runs. The times are for a 4 Gigabyte machine running Red Hat Enterprise Linux 5. Column 4 gives
the average minimum value of the objective functionδ of the linear program (10), which indicates a unique integer
solution of (2) when it is equal to 1.

No. of Rows No. of Variables MATLAB Time Sec Minimum Value of No. of Runs Out of 10
m n toc δ Returning an Integer Solution

250 500 0.4420 0.9953 6

300 500 0.4290 1 10

400 500 0.4340 1 10

500 1,000 6.1820 0.9950 4

600 1,000 5.4240 1 10

800 1,000 4.2810 1 10

750 1,500 37.3870 0.9957 4

900 1,500 47.3180 1 10

1,200 1,500 19.3550 1 10

5. Conclusion and Outlook

We have presented a method to transform an integer programming problem into a linear
program, which under appropriate conditions, yields a unique integer solution to the integer
program. Using this formulation we have been able to analyze random instances of the
integer program and classify which instances are readily solvable in polynomial time with
high probability.

In some sense, a popular body of work in compressed sensing follows a similar trajec-
tory (see, for instance [5, 2]). There, an NP-Hard problem of finding the sparsest solution
to Ax= b is replaced by a linear program, and a dual certificate is produced to guarantee
uniqueness. The existence of such a certificate is then guaranteed by appealing to prob-
abilistic arguments. In the compressed sensing literature, this certificate is sufficient, but
not necessary for the linear programming solution to coincide with the sparsest solution.
It would be interesting to extend our linear programming techniques to provide necessary
and sufficient conditions for optimality in compressive sensing and other NP-HARD opti-
mization problems.
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